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Preface

As a rule* the authors of a scientific book pre
sumably hope that it will prove useful. The authors
of this book wish devoutly that it will turn out to be
quite useless, and that the application of exterior
ballistics, with lethal intent, may cease. Neverthe
less it is clear that armies will mass and nations stand
in readiness for war until "Homo sapiens" succeeds in
better deserving his self-bestowed name. While this
endures , there must be many who know something about
the flight of projectiles, and a few who know much
aoout it. For these, this book is written.
To the optimist who feels that this book is point

less because there will never be another war we can say
only that we hope he is right. To the pessimist who
feels that this book is pointless because the next war
will be fought with weapons of such wide destructive
power that it matters little where they are delivered,
we would say that few weapons indeed, having once been
useful, have been entirely discarded. The battle-axe
survived in the hatchet of the commandos; the spear
survived in the bayonet; and even sticks and stones
killed many in the first days of the independence of
India. If there is another war, we may feel reasonably
sure that guns, bombs and rockets will not be useless.
This book is not meant to be a compendium of ballis

tic knowledge. Many of the older techniques have been
ondtted, and the historical references are few. 'This
is due, in part at least, to the fact that a consider
able amount of second-rate material has been published
on problems of ballistics, and even the search for the
origin of a useful idea would entail much winnowing.



The material here incorporated was chosen chiefly on
a basis of utility. Those subjects are treated which
proved important in the work done by the authors during
or near the time of the Second World War; and to these
are added related topics in exterior ballistics. Not
all the work of the authors is included, and still less
is the work of their associates, of whom we shall men
tion J. W. Green, A. P. Morse, A. S. Peters, H. Federer,
H. L. Meyer and M. K. Fort. To select almost at random
nothing appears about the work of Professor Green on a
.method for setting a certain British bombsight for use
with ,U. S. bombs, nor on the work of Professor Morse on
separating the dispersion due to an aircraft-mounted
gun turret from other intermingled quantities in the
experimental data. The first of these could not be
described without violation of security regulations,
and is in any case a problem of mechanism rather than
of projectile flight; the second is a problem in sta
tistics rather than in ballistics. Their omission from
this volume, along with a number of other subjects which
exercised one or more of us during the war years, is in
no way an indication that they lacked interest or im
portance; rather, they were either "classified" or else
not entirely within the province of exterior ballistics .

Exterior ballistics may be regarded as a fairly
complicated exercise in dynamics, and thus requires
some knowledge both of mathematics and of physics.
Experience indicated that not all physicists had as
much mathematics as was needed, and still less could
the mathematicians be depended upon to know the re
quisite physics. Hence the first chapter in this book.
Presumably the mathematics in it will appear quite
trivial to mathematicians, and the physics equally
trivial to physicists . Let each be tolerant of the
ignorance of the other. The authors have attempted to
make the book intelligible to anyone who has had a
reasonably good undergraduate course either in mathe
matics or in physics. Furthermore, the elementary
physics in the first chapter is not invariably dis
cussed rigorously in textbooks. In particular, the



authors do not happen to have encountered any pub
lished proof of the Buckingham II-theorem which is
above reproach.

When the manuscript was first completed to the
approximate satisfaction of the authors, it was sub
mitted to the Ballistic Research Laboratories at
Aberdeen Proving Ground, Maryland. It was read with
great care by Mr. R. H. Kent, who is an associate
director of the Laboratories and is also head of the
Exterior Ballistics Laboratory. Mr. Kent favored us
with some comments which have been incorporated in
the text. Later each chapter was also read either by
Dr. L. S. Dederick, who is the other associate direc
tor of the Laboratories, or by Dr. T. E. Sterne, who
is the head of the Terminal Ballistics Laboratory.

The preceding paragraphs were written on July 12,
19U9. We have left them unchanged, because the in
tervening years have done nothing to require their
revision, save for the abandonment of the wisp of op
timism in the second paragraph. But we now have the
pleasant duty of acknowledging our gratitude to sev
eral persons besides those already named. Mr. C. H.
Murphy of the Laboratories has examined several chap
ters and has greatly improved Chapter XI by correcting
a number of errors. Finally, the authors are grate
ful to several persons who prepared the manuscript for
lithoprinting, including Mrs. Jeannette Sheehan, who
typed a substantial part of the text proper; Mr.
George E. Proust, who typed and corrected much of the
draft for master sheets and verified the trajectory
computation in Chapter VI j and, especially, to Miss
Lida Libby who typed about one-half the text proper, and
entered machine symbolism throughout the book, and
to Mrs. Pauline Weaver and Mrs. Hazel Spare, who
entered many proof symbols by hand and made final
corrections .

EDWARD JAMES McSHANE.
JOHN LEROY KELLET.
FRANKLIN VICTOR RENO.

March 1952.



CONCERNING THE NUMBERING OF REFERENCES:

All theorems, equations, formulas, etc., which had
enough importance to deserve designation have been
numbered together in one single scheme. References
to preceding numbered statements ordinarily give three
numbers in parentheses; the "first is a Roman number,
and indicates the chapter referred toj the second is
Arabic, and indicates the section; the third is also
Arabic, and indicates the number of the statement in
that section. To facilitate reference, each spread
shows the numbers of the chapter and section to whichit belongs. For brevity, references to statements
in the same chapter dispense with the chapter number,
and references to other statements in the same section

- dispense with both chapter and section numbers. Thus in
Section h of Chapter VIII we find a reference to
(vTE.1.8), which is equation 8 of Section 1 of Chapter
VII; a reference to (3»11) which is equation 11 of
Section 3 of the same chapter (VIII); and a reference
to (U), which is in the same section (1) of the same
chapter (VIII).
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Chapter I
MECHANICS,

DIMENSIONAL ANALYSIS,
AND STATISTICS

1. Definition of a vector.

Many quantities encountered in physics are not
fully specified by a single real number but require
also the specification of a direction. For example,
if all we know is that some one has moved thirty-nine
miles from the center of Washington, his location is
not determined, but, if he has moved thirty-nine miles
in a direction forty degrees east of north, he is in
Baltimore. In order to be able to discuss such quan
tities conveniently It is desirable to use mathemat
ical entities called vectors. These entities can best
be regarded as purely mathematical} although they have
uses in physics as well as in mathematics, it is pre
ferable for the sake of clarity of thought to define
them in a geometrical way and to study their proper
ties mathematically, and later to use these estab
lished properties to help us in studying problems of
physics.

The geometry we shall use is the familiar "Solid
Geometry"; that is, we assume the axioms for Euclidean
three-dimensional space. A "translation" is a motion,
or mapping, of the space onto itself such that, if A
goes to A' and B to B' , the distance A'B' is equal to
the distance AB, and the line through A' and B1 is
parallel to the line through A and B.
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To reach a definition of a vector we start off with
the idea of an ordered pair of points. Let A and B
be any two points of three-dimensional space. They
form an ordered pair of points if we designate one or
them as first, or beginning, point and the other as
last, or end, point. If we wish to represent such an
ordered point pair graphically, it is permissible and.
in fact convenient to draw in the line segment from
A to B, and to put an arrowhead at the point B to markit as end point. But this is only a pictorial con
venience; if we know where A and B are and which is
designated first, we know everything we need to know
about the line segment from A to B. It is not re
quired that A and B be different; ordered pairs of
points AB with A and B coincident are very important.
Graphically such a pair would be represented by a
single point.

At this stage one is tempted to define a vector as
an ordered pair of points, or (what amounts to the
same thing) a line segment AB with a specified begin
ning and a specified end. However, this would create
a certain logical difficulty. It is usually desirable
to regard line segments with the same length and di
rection as representing the same vector. Thus, with
rectangular coordinates in three-dimensional space,
the line segment from (0, 0, 0) to (1, - 3, 2) has the
same length and direction as the line segment from
(5, U, 2) to (6, 1, U). But they are distinct line
segments with no points in common. So, if we would
choose to define the vector as being the line segment,
these (being different segments) would be different
vectors .

This difficulty can easily be avoided by use of a
classical device. We say that two ordered pairs of
points (A, B) and (C, D) are equivalent if by means
of a translation of the space it is possible to bring
A 'and B to the position formerly occupied by C and D
respectively. Thus the two point pairs mentioned in
the preceding paragraph are equivalent. Then the
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following statements are almost self -evident. Each
ordered pair of points Is equivalent to Itself. If
(A, B) is equivalent to (C, D), then (C, D) is equiv
alent to (A, B). If (A, B) and (C, D) are both equiv
alent to (E, F), they are equivalent to each other.
From these statements it follows (rather obviously)
that if with each ordered pair of points we associate
all the pairs equivalent to it, and call the result
an "equivalence class," every ordered pair of points
belongs to exactly one such class. Each such class,
as a whole, will be called a vector. If (A, B) is an
ordered point pair, it represents the vector to which
it belongs; and every ordered pair of points equiva
lent to (A, B) also represents that same vector. In
particular, all ordered pairs (A, A) with the same be
ginning and end are equivalent to each other; the vec
tor of which they all are representations is the zero
vector.

Vectors will be represented by letters in boldface
type, such as x , y, q. The zero vector will be de
noted by O •

All the pairs of points belonging to any one vec
tor x have the same distance between beginning point
and end point. This distance, being common to all
pairs which represent the vector, may be regarded as
a property of the vector. It is named the length of the
vector x , and will be denoted by the symbol |

x |„ In
a certain hazy sense, which will later be made more
precise, all the representations of any vector x
other than O have the same direction, so this direc
tion too is a property of the vector x. But the rep
resentations of x do not have any position in common,
so the vector x may not be regarded as having any
specific position. Nevertheless, for the sake of
brevity one often says "we construct the vector x
with beginning at P" as an abbreviation for "we con
struct the line segment PQ such that the ordered pair
of points (P, Q) is a representation of the vector X ."
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2. Addition of vectors; multiplication of vectors by
real numbers .

The simplest operations which can be performed on
vectors are the addition of two vectors and the multi
plication of a vector by a real number. Let x and y
be two vectors, and let A be any point. The vector
x has exactly one representation (A, B) beginning at
A. The vector y has exactly one representation (B. C)
beginning at B. The vector represented by (A, C) is
called the sum of x and y , and is denoted by x + y .
It is evident that this is independent of the choice
of Aj for if any other beginning point A1 is chosen,
and representations (A' , B' ) and (B', C) of x and y
respectively are constructed, the translation which
carries A into A' will also carry B into B' (since
(A, B) and (A', B' ) both represent x) and will carry
C into C. So (A, C) will be equivalent to (A« , C» ) .

Let x , y and z be any three vectors and A a point .If (A. B) represents x, and (B, C) represents y, and
(C, D) represents x , then (A, C) represents x + y so
that (A> D) represents ( x + y) + z . Also (B, D) rep
resents y + z so (A, D) represents x + ( y + z).
Hence

(1) ( x + y) + z - x + ( y + z )•

This, the associative law of addition, permits us to
omit parentheses in successive sums such as

x + y + z + w

without causing any ambiguity. It is easy to see that
(2) x+O-O+x-x
for every vector x . If x is a vector and (A, B) is
a representation of it, then (B, A) is a representa
tion of a vector, different from x unless x ■ O.
This new vector we denote by - x . Clearly
(3) (-x) + x-x+(-x)-0«
If x and y are two non-zero vectors, having rep
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reservations (A, B) and (A, C) respectively which do
not lie along the same line, we complete the parallel
ogram ABDC. Since by a translation we bring A to C and
B to D, (C, D) is equivalent to (A, B) and represents
x. Similarly (A, C) and (B, D) both represent y.
Hence by definition (A, D) represents both x + y and
y + x, and we have established the commutative law

00 x + y - y + x
if x and y are non-zero and their representations are
not parallel.
If x or y is zero the equation is also true, by

(2) . There still remains the case of non-zero, para
llel vectors x, y to consider. This can oe reduced
to the case already considered by using an auxiliary
vector z not parallel to x or y . Then the order of
addition of x and z , of y and z , and of ( x + z )
and ( - z + y) is immaterial. So, using (1), (2) and
(3) , we find

x + y - x+(z - z)+y
. (x + z) + ( - s +y)
.(y - z ) + ( z ♦ x)-y +(-z +z)+x
- y + z.

So (U) holds in all cases.
We now define the operation of multiplying a vector

by a real number (for which the alternative name scalar
is often used). Let x be a vector and c a real num
ber. If x • O or if c - 0, we define

(?) c x - x c ■ O •

Otherwise, let AB be a representation of x . On the
line through A and B we find the point C such that the
distance from A to C is |c|*|x| and which is on the
same side of A as B is if c > 0, on the opposite side if
Sec. 2 5



e < 0. Then cx and xc are both defined to be the
vector represented by AC. It is easily seen that this
does not depend on the representation chosen for x •
The expression x/c shall mean (l/c)x.

By methods familiar from elementary coordinate
geometry we can show that
(6) (a + b)x - ax + bx ,
and

(.7) a(bx) - (ab)x.
It is also clear from the construction that if x is

a non-zero vector, and y is a vector parallel to x
(that is, a vector whose representations are parallel
to those of x ), then there is a real number c such that

y - c x.
'Suppose that x and y are non-zero vectors which

are not parallel. Let AB represent x and BC repre
sent v; then AC represents x + y. Let AB1 repre
sent cx and B'C renresenx. c y; then AC represents
cx + cy. But the triangles ABC and AB'C are sim
ilar, so C is on the line AC, and AC represents
c( x + y ). That is,
(6) c(x + y)-cx+cy.
The restriction that x and y are non-parallel is
easily removed; if they are parallel, then by the pre
ceding paragraph we have, say, y - kx, so

c(x + y) <c(x + kx)-c(l + k)x
- (c + ck)x » cx + ckx
- c x f cy.

In short, the operations of addition of vectors and
of multiplication of vectors by real numbers obey the
same laws as the corresponding computations with real
numbers. However, the multiplication of a vector by
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another vector has not been assigned any meaning.

We can now give a precise meaning to the word "di
rection." If x is any non-zero vector, the vector
x (l/| x|) has length 1, by the construction above.
This vector is called the "unit vector in the direc
tion of x," or more briefly the "direction" of x.
The zero vector is the only one with length 0; every
other vector is uniquely determined by the length and
its direction since X - (| X | ) (x[l/ lx|]), thefirst factor being the length and the second the di
rection.

3. Linear dependence of vectors.

Let X], xn be any collection of vectors. We
shall say that they are collinear. or parallel, if when
they are given respective representations AB^, . .., ABn
all starting at the same point, all of the points
A, Bi, Bn lie in one straight line. Evidently
the choice of beginning point A is immaterial. The
vectors x j, . . .', x n are coplanar if when they are
given the respective representations ABi, ABn,
all the points A, B^, . . . , Bn lie in a plane. It is
obvious that if at most one of the vectors x ], . . . , x n
is different from O the vectors are collinear; if at
most two differ from O they are coplanar.

The geometric concepts defined in the preceding par
agraph are closely related to the important concept of
linear independence. A set ii, x _ of vectors is
linearly dependent if there is a set of real numbers
cl» •••» cn n°t all zero such that
(1) ci x^ + . . . + cn x„ - O ;

otherwise they are linearly independent.

Two immediate corollaries are:

(2) Lemma. If some of the vectors xi, xn
are linearly dependent, all of them are. Suppose, to
be specific , that X}, . . . , Xq are linearly dependent
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where m < n. Then there are numbers c^, cm notall zero such that

clxl * ••• ♦ cmxra - o.
But then

cl*l + ••• + cmxm ♦ 0xm+l + + 0xn " °»
so . .., Xn are linearly dependent.

(3) Lemma. The vectors x^, Xn are linearly
dependent if and only if some one of them is expres
sible as a linear combination of the others.

Suppose that X_ is equal to a linear combination

clxl ♦ ••• 4 cm-lXm-l + cm+lXm+l + ••• + cnxn
of the others. Then

CjXi + ... + c^X^ ♦ ( - l)Xm
+ cm+lxm*l ♦ ••• + cnXn -O,

and the vectors x^, . .., Xn are linearly depend
ent. Conversely, suppose the vectors linearly depend
ent. Then there are numbers c,, . .., cn not all zero
such that (l) holds. Let cm be a non-vanishing co
efficient; then

xm " ( - c1/cm)x1 + ... 4 ( - cm.1/cm)xm.1
+ < ' cmfl/cm)xm+l ♦...♦(- cn/cm)xn*

We now prove the following theorem.

(li) Theorem. One vector is linearly dependent if and
only if it is O. Two vectors are linearly dependent
if and only if they are collinear. Three vectors are
linearly dependent if and only if they are coplanar.
Four vectors in three-dimensional space are always lin
early dependent .

By definition, O is linearly dependent, since
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1 (O) » O. Conversely, if - O and C]_f 0,
then

O - {l/c1)c1x1 - xx.
If and %2 are collinear, either they are both
O, hence linearly dependent; or else one of them, say
X-.t is not O. Then, as we have shown earlier, there
is a number a such that Xp ■ aX]_, so by Lemma (3) the
vectors are linearly dependent. Conversely, if they
are linearly dependent, by Lemma (3) one of them is a
multiple of the other, say X^

" aX2« By construction
of aXpi the vectors X^ and %2 are collinear.

Let x^, X2, X3 be coplanar. If two of them are
collinear (in particular if any one is O), those two
are linearly dependent by the preceding paragraph, so
the three are linearly dependent by Lemma (2). If no
two of them are collinear, construct representations
AB^, AB2, AB3 of X]_, X2, X3 respectively. Through
B3 draw a line parallel to A3-lj it will intersect AB2
in some point C, since AB^ and AB2 are not parallel.
Then AC represents a multiple &2*2 °^ *2 311 ^ CB3 rep
resents a multiple a^X^ of x^, so X3

■
a^x^ + &2H2*and by Lemma (3) the vectors are linearly dependent.

Conversely, if xi, X2 and X3 are linearly de
pendent, one of them is a linear combination of the
others, say X3 ■ ai xi + a2 X 2* 9y construction, the
right member of this equaton is coplanar with and
X2» so the three vectors are coplanar.

Let X2, X3, X^ be any four vectors. If any
three are linearly dependent all four are, by Lem
ma (2). Otherwise, let AB^, AB2, AB3, AB^ be repre
sentations of xi, X2» X3, x^, respectively . Through
B^ draw a line parallel to AB3. This will meet the
plane AB1B2 in a point C, since Xx, X2, X3 are not
coplanar. Let z be the vector represented by AC.
Since X], X2, * are coplanar they are linearly de
pendent, and there are numbers cj_, C2, C3 not all zerosuch that
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(5) cl*l+ C2X2 + c3 x "

It is not possible that 03 " Oj if it were, (5) would,
express a linear dependence of x

^ and x2> Hence this
equation can be s dived for x ;

(6) x ■
a-j^ x1 + a2 x^.

The vector CB^ represents a multiple of xy, say a^ X.35and
x^

■ 1 + a3*3* From this and (6; we have

*k
" alXl+ a2x2 + a3*3*

By Lemma (3), the four vectors are linearly dependent.

Theorem (U) yields the following corollary.

(7) Corollary* If x -1 is a linearly independent (i.e. ,
non-zero) vector, and x is c ollinear with x^, then
z can be represented In exactly one way as a multiple
Of Xy
If i|, «2 are line arly Independent (i.e., non—

collinear) vectors, and x is coplanar with them, then
x can be represented in exactly one way as a linear
combination of them.

If Xi , %2> X3 are linearly independent (i.e. , non—
coplanar) vectors , every vector x in three-dimensional
space can be represented in exactly one way as _a lin
ear c ombination of them.

We prove 'the last statement; the proofs of the pre
ceding statements are obtained by omitting all refer
ences to X3 or to X2 and X3. The vectors denoted
z , X^, *2* *3 are linearly dependent by Theorem (U).
Hence there are numbers c, c^, C2, C3 not all aero
such that

(8) cz + ci*i + c2X2 ♦ C3X3
"

We cannot have c ■ 0; otherwise (8) would express a
linear dependency among X]_, %2» X3, contrary to hy
pothesis. Transposing and dividing by c yields
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z. - ( - Cj/c) XX + ( - Cg/C) x2 + ( - C3/C) X3,
so z can be represented in at least one way as a
linear combination of x^, x2, &nd X3. If there were
two different representations, say

z - * *2*2 * a3x3
and

z - b^Xi + b2 X2 + b3 X3,
by subtraction we would obtain

(ax - bi) xx + (ag - 1^) x2 ♦ U3 - b3) X3 - O,
which contradicts the hypothesis that x^, x2, and
x 3 are linearly independent.

U. Components of vectors.

Let us choose some one point 0 of space and name it
the "origin." Each point P determines a vector x,
represented by OP, which we shall call its "position
vector." Conversely, each vector x has exactly one
representation beginning at 0; if Q is the end point
of this representation, x is the position vector of
the point Q. Thus the vectors are put in one-to-one
correspondence with the points of three-dimensional
space.

If k^j k 2 and IC3 are three linearly independent
unit vectors we may use them to define a coordinate
system. Each vector x may be written in one and only
one way in the form X ■ z^k^ + x2 k2 ♦ x3*c3» The
numbers x^, x2, x3 are called the components of X
(with respect to the coordinate system k^, k2, k3).
Thus when a coordinate system has been selected each
vector corresponds to a triple of numbers, and converse
ly. Each point P of space also has coordinates. These
are defined to be the components of the position vec
tor of P, which is represented by OP.

If representations of k^, k2 and k3 which begin
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at 0 are extended the resulting directed lines are
called the OX]- , 0X2- and OX-j-axes. When any vec
tor x is represented as a linear combination

(1) x - x-iki + x2 k2 + X3 IC3
of the unit vectors k\, k2i k 3 9 the three real num
bers xii x2, X3 are called the components of X along
the OX]- , 0X2- , 0X3-axes respectively.

In order to avoid repetition, we shall adopt the
following notational convention. When the coordinate
vectors k^, k2, k3 have been chosen, the components
of a vector denoted by a boldface letter will be des
ignated by attaching subscripts 1, 2, 3 to the corres
ponding roman letter. Thus the components of x are
(xjj x2, X3); the components of z* are (z^*, z2*, 23*).

For any three vectors x, y, z, the equation
z ■ x + y is equivalent to x + y - z ■ O, which
with the help of (l) becomes

(*1 + 31 " zl) kl + (*2 + y2 - z2) k 2
(2)

+ (X3 + 73 - 23) k3 ■ O.
The vectors k]_, k2, k3 being linearly independent
by Theorem (3«U)» this equation is true if and only if
all three equations

(3) zi - »l ♦ yi» z2 " x2 + y2» z3 "
x3 + y3

are satisfied. Thus the single vector equation (1) is
equivalent to the three equations (3) relating the
components of the vectors.

Likewise the equation.

(U) y - cx
is equivalent to
yi-ki ♦ y2 k2 + y3 k3 - c^k]^ + x2k2 + x3k3),
or
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- cx1)k1 + (y2 - cxgjkg + (y^ - cx^k^ - O.
By Theorem (3.U), this is true if and only if all three
equations

(5) Y\ " cxx, y2 - cx2, y3= cx^j

hold. Thus the single vector equation (U) is equiv
alent to the three equations (£) relating the compon
ents of the vectors.

Suppose that P: (xj,, x2, x^) and Q: (y^ y2, 7j)
are any two points of three-dimensional space. Then
OP and OQ represent the position vectors x and y of
P and Q respectively. The ordered pair PQ represents
a -vector x , and by definition we see that X + z * y ,
or z ■ y - X . Hence it follows that PQ representsy- xnhose components are (y^ - x^, y2 - x?, y-j - x-j).
In other words, the line segment or ordered pair with
first point (x^, x2, x-j) and last point (y^, y2, y^)
represents the vector whose components are

(?i - »p y2 - Xg, y3 - x3).
% Inner products and vector products .

It is not possible to define a process of multi
plying vectors together in such a way as to preserve
any close similarity to the ordinary multiplication
of real numbers. However, two different expressions
formed out of pairs of vectors occur frequently when
one uses vectors in physics, and these two expressions
have been given the names of the "inner product" and
the "vector product" of the two vectors.

The inner product of X and y is not a vector, but
a real number; it is the product of the length of X ,
the length of y and the cos'ine of the angle ( x , y )
between them. We shall denote it by X • y (it is often
called the "dot product" of X and y). Thus

(l) x*Y - I *l •
I y I

• cos ( x, y).
Let k^, k^» k^

be three mutually perpendicular
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unit vectors, and let X and y have the respective
components (xj_, x2, x^) and (ys, y2, 7$)* ^ a P0*-1"1*'
0 is chosen as origin, and P and Q are the points with
coordinates (x^, X2, x^) and (y^, y2, 7$) respectively,
by definition X is the position vector of P and y is
the position vector of Q. Let z be the vector repre
sented by PQ; as we saw in' the preceding section,
z • y - X, and the components of z are

(yx - 7 2 - x2> y*3
"
x3^

The length of z is the distance from P to Q, so by
the distance formula,
(2) |z| 2 - (yx -.Xl)2 + (y2 - X2 )2 + (y3 - X3)2.
In the triangle OPQ the angle opposite PQis(x, y) ,
and the sides OP, OQ, PQ have lengths | X j, | y |» 1 z | .respectively. So by the law of cosines, the distance
formula and (1),
Izl2- |x|2+ |y|2-2|x||y|cos (x, y)

(3) - xi2 ♦ X22 ♦ X32

+ yi2 + 722 * 732 - 2x.y.
Equating the expressions for J z j in (2) and (3) and
simplifying yields
(h) X • y - x1y1 + + x3y3.
The left side of this equation is by its definition
independent of the choice of kjj k 2, and k-j. Hence
the right member is independent of this choice, in
spite of the fact that each of the six numbers in the
right member depends on the choice of the three unit
vectors.

The vector x + y has components

(*! + 7i> *2 + y2» ^ + y3^
Hence by (U),
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( x ♦ y ) • x - (xx + y-^^ + U2 +

+ U3 + y3)z3
(5) -

x1«1 + xf2 + *f3
♦ y^i ♦ y2^ +

>3*3- x • z + y • z.
From (U) it is evident that
(6) y •* - x - y.
Since cy has components (cy1, cy2> cy3), from (h) we
deduce

I'(cy) - xjcj! + x2cy2 ♦ x3cy3
■ c x • y.

A useful corollary of (l) is
(7) x-x -

| x|2.

To inner multiplication there corresponds no form
of division. The equation x • y • 0 does not imply
that either factor vanishes, but merely that either
x or y is the zero vector or that cos ( X , y) • 0, «

that is, that x and y are orthogonal. If we regard
0 as orthogonal to all vectors , the equation X • y ■ 0
holds if and only if x is orthogonal to y.
Any three non-coplanar vectors x> y, z, con

sidered in that order, form a right-handed or a left-
handed set according to the following test. Let OP,
OQ, OR represent x, y» z respectively. In the OQR-
plane it is possible to rotate OQ into the direction
of OR by a turn of less than 180 . An observer sta
tioned at P will report this rotation as clockwise or
counterclockwise. In the former case the set is left-
nanded, in the latter it is right-handed. There is
another way of describing such sets which accounts for
the names. Keeping the thumb and index finger in the
plane of the palm and the middle finger bent toward
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the palm, with one hand (but not both) it will be pos
sible to point the thumb in the direction of X, the
index finger in the direction of y and the middle
finger in the direction of z . The hand with which
this can be done gives its name to the system. (This
is easy if the vectors are mutually perpendicular, but
can be a trifle uncomfortable for some sets I)
It is easily seen that if x, y, x is a right-

handed set, so are y, z, x and z, X, y; while
X, z, y and z, y, x and y, x, z are left-
handed. Henceforth we shall use only coordinate sys
tems OX^XjJL in which the unit vectors k]_, k

2> k^form a right-handed set.

The vector product , or cross product, xXy of the
two vectors X and y is a vector, and is defined as
follows. Let OP, OQ represent x, y respectively.
Then the length of xXy is the area of the parallel
ogram two of whose sides are OP and OQ, so that

I x Xy I
- |0P| • |0Q| • sin ^POQ

(8) -
| x |

• |y|«sin ( x , y ).
This is evidently zero if and only if x and y are
collinear. When it is not O, xXy has direction
perpendicular to the plane OPQ, and x, y, xXy form
a right-handed system.

We shall now begin to prove the equation

kl k2 k3
*Xy - Xl x2 x3

(9) 71 72 73
• (^3 - x3y2) k 1
* (x3yl " x\*^k2 * (xly2 " x27lik3'
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This is easy when the left member is O; for we have
seen that this means that x and y are collinear, so
that the triple (x-^, x2, x-j) and (y-p y2, y^) are pro
portional and the determinant is O* When the left
member is not O, the proof of (9) can be made to rest
upon the following well-known theorem of analytic
geometry.

Let P: (x., X2» x^t Q: 7o» R: (*L» z2> z^
be any three points in three-dinen sional space , the
axis system being orthogonal and right-handed,
the absolute value of the determinant

Then

(10)

X 2 3

yl 72 y3

is equal to the volume of the parallelopiped whose
edges are OP, OQ and OR: the detenrdnant (10) is pos
itive or negative according as Op, OQ, OR is a riglro-
handed or a left-handed set.

Define

(id
z "

(x^3
" V2)ki + ^ -xiy3)k2

we wish to show that z - xXy . From the equation
x • X - (x^ - x3y2)x1 + (x-jjtl - xxy3)x2

+ (xiy2 ■ x^x^m 0

ire see that z is perpendicular to x, in the same
way we prove it perpendicular to y. Hence it is per
pendicular to the plane of x and y.
Let V be the volume of the parallelopiped with

edges OP, OQ, OR, where OP, OQ, OR are representations
of X, y, x respectively. Since
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(12)

*1

*1

x2

^2

*2

x3

»3

■zL(V3-X3y2) + 22(x3yl-xly3)
♦ z3(xLy2

- x^)
zl2 + *22 +. z32 " I

x I
2 * °»

the above-mentioned theorem of geometry shows that the
set y, z is right-handed, and

(13) V =
| i |

2.

But z is perpendicular to the plane OPQ, so the volume
V is. the product of the altitude | z | by the area of the
base, which is the area of the parallelogram whose sides
are OP and OQ:

(lL) V » I z | (area of parallelogram OP, OQ).
By comparison of (13) and (lli) we see that |

z | is the
area of the parallelogram with sides OP, OQ. But now
z answers in all respects the description which de
fines xXy» so z » xXy. This and (1) complete the
proof of (9).

From (9) we immediately conclude that for any three
vectors x , y and z and any real number a the equa
tions

xXx

(15)
xXr - - rXx ,

xX(a y) - (ax)Xy - a(xXy)»
( x + y)x* » xx* + yX 1

are satisfied.

Expansion, as in (12), establishes the identities

(16) x-(yX*) - (xXy)#x '3
*3
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Vector products involving more than two factors can
be simplified by use of the important formula

(17) xX(yXx) - (x-z)y - (x. y)z.
This is established by two uses of (9) and a bit of al
gebraic manipulation, as follows:

kl k2 k3
*1 *2 *3

1*2*3
" y3*2 73*1" yl*3 yl*2 " y2*l

■ k1(3§y1z2 - *2y2zl - X}73*1 * x3yiz3)
♦ k2(x3y2!63 - *3 y3z2 ~ xlylz2 +

♦ k3(*iy3*l " xlylz3 " x2y2*3 + x2y3*2)
"

kxC yiC^i1!
+ x2*2 +

X3Z3^
" *l(xlyl + x2*2 + x373^

♦ k2[y2U1z1 + X2Z2 +
x3*3)- z2^xlyl + x2y2 + ^3y3^

+ k3 [y^X-^ + XgZg +
x^z^)- "jC^Ul + x2y2 + x3y3^]

' ^klyl * k2y2 + k3y3^ ^xl*l + X2Z2 +
X3Z3^- ( k 1*1 + k 2Z2

* k3z3^ ^xlyl + *2y2 + x3y3^
= y( x • x) - x( x • y).

Before leaving the subject of vector multiplication
it should be remarked that the choice of a "right-handed
rule" is rather arbitrary. It is quite feasible to be
gin with unit vectors k^, k«, k -j which form a left-
handed system, and to use a lefthand rule for determin
ing the direction of a vector product X X V • Pre
cisely the same algebraic formulas would hold for this
system, although the geometric interpretation is dif
ferent.
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6. Continuity and diff erenti ability of vector func
tions .

Let P be an independent variable, ranging over a set
[P] in any kind of space. If to each value of P there
corresponds a vector x(P), determined by any law what
ever, then x(P) is a vector (or vector-valued) func
tion of P. For example, a velocity can be represented
by a vector. Hence the velocity v of the air at each
point P of the earth's atmosphere is a vector function
of the point P. At each time t the position of a moving
point is specified by its coordinate vector X measured
from an arbitrarily selected origin 0. Hence x is a
vector function x(t) of the time t.

The definitions of limit and of continuity for 'vec
tor functions differ only in notation from the corres
ponding definitions for real-valued functions. Sup
pose that [p] is a set of points in a space of one,
two or three dimensions and that x(P) is defined for
ail points P of the set L Pj . Suppose that PQ is a point
such that points of [P] (other than PQ itself) lie arbitrarily close to P0. We then say that x(P) approaches
a limit k as P tends to P0, or in symbols

(1) lim x(P) - k,
P-Po

if
(2) lim |x(P) - k| - 0.

P-P0

This last is a statement about real numbers. Since
| x(P) - k| is the length of the (vector) difference
between x(P) and k, and is also the distance between
the points whose position vectors are x(P) and k re
spectively, we can interpret the last statement in
either of two ways. To each positive number c there
corresponds a positive number 6 such that for all points
P (different from P0) which belong to [ P ] and have
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distance less than & from Po, the vector difference
X (P) - k has length less than e; or, alternatively,
the point with position vector x(P) lies within dis
tance c of the point whose position vector is k.
If we choose any rectangular coordinate system the

vectors x(P} and k are each expressed by three com
ponents. It is rather easy to show that x(P) tends
to k as P tends to P0 if and only if all three equa
tions

(3) lim xAP) - k, (i - 1, 2, 3)
P-P0

are satisfied. Consider first the expression
A2 + b2 + c2 .

It is not increased by replacing any two of the letters
a, b, c by zero; hence |a|, |b| and |c| cannot exceed
the radical. On the other hand, the radical cannot ex
ceed |a| + lb |

+ |c|, as is clear if we compare the
square of this sum with the square of the radical.
Hence

I *i( p) - kjl
< J (xx(P) - kx)2 ♦ (x2(P) - k2)2 + (x3(P) - k/W - lx(P) -k|
1 |Xl(P) - kx| + |x2(P) - kg |

♦
|x3(P)

- k3|.
Now if x(P) tends to k each of the three numbers
\xA?) - kt| is caught between 0 and | x(P) - k| ,
nhich approaches 0. Hence each of the three approaches
zero, and (3) is satisfied. Conversely, if (3) holds,
each of the three functions |x^(P) - k^| approaches
0 as P tends to P0. Hence so does their sum. But
|x (P) - k| is caught between 0 ~nd this sum, so it
must approach zero. Therefore (1) is satisfied.
This result is still valid if the axes are oblique,

but the proof is a little more complicated.

Sec. 6 21



Equations (3) make it easy to prove that if
(5) lim X(P) - k and lira y(P) - I,

P-P0 p-Po

and u(P) is a real-valued function such that

(6) lim u(P) - m,
P-Po

then the relations

(7) lira u(P) x(P) - ink,
p-po

(8) lim [ x(P) + y(P) ] - k + I,
p-p6

(9) lim x(P) • y(P) - k- 1,
p-pc

(10) lim x(P) Xy(P) " *X»
P-P0

are satisfied. For example, (10) holds if and only if
all three equations

lim [x2(P)y3(P) - x3(P)y2(P) ] - k^ - ky2,
P-po

lim [x3(P)y1(P) - x1(P)y3(P) ] - kfr - kjLy
P-Po

lim [x1(P)y2(P) - X2(P)yi(P)] - k^ - k^
P"*Po

are satisfied. But these are consequences of (3) and
its analogue for y (P), which in turn are consequences
of (5).

Suppose now that the set [P ] and the point P0 are

22 Ch. I



as described in the second paragraph of this section,
and that the point P0 belongs to[ P]. Then we say that
X (P) is continuous at PQ if the limit

lim X(P)
P-Po

exists and is* equal to X(P0). By the preceding proof,
this is true if and only If each of the three real-
valued functions x»(P), (i ■ 1» 2, 3) is continuous, at
P_. As usual, x(T) is'said to be continuous on [P ]if and only if it is continuous at each point PQ of
[P].
If x(t) is defined, say, for all t in the inter

val from ti to t2» and t0 is in that interval, the
derivative X'(t0) or d x/dt is defined to be the
limit

lim X(t) - x(to>
t-t0 t - t0

provided that this limit exists. As we showed earlier
in this section, the relation

(11) X.(t0)-lim *(t) - X(to}
t-t0 t - tQ

is equivalent to all three equations

(12) xMtQ) « lim *l(t) - xi(to) (i * X- 2> 3)«
v P-P0 t - t0

Ifhen the independent variable is interpreted as time,
we shall usually write X for the derivative, instead
of x«.

If u(t) is a real -valued function and x(t) and
y(t) are vector functions all defined on an interval
and all having derivatives at a point t of the inter
val, the formulas
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d
(13) — [u(t)x(t) ] - u»(t)x(t) + u(t) x'(t),

(11*) ^U(t) + y(t)] - x'(t) ♦ y'(t),

d
(15) ^U(t)-y(t)] - X'(t).y(t)+ x(t).-y'(t),

(16) ^[x(t)Xy(t)] - x'(t)Xy(t)+ x(t)Xy'U)
all hold. They can be established as (7), (8), (9) and
(10) were, by us* °f components, or they can be estab
lished directly. Consider, for example, equation (16).
Since

x(t)Xy(t) - x(t0)Xy(t0)
t-t0

x(t)X [ y(t) - y(t0) ]
t - t0

[x(t) - x(t )]X y (t0)
+ »t - tn

on letting t tend to t0 and recalling (8) and (10)
we obtain (16), apart from the triviality that we
have tQ in place of t.

From (15) and (5.7) it follows at once that

(17) ( |x(t)f)« - [ x (t)- x(t) ]« - 2x(t)- x'(t).
The analogue for the cross product is a triviality

because of (5.15). In (16) we must be careful to pre
serve the order of the factors, since cross-multipli
cation is not commutative (see 5.l5)«
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7. Rigid motions.

Hitherto we have been discussing purely geometric
quantities, involving points and line segments in
three-dimensional space. Now we wish to discuss mo

tions, thereby introducing a physical quantity, time.
The concept of time is not a simple one. In relativ
ity theory, time coordinates and position coordinates
are inextricably bound together. But for experiments
involving only terrestrial objects with velocities much
less than that of light, it is entirely satisfactory to
use the earth's rotation to define time. LetTT^ be a
plane through the earth's axis and passing permanently
through some identifiable point of the earth's surface
(for example, the cross-hairs of the meridian circle
at Greenwich Observatory). Let n"2 be a plane passing
through the earth's axis and some distant star. The
angle between m and ffjj changes; a sidereal second is
the time required for it to change 1/86,UOO revolution.
Due tn the motion of the earth in its orbit, the solar
day (between successive meridian-crossings of the sun)
is longer than a sidereal day (between successive me
ridian-crossings of a fixed star) by roughly four min
utes, on the average; enough to amount to one day per
year. So a mean solar second is roughly 366.2U/365. 2k
sidereal seconds; more precisely, it is 1.00273790
sidereal seconds.

As soon as we introduce different times into our
discussion we encounter the need of what may be con
sidered hair-splitting. Given a vector x at a time
tQ and a vector y of the same length at a different
time t]_, how can we tell if these are the same or, dif
ferent? If t0 were equal to t^ the question would have
an answer which is already given in Section 1. But
suppose that A and B are two ends of a diameter of the
earth, and that at time t0 the line AB produced passes
through a star S. Then at time t0we have

(1) AB7 I AB |
- AS/ | a3|.

But at another time t]_ the points A, B, S will no. longer
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b« collinear, so the two members of (1) will be un
equal. The question is, which (if either) is unchanged?
To one who is religiously convinced that the earth
stands still the answer seems evident; the left mem
ber is unchanged. And all of us tacitly treat the left
member as unchanging when we say "the sun rises." If
S is a distant star, as astronomer would usually be
willing to proceed as though the right member of (1)
is unchanged; this assumption is tacitly made when
ever an astronomer determines time by the meridian
passage of a star. But an astronomer trying to deter
mine the parallax of S will. assume neither one un
changed.

Once, not so many decades ago, we might have tried
to get out of this difficulty by regarding a vector as
unchanging If at all times it joined the same two points
of the "ether." The Michelson-Morley experiment frus
trates any such attempt. Instead, we abandon all
efforts to give an absolute meaning to constancy of
a vector, or immobility of a point, and find that we
get along quite satisfactorily with a weaker substi
tute. Suppose that at each instant we choose three
concurrent lines OXp OX2, OX-j. Since tne angle be
tween OX^ and OX2 is a real number, no troubles ariseif we require that this angle have the same value for
all times t; and likewise for the angle between 0X]_
and OX3 and the angle between 0X2 and OX y For pres
ent purposes the manner in which the lines are chosen
is unimportant; but in specific applications they will
always be chosen as some recognizable lines related to
a material object, for example, the earth. We can use
these lines as the axes of a coordinate system, and we
can introduce coordinate vectors k^, kg, ko as before,
for each separate instant of time. Now we can say that
a point is fixed with respect to the OXjXgXj-system if
each of its three coordinates retains a constant value
at all times; and we can say that a vector x is a con
stant vector *with respect to the OX^XgX^ -system if
each of its three components retains a constant value
for all times.
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In physics, a "particle" is ordinarily understood
to mean a material object whose dimensions are too
small to be of significance in the particular problem
under discussion and whose spatial- orientation is of no
significance. Such a particle can then be regarded
as merely an identifiable point of space, whose po
sition with respect to a chosen coordinate system
OXiXoX? is given at any time t by three coordinates
xltt;, X2^^» x3(*)» Tne velocity v at time t0 of
the particle, with respect to the OXj^Xo-system, is
defined as follows. Let P^ be the position of the
particle at time t, and let P0 be the point which is
fixed with respect to the OXiX2X3-system and which
coincides at time t0 with P. Then we define

(2) v - lim 1°2± ,
t-t0 t - t0

provided that the limit exists.

Since the point P0 has constant coordinates
*l(t0), x2(t0), x3(tQ),

the vector PQP^ has components

x^t) - Jc^t,), XgU) - X2(t0), x3(t) - x3(tQ),
and equation (2) is equivalent to the three equations

▼i-iim xi(t) - xi<y
(3) t-t0 t - tQ

- k£ij, (i - 1,. 2, 3).
This permits us to write
(U) * - i(t),
wherein we must keep in mind that neither side of the
equation has any meaning except with reference to some
specific coordinate system, and if x^(t), X2(t), x3(t)
are the components of X (t) in a coordinate system with
coordinate vectors k^, k.2» k 3 then for this sys
tem we have
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(5) i(t) - i1(t)k1 ♦ x2(t)k2 + x3(t)k3.
Thus in finding the velocity i of a particle with re
spect to a coordinate system we treat the coordinate
vectors of the system as constants.

The velocity v of a particle should be carefully
distinguished from its speed, which by definition is
the absolute value | v | of its velocity. Thus, proper
ly speaking, an airplane cannot have a velocity of
300 miles per hour (with respect, say, to the ground);
it can have a speed of 300 miles per hour, and it will
have that speed if its velocity is, say, 300 miles per
hour due west and horizontal.

If 0 1^ X2 X-
j is another coordinate system, a point

P0 fixed with respect to the new system may have a
velocity w, with respect, to the original system, which
need not be O. Moreover, this velocity w may vary
with the point PQ and with the time t. It will be
called the velocity, at time t and place P0, of the

0 X2*X2*X^-system with respect to the OXiX^^-system.
In order to avoid repeated re-statements of a hypoth
esis, we shall always assume, when changing from one
coordinate system to another, that the velocity of the
new system with respect to trie old one exists; we rule
out non-differentiable motions.

A particle P which has a velocity v with respect
to the OX^XgXy-system will ordinarily have^a differentvelocity v* with respect to the 0 X]*X2*X3 -system.
These velocities are related as follows:

If at time t0 a particle P has velocity v with
respect to the 0 X^ X2 X? -system, and at the time

t|>

and s.t the place occupied by P at time t0 the

0 X^ X2 Xi -system has velocity w Tith respect to
the 0X]X2A3-system, then at time t0 the particle P

has a velocity^ v with respect to the OX^X2X3-system,
which satisfies the equation

(6) v - v + w.
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Let PQ* be the point, in the 0*X;j*X2*X -^-system,
whose coordinates are constantly equal to

(x-fU^, x2*(tQ), x3*(t0))j
and let PQ be the point, fixed in the OXiX2X3-system,
whose coordinates are constantly equal to

(x (t ), X (t ), X (tQ».
At tine tQ the points P, PQ, P0 all coincide. Clearly

P? - PoP? ♦ Po'P.
If we divide by t - t0 and let t tend to t0, the three
terms tend by definition to v, v* and w respectively,
establishing (6).

A set of particles, finite or infinite in number,
will be called a body. A body is rigid if each pair
of its particles keeps the same distance apart at all
times. Thus if X(t) and y(t) are the position vec
tors of two particles of the body in any coordinate
system we have

(7) | x(t) - y(t)| - const.,
or, what amounts to the same thing,
(8) ( x(t) - y(t))'( X(t) - y(t)) - const.
If x(t), y(t), x(t) are the position vectors of any
three points of a rigid body, from the identity

[« - y|2
- [(x - i) - (y - *)]•[(» - *) - (y -*)]
- |x - x|2-2(x - x)«(y - x) + |y-z|2,

together with (7), we deduce

(X - z).(y - x)
(9> - *[|* - x|2 + |y - z|2 - |x -y|2]

■ const.
By differentiation this yields the useful identity

Sec. 7 29



(10) (x - i )•( y -*) - - (x -x).(y - i),
valid at all times for every three particles of a
rigid body, provided of course that x , y and z are
well defined. In particular, if y ■ x this yields

(11) ( x - i )-(x - z) - 0.
In a later theorem of this section we shall wish

to choose four points of a rigid body with position vec
tors xD, *i, x^, X3 such that a^ - mot a 2 - *o#
and a? - xQ are mutually perpendicular unit vectors.
Clearly this may be impossible, for example, when the
body is contained in a sphere of diameter less than 1,
or when the body contains less than four points. How
ever, these cases offer no real difficulty. For we
can show that an axis system can be attached to a rigid
body; that is, it is possible to define a coordinate
system in such a way that

(a) Every point of the body has constant coordi
nates in the system, and

(b) Every two points with constant coordinates in
the system keep a constant distance apart.

Thus by (b) all the points with constant coordinates
can be thought of as the particles of a rigid body
extending throughout space, and by (a) this extended
rigid body contains the one we started with.

In order to avoid some mathematical complexities
we shall disregard the case in which all the particles
of the body lie on a line, and we shall prove -

(12) Lenma. Let B be a rigid body containing at least
three non-collinear particles . Then there exists a
coordinate system having properties (a) and (b) of the
preceding paragraph.

Let P0, Fx and P2 be three non-collinear points of
the body, let x be the vector represented by ¥0?\ and
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y the vector represented by PoP2« the three vec
tors ki - x/| x|, k2 -xXr/1 xXvl k3 - kiXk2
are mutually orthogonal unit vectors. We select P0 as
the oriein 0 of a coordinate system for the points of
space, the coordinates of any point P being the com
ponents in the directions k^, k2, k-j of the position
vector of P. It is clear that this coordinate system
satisfies the requirement (b). It remains to prove
that (a) also holds.

Let z be the position vector of a point of the
body. We may write
(13) z -z1*k1+ z2*k2+ a* • ky
From this equation and the fact that k p k 2 and k,
are mutually orthogonal it follows that • z • k^,
z 2 • z • k 2 and z 3 ■ z • k.y It now must be shown
that these three are constant. We first notice that
z •

k-L ■ z • x/| x| is constant, by reason of (9).
Further, the angle between x and y is constant, forit may be obtained from X • y, | x| and | y |. Hence
I X X V I is constant. We now use (5.17) to write

k - xX(xXy)/|x| IxXyl
(1U) 3

- [(x -y) x - (x -x)y ]/|x| |x Xy|.
From this expression, since z • *, z • y, x • y , |x|
and |»X y| a?6 constant, we see that z • ko is con
stant by again using (9). Finally, since | z| is con
stant, z * k2 is determined except for sign. Hence
|z • kg I is constant. Since z and k2 are continu
ous functions of time, z« k2 must then be constant.
The lemma is thereby proved.

With respect to a given coordinate system, the mo

tion of a rigid body at an instant t0 is a translation
if at that instant all particles of the body have the
same velocity, so that the equation
(15) x(t0) - y(t0)
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holds for the position vectors x, y of every pair of
particles of the body. The motion at time to is a
rotation about a point P0 if P0, being rigidly attached
to the body, has velocity O at time t.

From these definitions it is easy to prove the fol
lowing theorem.

(16) Theorem. Every motion of a rigid body can be re
garded as the sum of a translation and a_ rotation about
an arbitrarily selected point attached to the body.

Let OX-jX^C^ be the chosen reference system, with
coordinate vectors ki| k2> k^, and let XQ(t) be
the position vector of an arbitrarily selected point
P0 rigidly attached to the body. Let 0*Xi*X2*x3

*
136

a new coordinate system with origin at P0, but with
the same coordinate vectors k^, k2> ko as the origi
nal system. If a point P is fixed with respect to
the new system, having constant position vector y, its
position vector with respect to the original system is
Xo(t) + y, so its velocity with respect to the
original system is x0(t). This is the same for all
points P, so at every time the motion of the new sys
tem with respect to the original system Ls a trans
lation. The motion of the body with respect to the
new system is a rotation, since the point PQ of the body
remains fixed at the origin in the new system.

The next theorem is of great importance in study
ing, the motions of rigid bodies.

(17) Theorem. Let B be a rigid body and OXtXjX^ a co
ordinate system. Then at each time t0 there is a. vector
(0 (called the angular velocity of the body B with re
spect to the coordinate system OX^XgXo) such that the
position vectors x(t)t x0(t) of any two particles of
B satisfy the equation

(18) i(tD) - i0(t0) - ©Xt *(to) - *o(t0) ].
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The following proof is a modification of one sug
gested by A. P. Morse. Let xQ(t) be the position
vector of an arbitrary point PD of the body, and let us
choose three points P^, P2, P3 rigidly attached to the
body and so located that the three vectors

VP PoP2> PoP3
each have length 1 and i'orm a right-handea orthogonax
system. We denote the position-vectors of P^, P2, P3ly *2> *3 respectively, and for notational con
venience we define

(19) y-L - sx - xQ, y2 - x2 - xQ, y3 - x3 - *<> .
Then by the definition of vector product we f5.nd

(20) Yl - y2Xy3, y2- y3Xyi.»y3 - y^yg.
Since the y^ are linearly independent, any vector

z whatever can be expressed as a linear combination
of the y-j, in the form z ■ r^y^ + r2y2 + r3y3» But
the y^ are orthogonal and have length I; so by taking
dot products we find r^

- z • y*, i ■ 1, 2, 3. In
other words, we have shown

(21) If y^, y2, y ^
are three mutually perpendicular

unit vectors, then an arbitrary vector z satisfies the
equation

(22) z - (z« y1)y1 ♦ (* • y^y2 + ' y
3«

He shall first show that there can be at most one vec
tor CO with which (18) is satisfied, and we shall find
an expression for this one possible vector. By (20),
(5.16), (18) and (19),

00 • y-L '- CD • (y 2X y J
(23) - (co X y2>-y3

In a like manner,

(210 co • y2 - y3*yP co • y3 • yy y2-
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Substituting in (22), with z replaced by Ci) , yields
(25) <•> - (y2- y3)y1 ♦ (y3*yi) y2 ♦ (yi-y2) Yy
This is the only possible vector with which (18) can
be true. It remains, however, to show that (18) does
hold with this particular G)«

We first make a preliminary calculation; namely we
compute OA Yi> Referring to the form (25) for &) ,
we have from (20)

(26) ©X yx - - ( y3-y!)y3 + (yi- y2)y2.
On the other hand, from (10), Y\' y3 - - y3, andyi»yi - 0. Thus we may write (2o) in the form:

g> Xri • (yi* yi)yi ♦ ( yi*y2) Y2
(27)

♦ ( H- rj> r3.
Is has been shown above in (22), the right-hand side
of this equation is simply y^. Of course, the same
argument can be applied to y2 and y3, so that it is
clear that

(28) <aYYlm *i for i - 1, 2, 3.
Mow let *(t) be the position vector of an arbi

trarily chosen point rigidly attached to the body.
There are numbers a^, a2, a3 such that

y(t) - x(t) - *0(t)
(29)

■ nyi(t) + a2y2(t) + a3y3(t).
By Lemma (12) the numbers a^are constants. Hence,
at all times,
(30) y - a].*! + a2 y2 + a3 y3.
Substituting from (28) the values of we have

y - aiWV Y1 ♦ a2 ©Xy2 * »3 « YY3
(3D - oXUxyi + a2 y2 + a3 y3)

- ©Xy.
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When the original variables x and x0 are substitu
ted back by means of (29) this becomes the desired
relation and the theorem is proved.

It is to be noted that the argument is perfectly
valid for left-handed coordinate systems, if the
left-handed vector product is used. In either case,
we may regard (25) as a formal definition of CO. As
long as only right-handed coordinate systems are used
0) may be treated as a vector which obeys the same
rules for change under change of coordinate system as
do the velocity or position vectors. In the only case
(Chapter II) where it is necessary to consider both
right- and left-handed systems we shall return to the
definition (25).

It is evident that if CD ■ O the motion at time
t0 is a translation with respect to the coordinate
system, for then by (20) we have x(tQ) - *0(t0) for
every two points of the body B. If the motion of the
body is a rotation, by definition it is possible to
select a point P0 whose velocity at time t0 is O.
Then, unless CO ■ O (In which case all particles of
B have velocity O at time t0) , the points with posi
tion vectors x- x0(t^) + sO), - 00 < s < 00 , form
a line passing through PQ. By (20), all points on
this line have velocity O at time tQ, for

* - xD ♦ coy [x - xo]- O ♦ CO X [eco]- O,
by (5.15). This line of stationary points is called
the Instantaneous axis of rotation. We thus see thatif a rigid body rotates, it has a whole line of sta
tionary points, its instantaneous axis, and moreover
its angular velocity vector CO has the direction of
this axis of rotation.

Theorem (17) makes it easy to prove that the phys
ical operation of superposing rotations about the same
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point corresponds to the mathematical operation of
adding the corresponding angular velocity vectors.
Let P be a point of a rigid body which at time t0

has velocity O with respect to each of two systems
OX1X2X3 and 0*X1*X2*X3*« Then at place P and time tD
the 0Tj*X2*^3*-syst/em has velocity O with respect to
the CRjMjj-system. The motion of the body with respect
to the 0*X]^X2**3*~syst'em is a rotation about P; let
6)1 denote its angular velocity. Likewise the motion of
the 0*X1*X2*X3*-system with respect to the OX1X2X3-
system is a rotation about P; let Q* be its angular
velocity. Consider any point Q of the body. There
is a point Q* fixed with respect to the 0*Xi*X2*X3*-
sy8tem which at time t0 coincides with Q, and there
is a point Qq fixed with respect to the 0X]X2X3-sys-
tem which at time t0 coincides with Q. Using Theorem
(17)
velocity of Q with respect to 0*Xi*X2**3*-sys'tem

-£q*q - Q, Xpq,
dt

velocity of Q with respect to OX j^X? -system

- Lq$* - of X~pq*.
dt

Therefore by (6),- recalling that Q* and Q coincided at
time t o»
velocity of Q with respect to OXiX2X3~system

- ©iXPQ + C*X PQ
- (O-l + CO*) PQ,

and the motion of the body with respect to the 0x^X2X3—
system a rotation about P with angular velocity
Q1 + 0) .

It is clear from (17) that the angular velocity
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vector CO is determined by the body B and the coordi
nate system, and does not depend on the choice of any
particular point of the body B. In the next section
we shall introduce the concept of "inertial frames,"
which are a certain class of coordinate systems each
having a motion of uniform translation with respect
to each of the others. It is easy to show that a
body B will have the same angular velocity with re
spect to all such systems. For let 0*X^*X2*Xo*be a
system which has at time t a motion of translation
with respect to the OXj^^-system. Let X , X be
the position vectors of a point P with respect to
these systems. Then at time tQ the differences X - X
and X - x are independent of P. So in (IS), neither
the left member nor the coefficient of CO is changed
when we change from one coordinate system to the other,
and therefore the same CO serves in both systems.

8. Mass, momentum, and force.

In order to introduce the concept of mass it is
convenient to describe an imaginary experiment. Sup
pose that a small car is placed on a frictionless table t

which rests on the earth, and that a string tied to
this car goes over the edge of the table and is tied
to a material object. These conditions cannot actually
be realized, but can be approximated by mounting the
car on wheels with good ball bearings and leading
the string over a pulley with similar bearings. If
the car is held stationary and then released, it will
begin to move; and if properly held, its motion will
be a translation in the direction of the string. At
time t each particle of the car will have the same
velocity v(t), and therefore the same acceleration

o(t) - v(t).
Assign an arbitrary positive number to the car-

and-string-and-weight system. This will be called the
"rrass" of the system.
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Now let k\t . •• be any collection of material
objects. If object An is placed on the car and the
car released properly, the car and object will move
in translation, and will have an acceleration an at
the instant of release. Like the acceleration a 0 of
the empty car at release, this will be in the direction
of the string. Let the object An be labeled with the
number mn which satisfies the equation,

mol«o I
" (mo +

mn> l°n I-
The number m will be called the "mass" of the object
An. Then experiment will reveal (within experimental
error) the following facts. The numbers mn are allpositive. If two objects An, Ap are placed simulta
neously on the car and the car is released the accel
eration an p at release will satisfy the equation

(m0 + + mp)|an>p |
- m0 |a0|;

and likewise if more than two objects are placed on
the car simultaneously. If the car-and-string-and-
weight system is replaced by another such system and
the experiment is repeated, a mass m0 can be assigned
to the new system in such a way that each object An
is assigned the same mass mn by the new experiment asit was by the old one.

Since the number m0 can be chosen arbitrarily, the
mass of any one selected object (say A^) can be made
equal to any chosen number. Thus the masses of all
other objects are determined. Host of what is refer
red to as the civilized world has agreed that a certain
lump of platinum (called the standard kilogram ) safe
guarded at Sevres, in France, is the selected object*
Tr this lump of platinum is assigned mass 1000, then
all masses are expressed in grams. If it is assigned
mas 8 2.201*6, all masses are expressed in pounds . Ifit is assigned mass 2.20U6/32.2, all masses are ex
pressed in slugs. A gram is by definition one thou
sandth of the mass of this lump. Incidentally, a
gram is very nearly the same as the mass of one cubic
centimeter of distilled water at 1|

° Centigrade.
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Fundamental in the Newtonian mechanics are certain
coordinate systems called "inert ial frames." A phil
osophical discussion of inertial frames would lead us
too far afield. Fortunately such a discussion is un
necessary for the purposes of this book. It will be
quite adequate for the mechanics of terrestrial objects
to consider that one example of an inertial frame is the
system whose origin is at the center of mass* of the
solar system and whose three coordinate axes are non-
coplanar and pass through three distant stars. Other
systems are inertial frames if and only if their
motion with respect to the system just described is a
translation with constant velocity. A system rigidly
attached to the earth is not an inertial frame. How
ever, in many (but not all) problems of mechanics it
may be regarded as an inertial frame without intro
ducing serious errors.

If a particle of mass m has velocity v with re
spect to an inertial frame, the vector mv is called
the momentum of the particle with respect to that iner
tial frame. The rate of change of the momentuin mv is
given the name of the force acting on the particle.
Since m is constant, the rate of change of mv is m v »

or ma, where a ■ v is the acceleration of the par
ticle. This definition of force may seem to be an eva
sion, but actually it is motivated by experiences com
mon to all mankind and others. Everyone has a rather
vague concept of force derived from the feeling of mus
cular tension, and everyone knows that it requires more
muscular effort to throw a large stone than to throw
a small stone with the same speed. The definition of
force as rate of change of momentum gives mathematical
precision to this vague concept.

From the definition it is clear that a force is
represented by a vector. However, it is also clear
that the action of a force cannot be predicted without

*The term "center of mass" will be defined in Section 9.
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knowing one more fact, namely, the point at which the
force acts. This is quite apparent if we think of a
non-rigid body made of several disconnected particles.
A force acting on this body will affect the motion of
only the single particle on which it acts. In fact,
even babies learn quite early that a door opens more
readily if a push is exerted against the door-knob side
than if the same push is exerted against the hinge side.

Once the units of mass, length and time have been
chosen the unit of magnitude of force (usually abbre
viated to "unit of force") is specified by the equa
tion f - ma. If the units of length, mass and time
are the centimeter, gram and second respectively (this
is called the c.g.s., or centimeter-gram-second, sys
tem) the unit of force is the dyne, which is the force
which will give a mass of one gram an acceleration of
one centimeter per second per second. If the units
of length, mass and time are the foot, the pound and
the second respectively (the "f.p.s." system), the unit
of force is the poundal, which is the force required to
give a mass of one pound an acceleration of one foot
per second per second. If the units of length, mass
and time are the foot, the slug and the second, the
unit of force is the pound force. This is the "engi
neering system" of units. The pound force is the gravi
tational force acting on a pound mass at a point of the
earth's surface where the gravitational acceleration is
32.2 feet per second per second. Most of the work in
exterior ballistics at present being done in the United
States is in terms of the f.p.s. system.

The usefulness of the notion of force in mechanics
stems largely from the fact that it is frequently
possible, as a result of some experiments, to predict
the forces that will act on a particle under certain
known circumstances. For example, any particle re
leased in a vacuum chamber at a fixed place on the
surface of the earth will have an acceleration g, the
same for all particles. (The direction of g is
named "vertically downwards"; its magnitude is usually
Uo Ch. I



called the "gravitational acceleration," or "g," for
the locality). Thus we can predict that a particle
of mass m placed in that vacuum chamber will be acted
on by a force m g . The magnitude of this force is
called the weight of the particle.

Again, imagine a spring of very small mass with one
end attached to a point on the surface of a level,
frictionless table. If the spring is stretched until
the free end is at a point P of the table, any particle
which we choose to attach to the end of the spring will,
on release, have a certain rate of change of momentum,
independent of the particle. We can then conclude that
the spring exerts the same force on all particles which
may be attached to it at P.
Suppose there are several springs (say n of them)

attached to the table, and that if the i-th spring is
stretched until its free end is at P it exerts a force
f ^. (For the moment we have no interest in the ef
fects on the table produced by the spring). A particle
of mass m will then move with acceleration

«i ■ *i/m
if attached to the end of the i-th spring at P. Ex
periment will show that if all the springs are attached
simultaneously to the particle at P it will move with
acceleration + ao + ... + on. The force acting
on it is then by definition

ff-m(ai + ... + an)
- ma-. + . . . + ma_

In other words, the effect of the simultaneous
action of forces f^, fn on a particle is the
same as the effect of the single force fx + ... ♦ fn .
The mathematical operation of vectorial addition of
forces corresponds to the pnysical operation of letting
the several forces act simultaneously on a particle.
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Returning to our frictionless table, let tiro par
ticles A^ and Aj, with respective masses mj and ni2,
be joined by a spring stretched beyond its normal
length, and not touching any particle other than A^
and ti.2> It will be found that A^ and A2 exhibit ac
celerations, which we may denote by and 02 re
spectively, such that

o ^ ■ — m 2 Q 2*

That is, the force acting on At because of the Inter
connection of the particles is the negative of the
force acting on A2 because of the interconnection.
Even more than this is true; the accelerations ai and
a 2 will have directions lying along a line joining
the two particles.

Summing up, we have stated the following fundamental
relations.

(1) If &. force f acts on a particle of mass m,
the acceleration a of the particle with respect to
an inertial frame satisfies the equation f ■ m a .

(2) If particles A^ and A2 are interconnected in
any way, and f ^2 the force acting on A^ and f 21
the force acting on A 2 because of the interconnection ,
then f 21 " - ^12* Moreover, vectors f]_2 and f 21
are collinear with the vector A^A2»

These are the statements in vector symbolism of
Newton's three laws of motion:

I. Every body continues in its state of rest, or of
uniform motion in a straight^ line, except insofar asit is compelled by an impressed force to change that
state.

II. The rate of change of momentum is proportional
to the Impressed force , and is in the direction of
the line in which the force acts.

1*2 Ch. I



III. To every action corresponds an equal and
opposite reaction.

These laws have proved themselves adequate for the
mechanics of terrestrial objects with velocities much
less than that of light, and have been corroborated
by a multitude of experiments under such conditions.
In particular, they form the basis of exterior bal
listics .

9_
. Center of mass.

Let A^, A2, Ajj be a collection of particles
with respective masses m^, m^, Hq, and let their
respective position vectors in an inertial frame beIp *2> •••» xn* Suppose that exterior forces
1* '2* *■• ac^ on ^i» ••• re 3Pec lively. *n

addition to the external forces there will be forces
due to interrelations between the particles. Let

h j be the force acting on because of its inter
relation with Aj. Then the total force acting on
is ♦ 1* ... + Ti n» 80 ^3 rate °^ change

of momentum is
Bi*i- 'i + fi,l * ... + fi,i-l

(1)
+ f i,i+l * ••• + 1 i,n-

Now we add these n equations member by member. Each
pair of distinct subscripts i, j occurs twice, in op
posite orders; for example, '3 1 occurs in the equa
tion for mj 83, while #1,3 occurs in the equation for
■ill* Because of (8.2), when one adds the equations
these terms eliminate each other, and all that remains
Is

(2) E mi*i ' £ Fi*
This equation assumes an especially useful form if we
define the center of mass X of the collection of par
ticles as follows:
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(3) x - (£ mi K^AS m^.
Then

£ m± x± - ( £ i,
whence

Z mixi ' ( Z n^) x,

Substitution in (2) yields
ih) ( £ mi) I - £ f±.
In words, the motion of the center of mass is the same
as it would be if the total mass of the particles were
concentrated at the center of mass and all the forces
acted at that point.

As an important special case, if no external forces
act on the system the acceleration of the center of
mass will be O, and the center of mass will move with
constant speed along a straight line; its momentum will
be unchanged, no matter what internal forces act in
the system. This is the principle of conservation of
momentum.

For example, the relative motions of the members
of "the solar system are highly complicated. But apart
from the very small gravitational attraction of the
other stars, there is no external force acting on
the system. So apart from this very minute correction,
the center of mass of the solar system moves , in any
inertial frame, with constant speed along a straight
line. For another example, consider the interplane
tary rocket so dear to some writers of fiction. Imagine
it moving with motors cut off; its velocity will be
constant. If the motor is started some gases will be
ejected to the rear with high velocity. But the center
of mass of the rocket and the ejected gases will con
tinue to have the same velocity. Because the ejected
gases are separating from the rocket, the center of
mass moves to the rear of the rocket; that is, the
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rocket goes ahead of the center of mass.

10. Work and energy.

SuDDOse that a particle moves with constant velo
city x(t) from a point with position vector X^t'^) to a
point with position vector x('0, and at each point is
acted on by a constant force f . Then by definition
the work done by the force on the particle is
(1) W - I «[x(t) - x(t1)].
This can clearly be written also in the forms

(2) W -[f.i][x - tj,
and

(3) W - I # • x dt.J tx
Suppose next that the particle moves along a pathl ■ x.(t), where ti - t 5 t and at each time t is
acted on by a force ftt), where x(t), i(t) and f (t)
are all continuous. We wish to define the work done
by the force on the particles in such a way as to sat
isfy the following two self-suggesting conditions.
(1) If t^ - t^ 5tr <

t^
< t, the work done between

times t3 and t$ is the sum of the work done bfitween
t} and tjj and the work done between t^ and t$. (2) The
work done between and t\

, lies between the least and
the greatest values (inclusive) of f (t)* 4(t)[t|1 - t3]
for t3 ^t ^ t^. If the interval[ t]_, t] is cut into
subintervals by points t]_ < t2 < . . . < " T, and
Bi and Mi are respectively the least and greatest
values of f (t)« x(t) for ti 5 t 5 ti+i, these condi
tions require that W must lie between

n-1 n-1

£ mi£ti+i - tj and E Mt[ti+1 - t*]i-1 i-1
inclusive. It is well known that there is exactly
one number W which satisfies this requirement for
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all methods of subdividing the Interval [ti, t] and
that is

(U) w "
Jt 1 (t)" i(t) dt*

Accordingly this will be taken as the definition of
the total work done by the force f (t) on the par
ticle as it traverses the path X - x(t), t^5 t 5 T.

According to the law of motion (8.2) the internal
force acting on each particle of a rigid body due to
the presence of another particle always lies in the
direction of the line joining the particles. From
this it follows that the total work done by the in
ternal forces in a rigid body undergoing any motion
is always zero. For let X^(t) and %2(^) be the
position vectors of two particles of a rigid body.
Let f ^2 and *21 ^® tne forces acting on the first
and second particles respectively, due to the other of
the two. Then by (8.2) we have fgn ■ - f]?* But
since f 12 has the direction of the line joining the
particles, there is a number k such that

f 12 • k( »2 -
Hence

f 21 * - kCxg ~ xl>*
By (7.11),

On multiplying by k, this becomes

i12« *x
- - f 2r V

Now, on integrating between any limits, we find that
the sum of the work done on the first particle by
f 12 and the work done on the second particle by #21is zero. Applying this to all possible pairs of par
ticles shows that the total work done is zero.

The kinetic energy, with respect to an inertia!
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frame, of a particle with mass m and velocity i, is
by definition
(5) T - £m | i|2 - £»*• i.
The kinetic energy of a body, rigid or not, is the sum
of the kinetic energies of all its particles.
If a particle moves in an inertial frame and is

acted on by a force, the increase in its kinetic energy
between any two times ti and t£ is equal to the work
done on the particle by "the force . Let f (t) be the
force acting at time t, and let x(t) be the position
vector at time t. If m is the mass of the particle,
then

mM(t) - f(t).
Hence

mi -it- f(t)-i(t).
But

d , . ,2 d . .,
dtl*l - dtx'* - 2x* *»

so the preceding equation can be written

^[*m|i|2] - fi.
Integration from t^ to tg yields

ImliUjO^-imliCt!)!2- f*
2

# . i dt,
establishing our statement.

Since we have already seen that the total work done
on a rigid body by its internal forces is zero, by
applying the preceding paragraph to each particle of

a rigid body and summing we find that

(6) The increase in kinetic energy, between time ti
and time , of a rigid body moving in an Inertial
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frame is equal to the total work done on the body by
the external forces acting on it.
This leads us into an apparent paradox. Suppose

that an airplane, resting on its wheels on a runway,
fires a one-pound projectile forward. The powder
charge gives the shell a muzzle velocity* of 2000 feet
per second, hence a kinetic energy of

|(2000) - 2,000,000 foot-poundals.
Later the same airplane is in flight at i^OO feet per
second, and a similar projectile is fired with a
similar charge. It is plausible, and in fact correct,
that the muzzle veldcity is again 2000 feet per sec
ond. Hence the speed of the projectile is 2U00 feet
per second with resoect to the earth, and its kinetic
energy is 4(2l|00)? ■ 2,880,000 foot-poundals. The
same charge has given more kinetic energy to the pro
jectile in the second instance than it did in the
first.

Again, consider a jet-propelled airplane cruising
at 300 feet per second. The pilot feeds more fuel;
this burns at the rate of five pounds per second, and
is ejected at the rate of liOOO feet per second through
the nozzles. Thus in each second the change of mo
mentum of the burned fuel has magnitude (!?)(il000) foot
pounds per second, and the rate of change of momentum
is 20,000 foot-pounds per second per second, or 20,000
poundais. The work done on the airplane in one second,
at a speed of 300 feet per second, is then 6,000,000
foot-poundals. But suppose that with this propulsion
the airplane speeds up to 500 feet per second. Then
the same rate of feeding of fuel will cause work to
be done on the airplane at the rate of 10,000,000
foot-poundals per second.

*We have been using the word velocity to denote the
vector x and the word speed to denote | X |. In
speaking of muzzle velocity as a scalar we bow to
ballistic tradition.
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The paradox disappears when we observe that in each
case we have started with a certain system and then
ignored a part of the system we started with. In the
first, example we forgot about the airplane." Let U be
its mass. The same force that gave the projectile a
speed v forward, when the plane was on the ground,
gave the plane a speed V in the opposite direction.
Since the total momentum was 0 to begin with, by the
principle of the conservation of momentum the final
momentum lv - MV was also 0. Also v + V - 2000, by
hypothesis. Hence

v ♦ (1/M)v - 2000,
or

v - 2000 M/(M + 1),
and

V - 2000/(M + 1).
The total increase in kinetic energy is not 2,000,000
foot-poundals , but is

J«1«[2000M/(M + l)]2 + i»M'[2000/(M + l)]2
- 2,000,000 M/(M + 1) foot-poundals.

When the airplane speed was U00 feet per second, the
momentum of airplane and shell before firing equaled
liOO (K ♦ 1) foot-pounds per second. By conservation
of momentum, the velocities and Vj. of shell and plane
after firing satisfy lvi + MV^ - U00 (M + 1), and
also v^

- - 2000. Hence

vj - 100 + 2000M/(M + 1),
and

Vx - UOO - 2000/(M + 1).
The kinetic energy before firing was

4(M + 1) UOO2 - 80,000 (M + 1) foot-poundals.

Sec. 10 U9



The kinetic energy after firing was

iCUOO + 200011/ (U + l)]2 + MU00 - 2000/(M ♦ l)]2
- 80,000 (M + 1) + 2,000,000 li/(M ♦ 1)

foot-poundals, so this time, too, the increase in kinet
ic energy was 2,000,000 M/(M ♦ 1) foot-poundals.

In the example of the jet-propelled airplane, when
the airplane had speed 300 feet per second, each fire
pounds of fuel had kinetic energy (5/2)(300r - 225,000
foot-poundals before burning and had kinetic energy
(5/2)(30O-U0O0)2 - 3U, 225,000 foot-poundals after burn
ing, an increase of 3b, 000, 000 foot-poundals. So in
each second the total work done on airplane and ejected
gases was 6,000,000 + 3U, 000, 000 ■ UO, 000, 000 foot-
poundals. At speed 500 feet per second each five
pounds of fuel had kinetic energy (5/2)(500)2 - 625,000
foot-poundals before burning and had kinetic energy
(5/2)(500-UOOO)2 - 30,625,000 after burning, an in
crease of 30,000,000. So in each second the total work
done was 10,000,000 + 30,000,000 - UO, 000, 000 foot-
poundals .

Besides resolving the paradox, the preceding para
graph illustrates two peculiarities of jet-propelled
airplanes. While the numbers do not apply to any
specific airplane, they are not absurd in magnitude,
and indicate that most of the energy of the fuel is
wasted in the ejected gases. Second, the higher the
speed the more of the fuel energy goes into the air
plane, and the less into the ejected gases, so that
jet-propelled airplanes are most efficient at high
speeds.

The two examples just considered can be used to
show the usefulness of a decomposition of the kinetic
energy nhich we now describe. Let a body be composed
of particles Fj_, P2, . .., which have respective masses
an., m2> ••• and respective position vectors
%2» ••• with respect to an inertial frame. The cen
ter of mass will have position vector X, where
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(7)

We define the kinetic energy of translation of the
body to be the kinetic energy which the body would
have if each particle had the velocity X which is
actually possessed by the center of mass and we define
the kinetic energy of motion about the center of mass
to be the kinetic energy with respect to a frame which
moves without rotation in such a way as to keep its
origin at the center of mass.

(8) K. E. of translation ■ \ £ mi |X| t

K. E. of motion about center of mass
(9) A o

It is now easy to establish the following theorem.

(10) Theorem. The kinetic energy of a body with re
spect to an inert ial frame is the sum of its kinetic
energy of translation and its kinetic energy of motion
about the center of mass.

For the kinetic energy is

(U)
- *£i[<*i -*>♦*] ' [C*i -*)♦*]
- ££*ilii " *1 ♦ EmjUi - X)-X

+ i£mi|X|2.
But by differentiating both members of the identity
(7) we find

£ m^C * J - X ) ■ O.
Substituting this in (11) and recalling (8) and (9)
establishes the theorem.

To apply this to the examples, we first observe that
in each instance the velocity of the center of mass is
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unchanged by the internal forces, as stated in (9.U)
and the following sentences. Hence the kinetic energy
of translation is unchanged in both instances. The
motion about the center of mass undergoes the same
change due to firing the gun at airplane speed UOO feet
per second as it does when the gun is fired with the
airplane at rest. This represents the entire change
in kinetic energy which therefore is unaffected by
the velocity of the airplane. Likewise the motion of
jet-propelled airplane and ejected gas about the center
of mass is the same at 300 feet per second as it is at
500 feet per second, so again the total increase in ki
netic energy is the same at both speeds.

11. Kinetic energy of rotation of a rigid body.

The kinetic energy of translation of a body is quite
a simple thing; as (10.9) shows, it is the same* as a
single particle of mass £m^ would have if it had the
motion of the center of mass of the body. Even for
rigid bodies the kinetic energy of motion about the
center of mass (which in this case is a rotation about
the center of mass, as (7*16) shows) is more compli
cated.

The kinetic energy of rotation about the center of
mass is kinetic energy with respect to a non-rotating
frame in which the center of mass is at rest. There
is some profit in first considering a somewhat more
general case, in which a rigid body rotates about
some point, not necessarily its center of mass. Take
the origin at this point, and let the particles of
the body have masses nu, n^, ... and position vectorsIn, Mg* •••» respecti vely. Let 0) be the angular
velocity vector. By (7.18),
(1) i± - ©X *i-

Hence the kinetic energy satisfies the equation
(2) 2T - SiBiCtt X *i)*(G>X «i).
By (5.16) and (5.17) this transforms into
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2T - EmiWtXiXfwX*!) ]

(3)
" ^[(ttj2 +a>22

*
a)32)(xn2+ x^2 +

-
! "l^l + 00 2*i2 + 03

3*13 ^
2

^

- Sm^CD! (xi22 ♦ x132) + co 22(xn2 +
xi32^

♦ 0)32(xil2 ♦ xi22) - 2(0^^^"
2<Dlt03XilXi3

"
2co2<D3Xi2xi3]-

If wb define

I2 • SmiCxi! + Xjj ),
(jj) *3

' 2mL(xi22 + xi32),
112

" ^mixilxi2»
1 23
- £»ixi2xi3»

113
- Ea^x^,

this can be written in the form

2T - Il^i2 + I*®*2 + l7wi2
(5)

3 3

- 21i2C0lCL>2 _ 2123^2a)3 " 2113a)la>3*
A superficial glance at equation (5) would lead

one to regard the situation as more complicated than
it really is. To begin with, it looks as though the
"moments of inertia," 1^, I2, and Io, and the "products
of inertia" 1^2 > ^13 > an<* ^23 would have to be calcu
lated for every possible, point about which the body
might revolve. Theorem (10.10) shows that this is
superfluous; if we know the momenta and products of
inertia for an axis system with origin at the center
of mass we can find the kinetic energy of rotation
about the center of mass, and then by Theorem (10.10)
all else we need to know to find the kinetic energy
is the total mass and the motion of the center of
mass. Moreover, even if we wish to find the moments
and products of inertia for some coordinate system
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with origin not at the center of mass, we can easily
compute them if we know the moments and products of in
ertia for a coordinate system with origin at the center
of mass and axes parallel to the given axes. Suppose
that a body has center of mass at X . If the coordinate
system is translated so that its origin moves to the
center of mass, a point with position vector x in
the old system will have position vector y ■ x■ - X
in the new system. In the old system let the moments
and products of inertia I p. etc., be defined by
in the new system the moments and products of inertia
will have values l£, etc., defined by (U) with the
x's in the right member replaced by y's. Then

II - if + (EmiKXg2 + X32),
(6) ^Il2 - \* * (£B|.)XiX2,
with analogous equations for I3, I^j and I23, for

- SmiC(yi2 + X2)2 + (yi3 + X3)2]
■ £n>i(yi22 + 7i32) + SXgEmjy^ +

2X3 Lv^y^
* (Sm^CXg2 ♦

X3
2 ).

But since the origin of the new system is at the center
of mass we have £ miyi2 " ^■iTil" ®» the first
of equations (6) is established". The second is proved
similarly.

Thus if we know the moments and products of inertia
of a rigid body with respect to one set of orthogonal
axes, we can compute the kinetic energy of the body
under any rotation about any point. It should be
stressed here that it is permissible to consider the
axes as fixed in the body. In the foregoing discussion,
CO «as the angular velocity with respect to an iner-
tial frame, but no statement whatever was made about
the motion of the coordinate system. All that was
asked was that the origin should be at the point about
which the body is rotating at the instant at which
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the kinetic energy was to be found. The components

xil» xi2' ^L3
°* ^ne P03^*011 vectors x^ at that in

stant entered the discussion, but their derivatives
did not.

Evidently it would be quite convenient if we could
get rid of the products of inertia in some manner.
It is an important theorem that this is always possible.
Let us say that a line L through the center of mass is
a principal axis of inertia if, for some rectangular
coordinate system with origin at the center of mass
and xi-axis along L, the two products of inertia 1^2
and are zero. We can then prove

(7) Theorem. Every rigid body possesses three mutually
perpendicular principal axe 3 of inertia.

Without reference to any particular coordinate sys
tem, the kinetic energy T of rotation about the center
of mass is a continuous function of the angular velocity
CO , as shown by (2). Consequently, among all unit vec
tors CO there is one which gives T its greatest value,
'i. Choose this vector as coordinate vector x^, and let
12 and X3 be any unit vectors which with x^ form a
right-handed orthogonal system. Ey hypothesis, for
every unit vector CO we have T - M, equality holding if
CO " *t So by (5) the inequality

t_ 9 9 2\ ffioo 1 + I2C0 2 + I3 °°3 - 2I12<0 1 40 2

(8) - 2Ii3o>i - 2I23 <o 23 }

-
mCcd^2

+ co
22

+
a>32)

£ 0

holds for all unit vectors CO, equality holding for
CO - «i. But then (8) holds for all vectors CO,-for
it holds for the unit vector Co / | CO \, and | CO |"

z is
a common factor to all terms. Thus the left member
of (8) reaches its maximum value 0 when CO ■ *i» that
is when co

^

- 1, co 2 "0, C03
■ 0. At this point its

three partial derivatives must vanish, since this is

a necessary condition for a maximum. Hence we find
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Ix - 2M - 0,
(9) " Il2 " 0,

" Il3 - 0,
the last two of which show that xi is a principal
axis of inertia.

We have thus shown that every rigid body has at
least one principal axis of inertia. The proof of
Theorem (7) will be complete as soon as we prove

(10) Theorem. If L is a princ ipal axis of inertia
of a rigid body, there are two other principal axes
of inertia perpendicular to L and to each other.

Since L is a principal axis of inertia, we can
choose a right-handed system of three orthogonal axes
xl» x2» x3 'ith X1 al°nS L and such that two prod
ucts of inertia vanish:

J*mixilxi2 " ®* J*mixilxi3
" 9»

For any angle t? the three vectors

(11) Y2 " *2 cos * " x3 sin ^»

-
%2 sin & + cos

also form a right-handed system of orthogonal unit
vectors, as is easily verified. With respect to these
new axes the products of inertia are:

Emlxil7i2 " ( £mixilxi2)cos * " ( s»ixilxi3)sln * - 0,

(12) *Wl2Jl3 " ( Emixilxi2)sin * * ( E "1X11x13)008 * - 0,
£111^712713

" Zmi(xi2Cos * - xiyin 4)(xi2Sln t * X13COS 4)
- Emi(xi2Z - xi3 )sin * cos » - Emixi2Xi3(cos2 » - sin**)
" J { E«l(xi22- x132)sin 2» + 2 £011x12x13008 3*).
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Ey proper choice of $ the last of these can evidently
be made to vanish, and the theorem is proved.

Incidentally, we have shown that if x\ lies along
a principal axis of inertia, so that by definition
1^2 and vanish for some choice of <2 and *3>
then they vanish for every choice of %2 and X3. For
the most general change of coordinates from the orig
inal axes to new orthogonal axes X\p yo> Y% is given
by (11), and first two equations of (12) show that
two new products of inertia also vanish.

The usefulness of the principal axes of inertia
makes it worth while to seek methods of identifying
them easily in special circumstances. Let us say that
a body has symmetry with respect to a plane II if to
each particle P of the body corresponds another par
ticle Q of the body having the same mass and so situ
ated that the plane II is the perpendicular bisector
of the line segment joining P and Q. The body has
"0-degree symmetry" about a line L if 0 < 9 < 360°
and a rotation of 0 degrees about L brings each par
ticle of the body to a place previously occupied by
another particle of the same mass.

If a body has a plane of symmetry, its center of
mass lies in that plane. For let n be a plane of
symmetry. Choose a coordinate system with origin in
fi and x ^-vector perpendicular to II . Then if P is
a particle of the body, with mass m and coordinates
(x^, Xj, xj)» there is a particle Q of the body with
mass m ana coordinates ( - xi, X2, xo). In the sum

*-mixil whlch defines ( Ern^)*! the contributions of
these particles cancel each other. This is true for
all particles, so " 0, and the center of mass lies
in the plane

x^_
■ 0 which is II. Likewise, if a body

has 0-degree symmetry about a line L, its center of
mass lies on L. For let the body be rotated by 0 de
grees about L. The center of mass moves rigidly with
the body, so rotates 9 degrees about L. On the other
hand, every place formerly occupied by a particle of
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the body is again occupied by a particle of the same
mass, so the center of mass remains where it was. The
only points that can be rotated 6 degrees about L and
still be where they were are the points on L itself,
so the center of mass must be on L.

Bodies with either of these types of symmetry have
at least one easily recognized principal axis of in
ertia, as the following theorems show.

(13) Theorem. If a body has a plane of symmetry II,
the Line through the center of mass and perpendicular
to II is a principal axis of inertia.

Choose a coordinate system with origin at the center
of mass and coordinate vector Xi perpendicular to II.
Then if P is a particle of the body with coordinates
(xj_, *?, x^), there is a particle of the body with the
same mass and with coordinates ( - x^, X2, x^). Hence
the contributions of P and Q to the products of inertia
I-jP ■ £ mficilxi2 a*1** *13

" Bixilx13 cancel each other.
This being true for all points P of the body, I12 and

1^3 both vanish, and the x^-axis is the principal axis
of inertia.

(lh) Theorem. If a body has 8-degree symmetry about
a line L, the line L is a principal axis of inertia.
Moreover if 8 is not 180° every line through the cen
ter of mass and perpendicular to L is also a principal
axis of inertia, and the body has the same moment of
inertia about all these lines .

Choose a right-handed orthogonal coordinate system
with origin at the center of mass and coordinate vec
tor X^ in the direction of Lj among all lines perpen
dicular to L we choose one about which the moment of
inertia is a minimum, and let %2 have the direction
of this line. If the body is rotated through an angle
a about L, the particle whose coordipatesf had been
(x^, X2, x^) moves to the place (x^ , Xg , x^), where
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*l' ' *1»
(15) *2 " x2 cos « ~ x3 s^n °»

x^
'

■
X2 sin a + X3 cos a.

The new moment of inertia about %2 is
I2* - EmiUx^')2

♦ (xi3')2]
(16) * ^

9 . 2 ^ ? ?

+
210^x^2 sin'a + 2n^^£ cos* a

+ 22 niiXi2xi3 cos asin oj

while the new product of inertia I^' is
I12» - Smjx^'x^'

(17) "2 miXiiXi2 cos a - 2 mixilxi-jsin a,
■
1^2 cos a " ^13 sin a»

and similarly
(18) I13' " Ti2 sin a + I13 cos *•

By the choice of xp, I2' has a minimum when a ■ 0.
So the derivative of I21 with respect to a vanishes
when « ■ 0; that is ,

(19) £mixi2xi3 ' °"
If we choose a ■ because of symmetry each particle
has taken the place of another particle of the same
mass, so I21 , Iij' and I^' have the same value for

a - * as for a- (T. Thus by (17), (18), (16) and (19),

I1?(l - cos 0) + Iio sin « 0,
(20)

1J
- I12 sin & + I13U - cos - 0;

(21) (EmjX^) sin2*- ( Em^2) sin2*.

The determinant of coefficients of 1 12 and I13 in (20)
is (1 - cos 0 )2+ sin2tf- 2(1 - cos tf), which is not

0 because 0 < *< 360°. Hence the only solution of
(20) is "

*13
*

0> so L is a principal axis of
inertia.
Sec. 11 59



Suppose next that # is not 180°. Then sin 0 + 0,
and we can divide both members of (21) by sin2tf. Sub
stituting the result in (16) yields

I
2«
- Smifri!2 + xi22],

for all values of a. Thus is independent of q,
and the moment of inertia is the sane about all lines
through the origin and pe rpendicular to L. But then
each one of these lines minimizes the moment of inertia,
and Xj> could have been chosen along any one of them,
and (19) would still be valid; that is, 1 23 would be 0.
Since I12 is already known to be 0, this proves that
every' line through the center of mass and perpendicular
to L' is a principal axis of inertia.

Most of the projectiles studied in exterior ballis
tics have 9-degree symmetry for some 0 between 0°
and 180° (exclusive). Artillery shell have 9-degree
symmetry for all All aircraft bombs in service at
the time of writing this manuscript have 90°-symmetry.
By Theorem (lU), for all these projectiles the axis
of svmmetry is a principal axis of inertia, and so is
every line irtiich is perpendicular to the axis of sym
metry and passes through the center of mass. Moreover,
the projectile has the same moment of inertia about
all of those lines.
12. Angular momentum.

From experiments in elementary physics we know thatif a body is hinged at a point 0 and a force f is
applied at a point P, the effect of the force in turning
the body is proportional to the length of OP and to
the component of f perpendicular to OP. If 6 is the
angle between OP and f , the effect of the force is
proportional to

|0P| •
I f I -sin 9.

—>

But this is the magnitude of Op ^ f . This suggests
that the vector product OP X. f may be a quantity worth
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studying. More generally, if v is a vector associated
with a point P (as, for example, a force is associated
with its point of application, or the velocity of a par
ticle is associated with the position of the particle),
and 0 is any point, the moment of v about 0 is defined
to be the quantity

(1) Moment of v about 0 - Or" Xv.
Thus, for exanple, if a force f is applied at a

point with position vector x, its moment about the
point with position vector x0 is (x - x0) X * •

If a particle has position vector (t), its velocity
X has moment (x - io))(i about x0» If

#
m is the

mass of the particle, its momentum is mi; so the
moment about l0 of the momentum is m( x - xo) X *•
An alternative name for the moment of the momentum of
a particle about a point x0 is the angular momentum
of the particle about x0. The angular momentum about
a point 0, of d body (rigid or not) is by definition
the sun of the angular momenta of its several particles.

The following lemma is quite easy to prove.

(2) Lemma. Let x (t) be the position vector of a
particle of mass m in an inertia! frame, and let x<j
be the position vector of a point Q fixed in the frame.If the particle is acted on by a force f , its rate
of change of angular momentum about Q is equal to the
moment of f about Q.

The rate of change at' angular •momentum is
d_m(x-x0)Xi -miX* ♦ ■( K - K0),X *

(3)
dt - (x - x0) XUH)- (x - x0) X f ,

by (5.15), (6.16) and (8.1). This establishes the
lemma.

By addition it follows that the rate of change of
the angular momentum about Q of any body is equal to
the sum of the moments about Q of all the forces,
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external and internal) acting on the particles of the
body. We now show that the sum of the moments about
Q of the internal forces is always O. Let Xi, I2 be
the position vectors of two particles Pi, P2 of the
body. Let f i2be the force acting on Pi, because of
the presence of P2, and let f 21 be the force act
ing on P2 because of the presence of F^. By (8.2),
f 21 " - f 12 » and ' 12 an<* ' 21 are multiples of the
vector Pi?2» so that
CU) f

21
- k P^Pj,

where k is a real number. The moment of f p^ about Q
is

(5)

QP2 X#21
" (^1 + V^)X« 21
- QPlX#21 + V*2 X(kPiP2)
- QPi Xf 21
--QPlXf12»

and is therefore the negative of the moment of
about Q. Thus the sum of the moments of the two in
ternal forces is O. By adding over all pairs of
points of the body we find that the sum of the moments
of all internal forces is O.

From the first and last sentence of the preceding
paragraph we see that

(6) Theorem. The rate of change of the angular mo
mentum of a body about a_ point Q, fixed in an inertia!
frame, is equal to the sum of the Moments about Q of
all the external forces acting on the body.

For example, let us make the plausible assumption
that the forces acting on the bodies of the solar sys
tem due to the attraction of bodies not in that sys
tem are too small ever to be discernible. Then we
may regard the solar system as a non-rigid body acted
upon by no external forces. By Theorem (6) the angu
lar momentum of the solar system remains constant, and
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consequently a plane passed through the center of mass
of the solar system and perpendicular to the angular
momentum vector remains invariant in direction rela
tive to an inertial frame. This plane is known as the
"invariable plane" of the solar system.

For a second example, consider a system consisting
of two particles P^, P2 with the respective masses m^,

and acted upon by no external forces. Concerning
the internal forces f to a™* ' 21 we ma*ce no assump
tions beyond the standing hypothesis (8.2). By the
paragraph following (9.U), with respect to any inertial
frame the center of mass of the system moves with con
stant velocity along a straight line. Therefore a sys
tem with origin at the center of mass and axes parallel
to those of the original inertial frame is again an
inertial frame, and we have shown that there exists an
inertial frame in which the center of mass remains fixed
at the origin.

Let x\t x 2 06 the position vectors of P^, P2 inthis particular inertial frame. Since the center of
mass is at O we have mi »i * *2 *2 ™ ®» whence,

■x - - ( A 2 - x1)m2/(m1 + m2),

*2 - ^ *2 ~ *i)"»i/(n>i +
n»2^*

From this and (8.2) we see that x^, x 2, * 12 an<*
f 2i are all multiples of x2 - *i« Therefore the
<noment about the origin 0 of ^s *iXfi2"®»
and likewise the moment of f 21 is O. By Lemma (2)
each particle individually retains constant angular
momentum about 0, so that

X*i 3" 0,^-[m2X2Xi2] " °«
dt dt

Hence there is a constant vector c such that

*1 Xil ' *'
whence
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c • xx •
C «i X ii)* «i • °«

Since X2 ■ - (nii/mg) X^, it is also true that
e •

X2 - - (m^/mj) c •

X1
■ 0.

Hence both ?i and P2 remain in the plane c • X * 0.
(We are assuming that at some instant Pi has motion
not in the line P^Pg* so ***** * 4 O. )

Between times t and t + dt the particle P^ moves
from Xi(t) to Xi(t + dt), and, except for an error of
higher order than dt, the latter is Xi(t) + Xi(t)dt.
The area of the parallelogram with vertices at the ori
gin, at X(t) and at x(t) + x(t)dt is

I X (t) X X(t)dt|.
But in the time interval from t to t + dt the line
segment from 0 to P^ (the "radius vector") sweeps over
a sector which, except for an error of higher order
than dt, is a triangle with vertices at 0, at X]_(t)
and at X]_(t) + i]_(t)dt. This triangle consists of
one-half of the parallelogram just mentioned. Hence

Area swept out between t and t + dt
- II x (t)Xx(t)dt|
- i I e I dt.

So the rate at which the "radius vector" OPi sweeps out
area in the plane the constant |e|/2. Likewise the
"radius vector" OT2 also sweeps over area at a con
stant rate.

According to the definition, the angular momentum
of a body can be found by adding the angular momenta
of its several particles. However, for rigid bodies
an easier method can be used; the angular momentum can
be computed from the components of angular velocity
and the moments and products of inertia defined in
(11. U). Let B be a rigid body rotating about a point,
which for notational convenience we take to be the
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origin. Let X^, X 2, ... be *ne position vectors
of the particles P^, ?2* • •• of the body, and letIt, mg, ... be their masses. If CO is the angular
velocity of the body, its angular momentum h is given
by

(7) h - £mixiXii.
By (7.3) and (5.17), this implies

(8)
11 1

- £mi[ ( X i' X±) CO - ( CO
*

X±) X± ].
If we select an arbitrary set of coordinate vectors
k^, kp» k3 forming a right-handed orthogonal sys
tem, equation (8) is equivalent to the three "scalar"
equations

hl " C£Vxi22+ \}2)]
- [ 2mixi2Xii] co 2 -[ Z n&ipii] (03*

h2 - - [ 2jnixi3xi2] a)!
(9) + [ £mi(xil2+ xi3^ ]a

j
2

- [E^i*!;^ ]co3,

h3- - [£miXifci3] ^
" [£mixi2xi3]<o 2+ [^i^i2 + xi22^] 0)3-

By (11. U), this can be written

hj
_ - \ coi - 1 12 C02

- 1 13 to 3>

(10) ^
2 " - Il2 <ol + I2to2 - r23 <o3»

h3
* " 1 13 40 1 " I23 Q> 2

+

x3 «3 •

Since the motion of the center of mass satisfies
the very simple equation (9.U), it may reasonably be
expected that it will often be important to compute
the angular momentum about the center of mass. But
in this case we recall that the coordinate Vectors
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k i can be so chosen that the products of Inertia all
vanish, which simplifies (10). The result is

(11) Theorem. Let a. rigid body B have angular velo
city © about j.ts center of mass. Let coordinate vec
tors k ^, It 2 > k^ be chosen so as to lie along prin
cipal axes of inertia. If m CD 2> Q> 3 denote the
components of 6) , so that

0) - iD^k]^ + a> 2^2 + a)3k3»
the angular momentum is
(12) h - 0)1I1k1 ♦

«>2I2fc2
+

IC3.

13. Centrifugal and Coriolis forces.

Often it is convenient to refer positions of par
ticles to a coordinate system which is not an inertial
frame, but has constant angular velocity with respect
to an inertial frame. The usual reason for choosing
such a system is of course our customary preference
for referring terrestrial events to coordinates fixed
in the earth, rather than using coordinate systems
specified in terras of distant stars. However, if we
use such a system we can no longer expect that mo
mentum relative to the system will obey the laws we
have listed.

Let 0 be a point about which the second, or "mov
ing," system rotates. For notational convenience we
shall use 0 as the origin of both the inertial OX1X2X3-
system and the rotating OY1Y2T3 -system. Let 6) de
note the constant angular velocity of the new system
with respect to the old. 15 k]_, k2> k3 are the
coordinate vectors of the new system, the coordinate
vector %(t) of any point can be written in the form

(1) X(t) - ^(tjkj. + x2(t)k2 ♦ x3(t)k3.
The velocity of the point with respect to the new
system is obtained by differentiating (1) under the
assumption that the k^ are constant. This velocity
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will be denoted by the symbol

(2) X<">(t) - x^t)!^ ♦ x2(t)k2 + i3(t)k3.
Likewise the acceleration with respect to the new
system is
(3) *('#)(t) - Z1(t)k1 * 52(t)k2 ♦ S3(t)k3.
On the other hand, the acceleration of the point with
respect to the inertial system is, by (2) and (7.16),

S (t)- $1(t)k1 ♦ *2(t)k2 ♦ S3(t)k3
(U) + 2k1(t)k1 + 2x2(t)S2+ 2i3(t)fi3

+ xjU)!^ + x2(t)k2 + x3(t) k3.
$y (7.28),
(5) k±

- <oX ^i» C1 - 2» 3)
whence, 6} being constant,

d - 0) X ki
(6) - 6) X ( <0 X ki)

- (© •

k±) 0) - (Q • W)ki (i - 1, 2, 3).
Substituting (2), (3), (5) and (6) in (U) yields'

i(t) - x(,,) ♦ 2 © X *('}(t)
(7)

+ (0) • X ) 6) - ( 6) • 0)) X .

If X(t) is the position vector of a particle P
with mass m. and the particle is acted on by a force
f , then mx(t) ■ # . So ion multiplying both members
of (7) by m and transposing we find
u4aa>(t) - f ♦ m [(O • «)X(t) - (G) • X(t))0 J

(8) - 2m aXr '03.
The first term added to f in this equation has a sim
ple interpretation. Temporarily, let us denote by
u the unit vector in the direction of 0), so that
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tt •
I CO I U . Then

a [ (O • CO) x - (tt • x) fid ]
(9)

■■|of [x-(tt'X)«].
It is easy to see that the -vectors xi - ( u • x) u and
xp" X - ( u • x) v constitute a decomposition of x
into vectors respectively parallel and perpendicular
to u; for clearly x^ + *2 " *» *1 *s Parallel
to u because it is a multiple of u, and X2 is or
thogonal to u because

w • «2 " u* X - ( u • x ) U* u » 0.
Hence the quantity in square brackets in the right
member of (9) is the component of X perpendicular
to w , or what is the same thing, perpendicular to
(0 . The length of this component, which we shall
denote by r, is the distance from the particle P to
the axis of rotation. So the term

m[ ( (0 ' C0)x(t) - (O • x(t))o)]
in (8) represents a vector of magnitude m | Q in
the direction of that perpendicular to the axis of ro
tation which passes through P. This is the familiar
"centrifugal force."

The last term in (8) is less familiar. It is known
as the Coriolis force. The introduction of this and
the "centrifugal force" may be thought of as the price
which we must pay for the luxury of basing our meas
urements of position on a rotating coordinate system
instead of transforming to an inert ial frame. To ex
emplify this, imagine a level merry-go-round rotating
counterclockwise with an angular speed Q about its
center 0. A circular track runs around this merry-
go-round 5 its center is at 0, aid its radius will be
denoted by r. A car runs counterclockwise about this
track with speed v relative to the track. We wish to
find the inward force exerted by the track on the
wheels of the car; and we shall calculate this from
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three different points of view. Let us choose the
xj-axis vertically upward. At the instant t - 0 at
which the force is to be computed, the car C is on a
point P of the rails, and also is at a point Q of the
inert ial frame whose origin is at 0. The x^axis will
pass through 0 vertically upward. An observer using
the inert ial frame as a basis for his computations
will choose an x^-axis passing at all times through
Q; an observer in the car will choose an x^-axis pass
ing at all times through C; and an observer who pre
fers to refer positions to the merry-go-round will
choose an x^-axis passing at all times through P.

The first observer will calculate the force as
follows. The line 0C makes at time t an angle (v/r)t
with OP, which in turn makes an angle Qt with 0Q; so
the car has coordinates

(r cos ( q + v/r ) t, r sin ( Q + v/r ) /t, 0. )
at time t. Its acceleration vector is

( - r(Q + v/r) ^ cos (Q + v/r )t,
- r (Q ♦ v/r)2 sin (Q + v/r )t, 0)

and if the car's mass, is m, the force acting on the
car at time t-0is(-mr(Q + v/r)2 , 0, 0);

The second observer will calculate the force as
follows. The line OC has angular speed Q + v/r about
the X3~axis. In the reference sycteir in which 0C is
the x-,-axis the car C has constant position vector
x • tr, 0, 0). Also Q = (0, 0, Q + v/r). So
(8) reduces to
mO- f + m [ ( Q .+ v/r)2 x - O] - 2m (0 X O ,

whence

f - ( - m( Q + v/r)2r, 0, o) .

The third observer will have to make use of the
Coriolis force as well as the centrifugal force. His
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system has angular velocity 6) " (0, 0, Q ), and init C has position vector

X ■ (r cos (v/r)t, r sin (v/r)t, 0).
Hence (8) takes the form at time t ■ 0

m(-v2/r, 0, 0) - f + m[Q2(r, 0, 0) - O ]
- 2m (OX (0, v, 0)

- f + (mQ2r, 0, 0) + (2mQv, 0, 0),

So all three observers arrive at the same value for
ff , as clearly they must. But the observer in the
car, who used a rotating reference system in which
the car is fixed, must compute the centrifugal force;
and the observer on the merry-go-round, who uses a
rotating coordinate system in which the car is moving,
must compute both centrifugal force and Coriolis force.

1U. Dimensional analysis.

Host of the quantities of physics are measured by
making direct measurements of certain lengths, times
and masses, and then forming a certain function of the
numbers obtained by the direct measurements. For in
stance, a velocity is found by directly measuring a
length and the time required for a body to traverse
that length, and then dividing the number expressing
the length by the number expressing the time. This
can be expressed symbolically by stating that a velo
city has the "dirrensions" [L]/[T], or [LTTJ"1, meaning
that a velocity is found by dividing the number ex
pressing a certain length by the number expressing a
certain time. An angle, determined by constructing a
circle with center at its vertex and dividing the
length of subtended arc by the radius, would have di
mensions [L]/[L], or [L][L] .

whence

f « (

- (

m tfr - 2m Qv - mvVr, 0, 0)
m(Q + v/r)2r, 0, 0).
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Henceforth we shall consider only physical quantities
expressible in terms of measurements of length, time
and mass. For other possible fundamental measurements
we refer the reader to P. iff. Bridgman's Dimensional
Analysis (New Haven, Conn.: Yale University Press,
1931) to which the following exposition is greatly in
debted. (The present section and the next, however,
contain as much dimensional analysis as we shall need
in this book. )

A first, rather simple, use of dimension theory
occurs in connection with change of units. Suppose
that we have chosen certain units of length, time and
mass, and that a physical quantity is determined by
the following procedure.

a. Measure the lengths of a certain set of lines;
let %±f be the numbers expressing these lengths
in terms of the chosen unit of length.

b. Measure a certain set of time intervals; let
t^, tn be the numbers expressing these time
intervals in terms of the chosen unit of time.

c. Measure a certain set of masses; let m^, m_
be the numbers expressing these masses in terms of
the chosen unit of mass.

d. ' Form the power-product

, . . al . *m *L bn cl cp
(1) %i •••Am *1 *n ml ••• "p »

where the a^, b^, c* are preassigned constant expo
nents, not necessarily integral and not necessarily
positive.

Now let us change to a new system of units in
which the new length unit is l/\ times the old length
unit, the new time unit is 1/t times the old time
unit, and the new mass unit is l/u- times the old
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mass unit, t, |i, X being positive numbers. The f±rst
measured length was of the old units, hence
of the new, and so on; the power-product correspond
ing to (1) in terms of the new numbers is

{ (^X)*1 ... (^X)8* (t?)*1 ... (t^T)^
Cx Cp

(mjfi) ....(nyx) }

a^+... +
affl b^+... + bn c^+... + Cp

(2) - X
c.al *n ^ \ cl -p.

*^1 ••• nn * ••• *n m •••mp /•

Thus the effect of the change of units is to mul
tiply the quantity (1) by

«i ♦ . . . ♦ S bi * • • • * *Y
i ci + • • • + cp

(3) X t u H

According to the notational convention in the first
paragraph of this section, the quantity (1) would have
the dimensions

(I) [Lf ...[L] [T] ...[!] [« J" ...[M]P.
But by (3), we would arrive at the same factor for
change of units if we ascribed it the dimensions

ai + ... + % bi ♦ ... + bn ci+... +cp
(5) El ] [t] [m] .

The condensed form (5) is less informative than the
expanded form (U), for the latter sets forth something
of the history of the operations (a), (b), (c) involved
in its computation. But it is equally serviceable for
finding the effect of change of units, and in fact for
all the needs of the present book; and so it will be
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used henceforth. For example, the symbol for
the dimensions of angle, which tells us that an angle
is found by dividing a length by a length, will be
abandoned in favor of the symbol LL J , which tells us
a little more obviously that the number expressing the
measure of an angle does not change when the unit of
length is changed. If we wish, we may also write the
dimensions of an angle as [ Lj^T]^ M] , or we may say
that angle has dimensions zero, or is dimensionless.

Since by adopting the symbolism (5) we abandon the
operational viewpoint in favor of convenience in chang
ing units, we shall be consistent and re-phrase the
definition of dimension too. A physical quantity will
be said to have dimensions [L]*T] 1M]° if, when the
old units of length, time and mass are replaced by
new units respectively lA, l/T and l/n times as great,
the number expressing the physical quantity is mul
tiplied by Xa t u°. This leads to some obvious theo
rems.

(6) Theorem. If a physical quantity Q is the sum of
a finite number or of a convergent infinite series of
quantities each of the same dimensTon [LlaLTliM
then Q alio has those dimensions . For under the change
of units just specified each summand is multiplied by
\a r3 nc, so their sum is also multiplied by this
factor.

(7) Theorem. If P and Q are physical quant i ties
having the respective dimensions LL ] ~["t] [ M] andTnxTTy[M]V then ^e pr0(juct pq has the dimensions

CLnTrt"]*',
the quotient P/Q has the dimensions

and the power P has the dimensions

[L]ak[T]WlMlck.
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For under the change of units previously specified,
P is multiplied by \a td u° and Q by \x -iF uz , so PQ
is multiplied by \a+x vc*z and P/Q is multiplied,
by X.a_x Tb~y |ic_z. The discussion of Pk is equally
obvious .

(8) Theorem. If P is the limit of a sequence of
physical quantities ,

and each P has dimensions [L]a [T]b[ lt]c, then P also
has those same dimensions. For under the change of
units previously specified each Pn is multiplied by
the same factor \a td hence the limit Pnis also
multiplied by this factor.

It is profitable to consider certain examples now
before proceeding further with the theory. The area
of a rectangle is found by multiplying the numerical
measures of its base and its altitude, hence by Theo-

fuller form [L^T]0^]0} . The area of a region con
sisting of a -finite number of rectangles also has di
mensions [Lp, by Theorem (6). The area of an arbi
trary region of the plane can be found as the limit of
the areas of a sequence of regions approximating it
from within, each of these regions being a finite sum
of rectangles. So this too has dimensions [ Lj . The
area of a polyhedron is the sum of the areas of its
plane faces, so has dimensions [l] . The area of a
general curved surface is the limit of the areas of
a sequence of approximating polyhedra, so has dimen
sions [L] .

By a similar argument we find that volumes have
dimension [LP.
If the position vector of a particle changes from

X at time t to X + A X at time t + ut, the ratio
of | A x|/A t has dimensions [L][T]-1. By Theorem (8),

P - lim Pn
n-*-oo

(We thus condense the
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so has its limit as A t ■* 0, which is the speed of the
particle at time t. The same is true, by a similar
argument, for each of the components x\, ±9, ±3 of thevelocity. If we wish, we may say that the velocity
4 has dimensions [L][T] , since each component has
these dimensions. In fact, we could perfectly well
have extended the definition before Theorem (6) to
include vector-valued functions too; we would have
obtained the same dimensions for X. Since momentum
is mass times velocity, its dimensions are [HtJlM].
If a particle has velocity x at time t and velocity

X ♦ Ax at time t ♦ A t, each ratio A itj/A t has di
mensions [L][T]"2, by Theorem (7). So has the limit Ki
as At ■* 0, by Theorem (8). Thus each component of the
acceleration x" has dimensions [LjT]"2. We may say
that X has these dimensions.

Since force is mass times acceleration, its dimen
sions are [L][T]"^ii].

The mean density of a material object is the ratio
of its mass to its volume, hence by Theorem (7) has
dimensions [l]~^m]. The density at a point is the
limit of the mean density in a cube centered at the
point as the edge of the cube approaches zero, so
by Theorem (5) it has dimensions iL]~^-M]»

In the definition of work, each dot product # ^
•A X ^

has dimensions [l]2[t]_2[mJ , by Theorem (7). By The
orem (6) the scalar product .has these dimensions, and
so has the sum (£ f ^* Ax^). By Theorem (3) so has
the limit, which is defined to be the work.

Since the kinetic energy T is mv /2, by Theorem (7)
its dimensions are [l] [t]~t! M] , which are the same
as those of work. We could have foreseen this from
Theorem (10.6).

The rate of flow of a fluid is found by measuring
the volume A v which passes a cross-section between
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time t and time t + At, dividing iv by At ancL let
ting At ■* 0. Hence it has dimensions [Lp[T] .

Suppose that a plane surface of area A slides in
its own plane with velocity v, the plane being para
llel to a flat bounding surface of a vessel filled
with a fluid; the other distance to this surface will
be called d, and the other boundaries will be supposed
far enough away to produce no perceptible effect. The
force f exerted by the fluid on the moving surface is
known to be proportional to the area A and the velo
city v, and inversely proportional to the distance d;
f ■ uAv/d. The coefficient of proportionality u de
pends on the fluid, and is called the coefficient of
viscosity. Since ^

■ fd/Av, it has dimension

([l] [t]-2[m])([l];/[l]2([l][t]-1j -[lHt]-^].
Every physical quantity with which we shall deal is

intimately associated with a real-valued function of
several real variables,

•••> Xfnt •••» ml» •••> ""p)*
For instance, a velocity is associated with F •
distance and a certain time (the time taken by a body
in moving that distance). In the simplest case, a
length % is measured (along the path of a body) and
a time t is measured (the time the body takes to move
through the distance). Then % is substituted for
and t for t^ in Fj the corresponding value of F is the
mean velocity of the body during the time of the ex
periment. This simplest case is in fact all that will
ever actually occur. But in our mathematical model
of the universe we idealize the situation by imagin
ing that the mean velocity can be measured over each
of an infinite sequence of intervals containing a
point P and with lengths approaching zero. The limit
of the mean velocities — that is, the limit of the val
ues of F — is the instantaneous velocity at P. As an
other example, area is associated with F ■ X\%2' Th°
area of a rectangle is found by measuring its two
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dimensions and substituting in F. The area of a figure
consisting of finitely many rectangles is obtained by
adding the several values of F, that is, by adding
their several areas. The area of a general plane fig
ure is found as the limit of areas of figures consist
ing each of a finite number of rectangles; hence it is
the limit of a sequence of numbers, each of which is
a sum of finitely many values of F. We shall make the
following assumption.

(9) To each physical quantity P hereafter mentioned
there corresponds to a real-valued function

F(%1, . .., Xn> t-i» tjjj mp),
continuous and having continuous first partial deri
vatives for all positive values of Xl» •••> Rpi and the
value of the physical quantity P corresponding to a
physical system is found by one of these three methods:

(i) A specified set of m lengths, n times and p
masses are measured, and their values substituted a3
arguments in the function

F(Xi> •••> Xm» *1» *••» *"n» ""l* •••» mp)»

(ii) Finitely many sets of measurements of m
lengths, n times and p masses are made, each as spec
ified in (i); each set separately is used as arguments
in F, and the several values of F thus obtained are
added.

(iii) The operations described in (i) and (ii) are
performed on each of an infinite sequence of physical
systems (which may all be copies of one system). The
corresponding values of F form a sequence of numbers;
the limit of this sequence is found.

Clearly we could extend this list if we wished.
For example we could envisage an infinite sequence of
infinite sequences of systems, apply (9iii) to each
system, and take the limit of the resulting sequence
of limits. Bat we do not need this. In fact, in
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proving the two principal theorems of dimension theory
((10) and (15.8)) we need refer, only to (9i). Only
(9i) and (9ii) can actually be carried out by an ex
perimenter; (9iii) is an idealization from the world,
of experiment to the idealized mathematical model
which is the basis of classical mechanics.

If the function F is a product of powers of the Xi»ti and mi (for which we use the notation (1)), then
as already shown, the physical quantity P will have
dimensions

_ J3h + . . . + a_, bi + ...+b_ Ci + • « • + c—

provided that the evaluation is effected as in (9i).
But then by (6) and (8), P will still have these
dimensions if evaluated by (9ii) or (9iii). Here we
have used detailed knowledge of the structure of the
function F to show that the physical quantity P has
dimensions of the type [ L r I T ]b [MJC. Our next
theorem will show that whenever the quantity P is of
a kind that we might vaguely call "pure" (we shall be
leas vague in a moment) the same conclusion may be
drawn, even if we know nothing of the structure of
the function F. As an example of a physical quan
tity which is not "pure," but is a "hybrid," we take
the quantity (area + perimeter) of a geometric figure.
This is formed according to (9)» and yet is clearly
an inconvenient sort of quantity to deal with. The
vague distinction between "pure" and "hybrid" quan
tities can be made quite precise by means of a crite
rion which refers only to the values of P, and not
at all to the analytic nature of the function F.
This criterion is called absolute significance of
ratio. Consider, for example, a particle moving with
respect to a reference system. The number expressing
its speed depends on the units chosen; if its speed
is 60 miles per hour, it is 88 feet per second." Butif one body has twice the speed of another when one
uni't system is used, it has twice the speed of the
other when any other system is used. The ratio of
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speeds 2:1 has "absolute significance" in that it is
unchanged when units change. The hybrid "area + peri
meter" lacks this property; two squares of side 1 foot
and 2 feet have measures 5 and 12 when the unit of
•length is the foot, 192 and 672 when the unit of length
is the inch, and the ratios 5:12 and 192:672 are differ-

The physical quantities having absolute signifi
cance of ratio also possess a highly important and
useful property; the dimensions must be expressible
as powers, as the next theorem shows.

(10) Theorem. If P is_ a physical quantity formed
according to the rules (9) and possessing absolute
significance of ratio, there are constants a, b, c
such that P has dimensions [Ll^K M"lc.

If P has absolute significance of ratio for all
entities measured by (9), in particular it has absolute
significance of ratio for those entities which can be
measured by (9i) alone. For all positive values of
X*» t* and ■£ we can define a new function

*(%> m, CC2, am, Pn, Y2> •••» Yp»)
" . .., Xjj* t^, tR, m^, nip),

\ " *i/*l> Pi " HAl» Ti ' »>i/»i.
Suppose now that measurements of the physical quan

tity P are carried out according to (9i) on two en
tities, the first leading to numbers %\, mp and
the second to numbers 5^, . . ., su. There is a number
k such that

F(X, t, m, cig, am, P2, •••> Pn» T2» "'* Yp)
(13) - kf(^, t, m, oi
g,

am,

ent.

where

(12)

X - X\» t - tlt m - n^,

P , • • • • p , V

2 n* T2

, • • . ,
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(We assume we are working in the region f + 0. ) If
we change to new units of length, time and mass which
are respectively l/\, 1/t , l/u. times the old units,
the numerical measures Xi> t^, mi are replaced by
XXii Tt<, jim^ respectively. By fl2), %, t, and m
are replaced by X^, xt, \im .respectively , while the
ai' ^i* ^1 are uncnan£ed* *V hypothesis, the ratio
k must not change. Hence

t(k%, Tt, urn, offl, pg
,

Pn, Y2, ...,T )

(1U) - kf(\J, x£, urn, ^
,

am,

P 2* Pn> Y^* •••»Tp)»

Let us denote the partials of the function f in (12)
with respect to first, second and third arguments by
fy, ft, fm respectively. Since (1U) holds for all

X.
, t and n, we can differentiate with respect to X and

then set \ ■ t - h ■ 1, obtaining

■

(15) Xtf-klfp
where for brevity ft; means f^(X» ™» Yp) *nd

fy means the corresponding derivatives for the barred
arguments. But if we solve (13) for k and substitute
in (15) we obtain

(16) % fj/f - I fy/?,
In a similar way, by differentiation in (lU) with re-
pect to t and \x we find

(17) tft/f - lf€/?,
(18) mfm/f - m?m/f .
In other words, for all entities for which the phys
ical quantity P can be measured by (9i), the expres
sion % fy/f has one and the same value, which we may
denote by a; and analogously for tf^/f and mfm/f .
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Thus there are three constants a, b, c such that for
all entities for which the physical quantity P can be
formed by (9i), the equations

Xt%/t
- a,

(19) tft/f - b,
mfm/f - c

hold.

The quantum theory warns us that we had better not
assume that the entities for which P can be formed con
stitute a continuous array. But in (19) we made no such
assumption; these equations hold whenever P has mean
ing. If there are entities for which P has no mean
ing, there is no harm in making the mathematical as
sumption that (19) holds for them, too; this will never
lead to contradiction, since the physical situation
will never occur anyhow. So we may assume that (19)
holds for all positive values of %, t, m, a2, etc.

Now we define
t, m, a2, Yp)

(20) - log f{%, t, m, ag, Yp).
Then (19) implies
(21) 4j - a/i, +t

- b/t,

4>
m - c/m.

Let %0, t0, mo, a2» •••» Yp 08 any positive numbers.
To be specific, we shall choose Xom to ■ m© ■ 1. For
any other positive numbers %

, t, m (the °2, etc., being
unchanged) the points

(1» 1» 1» °2»
* * * * Yp)

and

(%, t, m,
a2» Yp)

can be joined by a smooth curve in (m + n + p)-dimen-
sional space along which the first three coordinates

X, t, m stay positive and c^, etc., remain constant.
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Then by integrating along the curve

4(X, t, m, a2, ...,Tp) - 4(1, If 1» a2, ...,Yp)
(J, t, m)

(X, t, m)

{a dJ/X ♦ b dt/t + c dm/m }
(1, 1, 1)

•i
:

- a log % + b log t + c log m,

whence

4(?» m» •••» Tp)

*2»
• •• » Tplog (Ja tb mc) - 4(1, 1, 1, a , Tn).

So by (20)

(22)
t\X, t, m,

a^, am, 0^
,

0n, y2> . .., tp)

where <
J> is a function

-4(1, 1, 1, a2, ...Yp)
f(a2, ...» Tp) • • *

of the ratios * , . ... Y alone.

2 p

Suppose now that we change to new units of length,
time and mass which are respectively 1A» 1A and 1/ji
times as great as the old ones. Then, as previously
remarked, %

t t and m are replaced byX^, Tt, urn re
spectively, while o^, etc., are unchanged. Hence in
(22) the factor ^ is unchanged, and f is multiplied
by X*Tb|ic. This proves that the quantity P, whose
numerical measure is f, has dimensions [L]^TJn[M]c.
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As yet, this applies only to entities for which P can
be formed by (9i) alone. But it remains true for those
whose formation requires (9ii, iii) also, as we see
at once with the help of Theorems (6) and (8).

Nothing has been said about the nature of the func
tion vf. Nothing can be said, apart from obvious re
marks about continuity, without further hypotheses.
Specifically, it does not have to be a power-product.
For example, if we are dealing with triangles their
areas may be calculated by the formula

where % - %lt cu - X2/X1, °3
- l^/ll* and %lt %2> *3are the three sides of the triangle. Here 4 is the

expression given in the form of a square root, and is
not a power-product. Generally, the form (22) for f
is enough to insure absolute significance of ratio,
without further hypotheses.

It is entirely possible to write valid equations
in which not all terms are of the same dimensions.
For instance, an ellipse E and a rectangle R may have
the same perimeter and also the same area, in which
case the equation
perimeter of E + area of E • perimeter of R + area of R

is valid for all systems of units. However, any such
equation can be made to yield several dimensionally
homogeneous equations; in the example just considered,'

A - +
X2

+ h){xi * X2
~ h]

{h - h + h)ix2 + h- \X2{ (1 ♦ a2
+ a3)U *a2

~ V
(1 - a2 + +

a3

perimeter of E - perimeter of R
and

area of E ■ area of R.
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For let all terms of the equation be transposed to
the left and all terms of like dimensions grouped to
gether. We then have an equation of the form

?l * . . . ♦ Pn - 0.
Under the usual change of units this becomes

»1 h cl -*n \ cn n

ai bi ci
where [L] [T] [M] are the dimensions of Pi*If we divide through by the lowest powers of \, t
and u occurring in this equation we obtain a polynomial
whose value is identically zero. Hence, by a well-
known theorem, all the coefficients P^, Pn must
be zero, and we obtain the separate dimensionally
homogeneous equations

Pr- 0, FB -.0.
This result is often useful in furnishing a quick

check on computations. For example, if in the course
of a computation we find that we have written

dx/dt - vQ + gt2,
we know that we have made a mistake somewhere, for
dx/dt and v^ have dimensions [L ]/[ T], while gt2 has
dimensions [L].
15. The Buckingham fl-theorem.

It frequently happens that a physical quantity of
known dimensions can be shown to have a numerical value
which is a certain function of the numerical values
of certain other physical quantities. The usefulness
of this will be shown in Theorem (8), but first we
will look at an example.

Suppose that a pendulum, consisting of a particle
of mass m attached to the end of a weightless string
of length X, is displaced, held at rest and dropped.
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We shall accept as known, to save trouble, that Its
motion Is in a plane, and we shall locate the particle
by measuring its distance s along the arc it traverses,
8 ■ 0 being the lowest point and s being -positive on
one side and negative on the other. Let s0 be the lo
cation of release. Since the tension in the string
does no work", being perpendicular to the motion, (see
(10.li)), the gain in kinetic energy (ms /2) - 0 must
equal the loss in potential energy

(msv2) « mg^(cos s/% - cos Sq/%),
or

(1) s - i J 2g% [cos U/T) - cos (s0/J)].
This equation possesses a solution s - ^(t, g, %, s0),
and it is not difficult to show that it must be pe
riodic. Taking time t - 0 at release, the period T
is the least positive solution of the equation

(2) s0 - t(T, G, %, s0)
hence depends on g, X and sQ:
(3) T - F(g, X> s0).

The equation (1) has two distinct kinds of invari-
ance. Since b/X and Sq/X are dimensionless, by The
orems (114.7) and (llj. 8; both members of (1) have the
same dimensions [L] [T]~ . Hence if a given set of
physical quantities s, s, s0, X» g have numerical va
lues in one system of units which satisfy (1), under
a change of units the same physical quantities will
have new numerical values which, still satisfy (1). Here
we have kept the actual physical entities unchanged,
but the numbers expressing their measures have changed
because of the change of units. On the other hand,
(1) is a relation between the numbers expressing the
speed s, the lengths s, s0 and and the acceleration
g. If, for example, two pendulums of different lengths
are swinging in different places, and for the first
pendulum we have sQ - it/3, X ■ 3» s ■ 0, g ■ 12 ! in some
system of units, we shall have i ■ 6 in that system
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of units; and if for the second pendulum we have
s0 "it/3, X ■ 3, s " 0, g • 12 in some system of units
different from the first, we will again have s ■ 6,
this time in terms of the new unit system. As a con
sequence, the solution (2) of (1) is also a function
of the numerical measures of t, g, % and s0, and the
numerical measure T of the period is a function of the
numerical measures g, X> sQ of gravitational acceler
ation, length and initial displacement, the functional
relation (3) being independent of the unit system
chosen.

The content of Theorem (9) can be better understoodif we first discuss power-products of dimensional
quantities. Suppose that v^, Vp are physical
quantities, and that v^ has dimensions

a. b. c.
[L] K

Then if k^, kp are real numbers, by Theorem (lit* 7)
the power-product

has dimensions

[L]aiki+-+VcP [T ]biki+-+bPkP [M ]ciki+---+cpkP>

In particular this power-product will be dimensionlessif the three equations

a^ + ... + apkp
- 0,

(U) bgkg + ... + b kp
- 0,

c3k3
+ . . . + cpkp

- 0
are satisfied.
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Equations (h) always have the trivial solution
■ ... ■ k« ■ 0. They may also have other (non-

trivial) solutions. If they have a non-trivial solu
tion they have infinitely many, for if ki,. . .., kp is
a solution of (U) so is hk^, hkp for every real
number h. However, here again the concept of linear
independence- (explained in Section 3) is useful; its
extension from three-dimensional space to p-dimensional
space being entirely straightforward. The number of
linearly independent solutions of (U) is known by vir
tue of a well-known theorem of algebra.* If we select
from the array

al* a2* •••» *p
(5) b-p b2, bp

°1» c2' '"' Cp

the minor of highest order whose determinant is dif
ferent from zero, the order r of this determinant is
called the rank of the matrix of coefficients. Thenit is well known that it is possible to find p - r lin
early independent solutions of (U), but that no larger
set of linearly independent solutions can be found.
Par example, suppose that v-p v2, v-

j have the dimensions

[LftTrtll*, [Lft«JM°, andCLrtfl-HM]1
respectively. (As we saw in Section lU, these are the
dimensions of work, flow and coefficient of viscosity
re spec tive ly . ) Then

al

" 2» a2

" 3,

a3

- - 1

- - 2, b2

- - 1, b3

- - 1

cl " 1> c2
" °» c3

* 1*

♦See, for example, M. Bocher, Introduction to Higher
Alp.ebra (New York: The Macndllan Company, 1938), p.50.
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The matrix of coefficients has non-vanishing minors
of order 2, for example the lower-left minor

-2 - 1
»

1 0

but the (one and only) minor of order three has value
0, so the rank is 2. Hence equations (U) have a lin
early independent solution, -for example

kx - - 1, k2
- 1, k3

- 1,
but no more. By Theorem (3-U) and Corollary (3.7)
every solution of (U) is a multiple of this one. In
terms of power-products, ▼i V2V3 *s a dinsnsionless
power-product, and every dimensionless power-product
is a power of this one.

A set of p - r linearly independent solutions of
(U) is called a maximal set; every solution of (U)
is a linear combination of these. If

(6) ,

k_ • • • • • lcJ.,P-r P»P-r
constitute such a maximal set of linearly independent
solutions of (U), each of the power-products

n kl,l kP,l
Dl " Vl Vp »

(7) ,

n -v"1^ ... vk^'rp-r 1 p
has dimensions zero, and every zero-dimensional power-
product of the v^ can be represented as a power-product
of II,, ..j, ELp. Such a set of power-products will
be called a maximal independent set of power-products
of dimension zero.
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He can now state the Buckingham II-theorem.

(8) Theorem. Let P be a physical quantity .having ab
solute significance of ratio, whose numerical measure
is a continuously diff erentiable function of the nu
merical measures of certain other physical quantities
vl> • • • $ \ which also possess absolute significance of
ratio. Then

(i) there exists a power-product

(9) no.Tlkl'°...>°
of v, , which has the same dimensions as P:— 1* P — —

(ii) given any set of power-products

(10) U±
-
vx

1,1 ... vp (i - 0, 1, p - r)
in which II0 has the dimensions of P and

DP Dp-r
form a maximal independent set of dimensionless power-
products of the v^, there is a function G of the di
mensionless power-products IL , . . . , II alone such
that 'L p

(id p - noo( nx, n^r).
By hypothesis, there is a continuously differenti

able function f such that
(12) P - f(vx, vp).
Let r be the rank of the array (1$.$), where as be

fore we understand that vi has dimensions

ai bi_ ci
(13) [L] [T]tM] .
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Then, as we have already seen, there is a set of p - r
power-products forming a maximal independent set of
power-products of dimension zero; and every such set
will contain exactly p - r power-products. We let

be any such set, using the notation (7)
or (10). P"

Since 11^, H form an independent set, the
equations

kl,lcl + + *l,p-rcp-r " °»

(1U) ,

tp,!*! + ••• + ^p-rVr " 0

have no solution except c^
» ... ■ Cp_r ■ 0. That is,

these equations have 0 linearly independent solutions.
So by the theorem of algebra already used, the rank
of the matrix

kl,l> •*•» kl,p-r
(15)

^,1' *••> ^p-r
must be the same as the number p - r of unknowns c^.
That is, the array must contain a non-vanishing minor
of order *p - r. There is no loss of generality in sup
posing that this minor consists of the last p - r rows
of the array (15), since the order of these rows can
be changed by merely interchanging subscripts on the
v^. Then by writing the last r columns of the array

0 0 1
0 10

nM 10 0(16) 0 0 0

to the right of array (15) (remember that r, the rank
of (5), must be either 0, 1, 2 or 3) we obtain a square
array
90 Ch. I



kl,l» •*•, kl»p
(17)

kp,l» W
with determinant different from zero. ;

If we define

k k_
(18) Hi - vx

1,1 ... vp P'1 (i - 1, p)

we have a set of power-products including the set (7)
and r others. Evidently the values of these II

^ are
determined by the values of the v^. The converse is
also true. Every power-product

nl np
(19) ▼! ... vp

K

(in particular, each v^) is representable as a power-
product

hl hp
(20) n ... n p.i p
For this requires only that the hi be so chosen that
the product

hl hp

+ * ki,phP ^iH ♦ - ♦ kp,phPi ••• vp

be identically the same as (19), and this is always
possible, since the equations

kl,lhl + + ^"p " nl»

p,l 1 "p,p p p
have solutions, the determinant of (17) being different
from zero. Hence the v^ determine and are determined
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by the values of the E^, and P, which, by (12) is a
function of the v^ , is also a function H of the EL ^ :

(2D p - H(nP np).
■By (13) and (18), has dimensions

\ \ Yi
(22) [L]i[T]i[M] ,

where

ai " + +

(23) Pi * *l,i*l ♦ ••• *
kp>ibp,

Ti * kl,icl + ." + kp,icp (i - 1, P).
Since P has absolute significance of ratio, by Theo
rem (1U.10) it too has certain dimensions, say

(2U) [L]a[T]b[M]c.
Now let us make the usual change of units, replac

ing the units of length, time and mass by new units re
spectively 1/X, 1/T and 1^ times as great. The power-
product is multiplied by the factor

«i Pi Yi
A. T H

by (22) while P is multiplied by Xa Tb uC. So by (21)

al "l Y 1 a p T
h(x * u n ...,X PT Pu P H )

(25)
a b c- x t u h( n , n ).

1 p
If we differentiate both members of this equation

with respect to X and then set X ■ t ■ u- "1, we ob
tain the first of the following equations, wherein for
compactness we have written for 8H/8 11^:
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hx( nx, np)ax + ... + HpCHi, np)«p
- aHCn-p np),

H^n^ iy^ + ... +

H
p( Dj, np)pp

(26) - w(nlf np),
...... Hphrx + +

H
p( i^,..., np)Tp

- ch( nv np).
The second and third of these equations are obtained
similarly by differentiating with respect to T and

H respectively.

The H, are in general variables, depending on the
II. . But if we choose and fix some one set of values
of the 11^ for which H is not zero, say II ^ ■

the quantities

ei " Hi(ni*' •••» np*)/H( iij*, np*;
are constants, and by (26) the equations

e,0L + ... + e a - a,11 PP '

e1P1

♦ ... ♦

eppp
- b,

elTlV ... ♦

epTp
- c

are satisfied. From this and (22) it follows at once
that the power-product

e, e

(27) n - n, ... n pol p

has the same dimensions [L]a [T]b[M]c as P itself.
But by substitution from (18) in (27) we see that II

is a power-product of the v^, and conclusion (i) is
established.

Sec. 1$ 93



To prove (ii) we first make the restrictive assump
tion that P is dimensionless. Then the right members
of equations (26) are zero, and by substitution from
(23) we find

(kl,lHl + ••• + kl,pVal
♦ ... + ... ♦ kp,PVap" °»

l*i,A* + ki,pHP,bi
(28) + ... + (kp,iH! + ... + kp)pHp;bp - 0,

(k1)lHl
+ ... ♦ k1>pHp)Cl
+ ... + (kp^ + ... ♦

kp>pH )cp - 0.
Thus the quantities enclosed in parenthesis are so
lutions k^, kp of equations (h). But since
11^, . .., "p_r constitute a maximal independent set
of zero-dimensional power-products, the particular
solutions exhibited in (23) must be linear combina
tions of the maximal set (6). That is, there are num
bers c^, Cp_r (in general depending on the 11^)
such that

kl,lHl + ." + kl,pHp = clkl,l + •.• + cp_rkl,p-r»

k ,H, + ... + k H - c-k .+...♦ c Jcp,l 1 p,p P 1 P,l P-r p,p-r
By transposition this yields

(HX - C!)k1A ♦ ... ♦ (Hp_r - cp_r)k1>p_r
♦ Hp-r+lkl,p-r+l ♦ ••• ♦ Hpk1}p

- U,

(29) ,

(Hi - c1)kpjl + ... + (Hp_r - cp_r)kpjp-r
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But the determinant of the array (17) is not zero, so
(29) implies

Hi - ci - 0, Hp_r - cp„r - 0,
(30)

Hp-r+1 " 0, Hp ■ 0.

It is the last line of these equations that is impor
tant. It tells us that the partial, derivatives of H
with respect to Dp.r+i* •••» Hp, vanish identically.
Hence H is actually independent of these 11^, and is a
function G of the other arguments, II ^, H r,
alone; and so (21) takes the form

p - Q(nx, np_r).
This completes the proof of the theorem for the special
case in P is dimensionless, no being simply 1.

If P is not dimensionless, by (i) we know that there
is a power-product IL of the v^ with the same dimen
sions as P. If we define H* to be H/ II0, (21) can be
written

(3D p/n0 - H*(nx, n ).
The left member is dimensionless, so by the preceding
proof H is independent of np_r+i, . .., Hp, and is
therefore a function G( II ) of *the first
p - r power-products. Substitution in (31) and multi
plication by II0 completes the proof.

Let us apply this to the period of the pendulum (3).
Here p ■ 3, the quantities v^ being g, %, and s. Hence

al ' x» a2
" 1» a3

" 1>

(32) bl ' " 2' b2 " °» b3
" °»

°1
" °» c2

" °» °3
" °*
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This has rank r » 2, since a second-order minor (upper
left) has value 2^0, but the one and only third-order
minor (the whole array) has value 0. Hence p - r ■ 1,
and a single independent power-product of dimension 0 is
a maximal set. We choose Hi ■ Sq/% as such a power-
product. For II0 we must choose a power-product g^^s^
of dimensions [T]. Since this product has dimensions

* [L]a+b+c[Th2a[M]°,

we must have - 2a » 1 and a + b + c - 0, and therefore
b + c ■ i» We choose a - - ^, b - \, c - 0, so that
n0" J %/g* Then Theorem (8) tells us that there
is a dimensionless function of s0/X such that

T - SX/i G(9o/%).
Had we chosen to solve equations (1) in full detail, we
would have found that G is an elliptic function.

Theorem (8) gave us the privilege of using any dimen
sionless power-product for Hi. We could have taken
II n to be s0~'%'. But it is natural for us to -exercise
this privilege in such a way that the dimensionless
power-products are convenient and familiar combinations,
insofar as this can be done. Since sJX is the ampli
tude of the oscillation, it is natural that we select
this for. 11^. Likewise for II Q we could have chosen
the product of JXIg and any power of s0/X« In general,
in.Theorem (8) if we have any one II 0 of correct dimen
sions we could' replace it by its product with any
power-product of H^, ^ rJ this in fact is all
the freedom we have. The choice of II 0, apart from
having the correct dimensions, is dictated purely by
convenience. Usually it is convenient to choose II0in such a way that G does not vary much in value when
H. , H_ r change, provided of course that this is
possible. The choice II0 - »/ XIZ answers this descrip
tion for the next paragraph will show that it makes G
nearly constant when s0/X is small.
96 Ch. I



Suppose now that we recall that Galileo discovered
that the period of a pendulum making small oscillations
is (almost) independent of the amplitude. Then in (3)
the function F does not depend on s0.t and we can write

T - F(g, X).
For I30 we seek a combination ga ft of dimensions [t].
The only such combination isaM-|,b"i,so that
no « v %/g. The matrix (5) consists of the first two
columns of (32), and still has rank 2. But now p ■ 2,
since there are two arguments g and % of F. Hence the
number p - r of independent power-products of dimension
zero is 0, and in Theorem (3) there are no power-pro
ducts Ht . That is, G is a dimensionless function of
no variables — in other words, a dimensionless con
stant c. By Theorem (8),

T - c STR.
If in (1) we replace cos (s/X) by 1 - s 2/2^2 and
analogously for s0/%, we would obtain an approximate
form, adequate for small amplitudes. The detailed
solution of this equation would yield T - 2 Mt/t/g ,
agreeing with the result of the dimensional analysis
and adding the information c ■ 2ti.

Now we shall make a deliberate mistake, to show
a possible careless misuse of the II -theorem. Suppose
that a particle is travelling in a circle of radius
i- about the sun. By Newton's law of gravitation, the
force on the particle is directly proportional to the
mass m of the particle and the mass M of the sun, and
inversely proportional to the square of the distance
r. The acceleration, being force divided by m, is
proportional to Mr" . From knowledge of the acceler
ation we could compute the motion, hence the period
T. Therefore we attempt to write
(33) T - F(M, r).
Now we try to form the power-product E0 ■ M*r of di
mensions [T]. But this is impossible; neither M nor
r involves time. Looking back, we observe that (33)
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cannot satisfy the hypothesis of Theorem (8) that the
numerical measure of T is a function of the numerical
measures of M and r, for under change of time-unit the
left member changes and the right member does not.
Going back still further, the statement that the force
is directly proportional to m and It and inversely pro
portional to r* can be written

f - kmli/r2.
This implies k - fr /mM, and so k has dimensions
[LKT] [M] • The detailed solution of the equa
tions would necessarily contain this •'dimensional con
stant" k, as well as M and r. Hence (33) should have
been written as

(3U) T - F(M, r, k).
Now we find that the power-product Ho» °f dimensions
[t] , must have the form

flo - k-V2 r3/2 M-l/2,
and no dimensionless power-product exists. Hence in
Theorem (8) the function G must be a dimensionless
constant c, and T is given by

T - c </ r3/kM.

In any particular system of units the constant k and
the sun's mass M have fixed numerical values, and we
find that the period of a particle travelling in a cir
cular orbit is proportional to the 3/2 power of the
radius.

This example illustrates Bridgraan's statement that
dimensional analysis is an analysis of an analysis.
We can only apply it when we know enough about a phys
ical situation to be able to say what quantities would
be involved in a complete analysis. These quantities,
both variables and constants, are the ones which must
appear in the dimensional analysis.
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Let us now consider another example, of importance
in ballistics. If a body B is translated at constant
velocity through a uniform fluid which is "at rest at
infinity" (i.e., has velocity approaching zero as the
distance from B increases), there will be a force act
ing on the body. Let D denote the component of the
force (the drag) opposite in direction to the veloc
ity. The structure of the body can be specified by
giving a certain number of its linear dimensions
Xt, JL. For instance, in the case of a cylinder
these could be diameter and length; in the case of a
shell they could be diameter, length of head, radius
of ogive, distance from head to front edge of rotating
band, etc. If we know enough hydrodynamics we can
write the equations of the flow of the fluid about the
body. These equations are partial differential equa
tions involving the density p of the fluid, its vis
cosity H ,the speed v of the body, and the elasticity
of the fluid. At a given density, the elasticity de
termines and is determined by the speed of sound in
the fluid, so we can replace elasticity in the list
by speed of sound vs. The fluid will adhere to the
surface of the body, so its velocity relative to the
body is zero at the boundary. Thus the boundary con
ditions involve the numbers %\» • • • » Xn which specify
the outlines of the body. Moreover, as is standard
in physical discussions, the equations are relations
between the numerical measures of

So even though we might not be able to solve the equa
tions, even approximately, we know that the solution
gives the numerical measures of the components of ve
locity of the fluid at each point outside B, express
ing them as functions of the numerical measures of p,
u-, etc. Proceeding a step further, from this flow
we can compute the drag D, which again is a function
of the numerical measures of p, a., etc.:

(35) D - F(p, u, v, vs, %lt %n).
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The power-product p u.p vTvs •••^■n ^as {***~
men sioris
(36) [L] * n[T] [M]
In order that this have the dimension [L][T]~^[M] of
the force, D, we must have

-3a - p + Y+6 + + ... + en"l,
(37) -p-T-6 - - 2,

a + P - 1.
For arbitrarily chosen a this leads to

ei + ... + en"l+a»
(38) p

Y + 6 ■ 1 ♦ a.
We choose 6-0, and also shall single out one of the
dimensions %i as especially important; for instance,
in shell and bombs the diameter plays this role. We
may suppose %i is this selected dimension, and we
shall set ^ - ... - - 0. Then

(39) n
o
. pV-V^1*0.

To find the dimensionless power-products we amend (37)
by replacing the right members by 0. The matrix of
coefficients is

- 3» - 1, 1, 1, 1, •••» 1>

(UO) 0,-1,-1,-1, 0, 0,

1, 1, 0, 0, 0, 0,

which has rank 3 (the determinant of the first three
columns has the value - 1). The number of arguments of
F is h * n, so we need b+n-3"n+l independent
dimensionless power-products to form a maximal set.
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Evidently Xofl-I* •••» ^n/^1 afforci us n - 1 such. An
other is v/Vg, and still another is pv^/n. These
last two are familiar combinations in hydrodynamics,
and are named the "Mach number" and the "Reynolds num
ber" respectively.

Suppose first that we decide to choose a ■ 0. By
(39), D has the form

(Ul) D - uv^1G(v/vs, pvfyti, %2/Xlt
If instead we choose o ■ 1 we obtain

(U2) D - pv2X12kd(v/v8, pv^/u, %2I\, ,

where we have called the dimensionless function Kn
instead of G because this notation is customary in
ballistics. There is nothing in the theory which makes
one of these superior to the other. However, it is
desirable to choose the one in which the dimension-
less function is most nearly constant. No single
choice covers all possibilities. If the Reynolds num
ber is very small, for instance in the settling of
sediment through water, (hi) is to be preferred, for
then G is very nearly constant. However, in the aero
dynamics of airplanes and in ballistics (U2) is more
desirable. For most projectiles of military interest
will vary only a few per cent between, say, Mach

numbers .2 and .3, and from Mach numbers .2 to the
greatest investigated the values of Kp will not change
in ratio much greater than h or ? to 1.

The parameters %2/t\> %n/X\ determine the shape
of the body, but not its size. They may be called
the shape-parameters. Herein lies the answer to the
possible objection that the roughness of the surface
might influence the drag. Roughness, for example
depth and spacing of lathe-marks, is actually shape,
and there is room among the arguments %2^\* "' r
numbers specifying these roughnesses in the ratio to
the master-dimension
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16 ♦ The Stieltjes integral.

Before beginning the study of the Stieltjes inte
gral, we wish to warn the reader that this section and
the next six can be omitted without destroying the con
tinuity of the presentation in .later chapters. A knowl
edge of the properties of the Stieltjes integral is
very useful in the study of probability theory, touched
on in the next sections. Also, in the discussion of
weighting factors in Chapter VIII, a process is used
which is essentially the definition of a Stieltjes
integral. The authors feel that the reader will un
derstand the processes involved with greater clarityif he has a comprehension of the meaning and proper
ties of the Stieltjes integral. Nevertheless, it is
possible to avoid naming them in Chapter VIII, and it
is also possible to omit the rest of this chapter,
and the parts of the later chapters which make use
of it, without irremediable loss.

In order to have a concrete example to guide us,
we shall consider (non-rigoroosly) a mass-distribution
lying entirely interior to some interval a - x - b of
the positive x-axis. Pictorially, we can think of
this part of the axis as replaced by a wire, possibly
of variable density and possibly loaded with several
point-masses. \'!e wish to find the moment of inertia
of this mass -distribution about the origin. Let g(x)
be the mass of that part of the distribution lying
between the origin and the point with abscissa x (not
inclusive). Then for any two points x^ >0 and X2 > X]_
the mass lying between these points, and including
Xn but not Xp, will be g^j - gCx^j; for g^) is
the mass of the part to the ieft of Xp, and from it
we have subtracted the mass g(x^) of the part to the
left of x^. The moment of inertia of this part of
the mass cannot be less than x^ times its mass, and
cannot exceed times its mass. Hence if the in
terval from x^ to Xg is short, and £ is any point
between xt and X2, tne quantity £ [g(x2^ - g(x^) ]
cannot differ greatly from the moment of inertia of
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this part of the distribution. If we choose points
xl < *2 < ••• < *n 3q. - a and x„ - b, and in each
interval we choose an intermediate point (the chosen
point betareen x^_^ and x^ being named Ft ), it is plaus
ible that when the intervals are all small the sum

(1) L Si2[gUi) - g(*i-i>3i-l x

cannot differ much from the moment of inertia of the
distribution. Hence we may expect that if the number
of subintervals is increased without bound, in such
a way that the length of the longest subinterval tends
to zero, the sum (1) will approach a limit, and this
limit will be the moment of inertia of the distri
bution. This sort of discussion will be found in many
elementary texts on physics, and is usually followed
by another step, in which the difference g(x^) - g(x^_l)
is replaced by g'(x^*)[x^ - x^_iL where x^* is some
value between x^ i and x^. After this replacement
the sum (1) takes the form familiar in elementary cal
culus, and its limit is an integral of the familiari
type. However, this reduction is impossible when
g(x) lacks a derivative, as for example it does when
ever the distribution contains point-masses. So in
stead of trying to devise some substitute for the re
duction, we shall study limits of sums such as (1) in
their own right.

Suppose then that g(x) is a function defined on
some interval a 5 x 5 b and monotonically increasing on
that interval, so that g(x2) - g(x^) whenever X2 > X]_.
Suppose that f(x) is defined and finite on the in
terval a - x - b. As in our example, we subdivide
the interval from a to b into subintervals by means
of points

(2) a ■ < x2 < x^
< . . . < Xyj

• b,

and between each pair of consecutive division-points
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xi-l xi we cnoose a point We form the sum

(3) £ f^J [g(xt) - gU, ,) ],i-1 1 1

analogous to (1). If it happens that the sum (3) ap
proaches a limit as the number of sub-intervals is in
creased in such a way that the length of the longest
subinterval tends to zero, irrespective of the manner
in which the are chosen within the subintervals,
we say that f(x) is Stieltjes-integrable with respect
to g(x) from a to b, and we denote the limit by the
symbol

(UJ j
b
f(x) dg(x).

Thus the moment of inertia in our example would be the
Stieltjes integral

f b

J
x2 dg(x),

assuming that it exists.
In any good textbook on advanced calculus there

will be found a proof that if f(x) is continuous on
the interval from a to b, the integral

(5)
|b
f(x) dx

exiets. This proof can be amended to show that if
f(x) is continuous the integral (h) exists; all that
is needed is to replace the differences x^

-
x^ i by

the differences g(x^) - g(xj_]_) in the proof. It is
also true that if f(x) is bounded and has a finite
number of discontinuities the integral (ii) exists,
provided that no discontinuity of f(x) occurs at the
same place as a discontinuity of g(x).
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Just as in the case of the integral (5), it is easy
to prove from the definition a number of theorems,
some of which we now state.

(6) Theorem. If f^(x) and f2(x) are both integrable
with respect to g(x) from a to b, then so is. their
sum, and

P [fx(x) ♦ f2(x) ] dg(x)

- p fx(x) dg(x) ♦

^fx(x) dg(x) + \ f2(x) dg(x).J a

(7) Theorem. If f(x) is integrable with respect to
g(x) from a to b, and k is a constant, then kf(x) ig
also integrable with respect to g(x) from a to b and

Jb
kf(x) dg(x) - k

|
f(x) dg(x).

(8) Theorem. If f(x) is integrable with respect to
g(x) from a to b, it is. also integrable with respect to
g(x) over every interval contained in the interval from
a to b. Also, if c is between a and b,

^

f(x) dg(x) -
|
f(x) dg(x) +

|
f(x) dg(x).

(9) Theorem. If f(x) is integrable with respect to
g(x) from a to b, and | fix) |

- M for all x in the in
terval , then

jb f(x) dg(x)
< M[g(b) - g(a)] .
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To prove this we need only observe that the absolute
value of the sum (3) is not decreased if we replace
f(?i) by M in each term; and if this is done, the sum
(3) changes into ii[g(b) - g(a)].

(10)
Jb

1 dg(x) - g(b) - g(a).

This is obvious if we substitute f(x) - 1 in (3).

The next theorem has no analogue in the theory of
the usual integral (5).

(11) Theorem, If g]_(x) and g2(x) are both monotonical-
ly increasing functions on the interval from a to b, and
g(x) is. their sum, then every function f (x) which is
integrable from a to b with respect to both gi(x) and
gg(x) is also integrable with respect to gtx), and

ib
f b r b

f(x) dg(x) - j f(x) dg^x) ♦ j f(x) dg2(x).

For any choice of the points x^ and ^ we have

£ f(C)[g(x ) - g(xi.1) ]
i-1 1 1

n
- S [gi(xi) - g^x^) ]

+ £ f(q) [gjCxi) - g2(xi_1)].
If we let the number of subintervals increase without
limit, the length of the longest subinterval approach
ing zero, the two sums in the right member approach
the two integrals in the right member of (11). Hence
the left member approaches the same limit, which es
tablishes (11).
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If it happens that g(x) has a derivative at each
point of the interval from a to b, the Stieltjes in
tegral (h) can be transformed into an integral of the
type (5). For let (2) be any method of subdividing the
interval from a to b. Since g(x) is differentiable, it
is continuous, and by the theorem of mean value we know
that between each pair of consecutive division-points
xi-l xi there is a point £i such that

gUj) - gU^) - g't^) [x± - x^ ].
If we substitute this in (3), the sum takes the form

(12) £ fUt) g'(Ci)Lxi - x. J.i«l
As the number of subintervals increases, the length
of the longest approaching zero, the sum (3) approaches
the limit (h), while if we write the same sum in the
form (12) we see that its limit is the integral of
f(x) g'(x) from a to b. Hence

(13)
|b
f(x) dg(x) -

|b
f(x) g'(x) dx.

However, we must keep in mind that this formula holds
only subject to strong restrictions on the function
g(x); for example, if g has a single discontinuity, (13)
cannot possibly be true for all functions f(x).
Suppose next that f(x) and g(x) are both defined

for all x, and that g(x) is monotonically increasing.
Then we define

(1U) ( ftx) dg(x) - lim ( f(x) dg(x),
J a b oo J a

provided that the limit exists; we define
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(1$) f
b
f(x) dg(x) - lim P f(x) dg(x),J -CO g-t. -co J a

provided that the limit exists; and we define

f °°
lim rb

(16) f(x) dg(x) - a— • 1 f(x) dg(x),

provided that the limit exists as a tends to ~ 00 and
b to " independently of each other.

In order to exhibit the versatility of the Stieltjes
integral, we now look at some examples. First, the
integral (5) is obviously a special case of the Stielt
jes integral, with g(x) - x. Next, let w^,
be a set of positive numbers. Define g(x) to be the
sum of those wj whose subscripts do not exceed xj for
example, g(0) ■ 0 and g(3.2) - w^ + W2 + ify This
function. g(x) has jumps at x - 1, 2, k, and is
constant between jumps, above x ■ k and below x • 1.
The jump at x ■ j is equal to Wj, Let f(x) be any
function continuous at all the jump-points of g(x),
and let (2) be a subdivision of the interval from
0 to j into subintervals of length less than 1. If
an interval Xj_^ < x - x^ contains a jump-point x ■ j
in its interior or at its right end, then

g(xi) - gCxj^i) - wj;
and if we choose ^ • i, as we may, the correspond
ing term in the sum (3) is wjf(j). If the interval
from x^_]_to x^ contains no jump-point in its interior
or at its right end, then g(x^) ■ g(xi_l), and the
corresponding term in the sum (3) vanishes however we
choose So the sum (3) has the value

w-jf(l) + ... + wkf(k).
This is true for all sufficiently fine subdivisions.
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so the limit of the sum is also this same fixed num
ber, and thus we have shown that

Sk

k
f(x) dg(x) - Z Wjf(J).

o j-1 J

In particular, if each wj is 1, the Stieltjes integral
is the finite sum f(l) + ... + f(k). If the sum of
the fj is 1, the right member of (17) is the weighted
mean of the f(j). If each Wj is 1/k, the right memberof (17) is the arithmetic mean of the numbers f(j).

Given an infinite sequence of non-negative numbers
Wm, we can define g(x) as in the preceding paragraph.
Equation (17) will still hold. But now we can let the
upper limit increase without bound, and thus find that

(0
0

00

f(x) dg(x) - £ w.fO),

O J-1 J

provided that this limit exists. In particular, if all
the wi are equal to 1 the right member of (18) is the
infinite series £f(j). We also observe that the
series £f(j) is absolutely convergent if and only if

|

f(x) I is Stieltjes-integrable with respect to this
particular g(x) from 0 to oo.

Suppose next that w(x) is non-negative and (for the
sake of simplicity) continuous for a - x 5 b, and that

(19) \ w(x) dx - 1.

Then if the integral

(20) jb f(x) w(x)
dx

exists it is called the integral mean of f(x) with
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weight w(x). This, too, can be written as a Stieltjes
integral. We define

:(21) W(x) - I w(x) dx (a5i5b),

Since w(x) is non-negative, this is monotonically in
creasing. Also W'(x) • w(x). So by (13),

fb fb
(22)

^

f<x) w(x) dx - \ f(x) dW(x).

If the Stieltjes integral had no other virtue, its
ability to cover finite sums, infinite series, weighted
means, integral means and ordinary (Riemann) integrals
in a single formula would make it worth knowing.

The definition of the Stieltjes integral can be ex
tended without difficulty to functions which are the
difference of two monotonically increasing functions.
Suppose that g(x) can be represented in the form

(23) g(x) - p(x) - n(x),
where p(x) and n(x) are monotonically increasing func
tions (that is, if x« < x" then p(x' ) £p(x") and
n(x' ) <n(x")). If f(x) is defined on the interval
from a to b, the sum (3) takes the form

i: f(5±) tg(xi) - g(xi_1) ]i-l x

(2U) - £ f(Ci) [p(xi) - P(xi_1)]i-l

- £ Cn(Xi) - n(H^) ].
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Now if f(x) is integrable both with respect to p(x)
and with respect to n(x) on the interval from a to b,
the two suras on the right approach the two integrals
with respect to p(x) and to n(x) respectively. So .

the left member must also approach a limit, which we
call the Stieltjes integral of f(x) with respect to
g(x), and we denote it by the symbol (U). Thus

(25) I f(x) dg(x) - \ f(x)'dp(x) - f(x) dn(x).

Although we do not need the utmost generality, the
reader who is familiar with the concept of functions
of bounded variation will recognize that it is exactly
this class of functions which can be represented in
the form (23). Somewhat pictorially, the functions
of bounded variation can be thus described. Let x
vary from a to b. The point g(x) moves up and down,
perhaps with jumps (the amount of the jump is counted
in as distance travelled). The total vertical distance
travelled by g(x) is the total variation of the func
tion; if it is finite, we say that g(x) is of bounded
variation. For simplicity, we shall restrict our
attention to a simpler (though still extensive) class
of functions, namely those which have the property
that the interval from a to b can be subdivided into
a finite number of subintervals on each of which g(x)
is either monotonically increasing or monotonically
decreasing. Suppose that we can find a finite number
of points

tion g(x) is monotonic. Take any x between a and b,
and let Xk be the last one of the points X^ to the
left of x. Then

g(x) - g(a)
(27) - [g(Xx) - g(XG)] + ... - [g(Xk) - g(Xk_x)]

- [g(x) - g(Xk)].

(26)
such that from each
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In the right member select all the non-negative terms
and denote their sum by P(x); select all the negative
terms and denote their sum by - N(x). It is not difficult to see that as x increases, neither P(x) nor
N(x) can decrease; and by the definition

This is not quite the same as (23), but we easily ob
tain (23) by defining
(29) p(x) - P(x) + g(a)/2, n(x) - N(x) - g(a)/2.
Furthermore, the sum of P(x) and N(x) (which by (29)
is equal to the sum of p(x) and n(x)) is the same as
the sum of the absolute values of all the terms in
the right member of (27), since it is the sum of all
the non-negative terms and the negatives of all the
negative terras. Hence p(x) + n(x) is the same as the
total vertical distance travelled by g(x) as x varies
from a to x. In particular, p(b) ♦ n(b) is the total
vertical distance travelled by g(x) as x travels from
a to b. This is the total variation of g(x).

By making use of (25), we can easily show that
statements (6), (7), (8) and (11) hold for the more
general form of the Stieltjes integral. However, (9)
does not hold. It can be replaced by

(30) Theorem. If f(x) is integrable with respect to
g(x) from a to b, and

| fTx) |
for a~T: x - b, then

We can apply (9) to the integrals with respect to
p(x) and n(x) separately, since these are monotoni-
cally increasing functions. Then, by (25)>

(23) g(x) - g(a) - P(x) - N(x).

f(x) dg(x) 5 M [total variation of g(x) ].
a

f(x) dg(x)

5 M [p(b) - p(a) ] + M [n(b) - n(a) ] .
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But p(b) + n(b) is the total variation of g(x) from
a to b, while by their definitions P(a) and N(a) both
vanish, so that by (29), p(a) + n(a) ■ 0. Hence the
preceding inequality implies (30).

If g(x) is continuous at each of the points X^, we
can show by means of an example that the estimate in
( 30) cannot be improved. On each interval from Xi_ito X^ the function g(x) is either increasing or de
creasing. In the former case we define the function
i*(x) to be + M from X^_i to X^j in the latter case we
define it to be - M. In either case the absolute value
of f(x) is always M. Let the integral in the left
member of (30) be represented as the sum of the in
tegrals from Xq to Xi, from Xi to X2, and so on. Thenif g(x) is increasing from Xj_i to Xi we have

fXi [\
\ f(x) dg(x) - It 1 dg(x)
J Xi_! J X^
- M[g(Xi) - ^Xi.x) ] - M|g(Xi) - g(Xi.1)|,

while if g(x) is decreasing on this interval we have

\ f(x) dg(x) - ( - M) 1 dg(x)
J Xi-1 J Xi-1
- ( - M) [g(Xi) - g(Xi_l) ] - Mjg(Xi) - g(Xi_i)j .

Thus, cn adding these integrals, we find

j f(x) dg(x) - ^Ml^Xi) - g(Xi_i)|.

But except for the factor M, the right member repre
sents the total vertical distance travelled by g(x)
as x goes from a to b, so the right member is M times
the total variation of g(x). Thus equality holds in
(30), showing that (30) cannot be sharpened by replac
ing the right member by any smaller number.
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The definition of the Stieltjes integral can be ex
tended to functions of any finite number of variables.
We shall content ourselves with extending it to two
dimensions; extensions to higher dimensions involve no
essentially different ideas, but make the notation
more complicated. Furthermore, for the sake of sim
plicity we shall consider only the integrals of con
tinuous functions. Finally, we restrict our attention
to functions g(x, y) which satisfy the condition

(31) g(x2, y2) - g(xi, y2) - g(x2, yi) + gU]., yi) > o

whenever x^ < x2 and y^ < y2. Such functions we shall
call "positively monotonic." Condition (31) may seem
unnatural, but we shall find that it is useful and
relates closely to monotonic functions of one vari
able. To simplify the notation, if J is the interval
defined by the inequalities

(32) X!< x < x2, yx<y < y2,

we define

Suppose then that g(x, y) i3 positively monotonic
on an interval J defined by the inequalities

and that f(x, y) is continuous on this same interval.
We subdivide the one-diirensiorial intervals from a to
A and from b to B by points

(33)
AgJ - g(x2, y2) - g(x!, y2)

g(x2, yi) + gUi, yi).

Oh) a <x<A, b<y< B,

a-Xo<xi<...<xm-A,
(35)

b - y0 < n < ... < yn ■ B.

From these we form mn intervals
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In each interval Jj^ we select a point (5hk» Thk^» anc*
we form the sura

m n
(37)

h-1 k»l
£ £ f(^hk»1hk) AgJhk»

It can be shown, much as in the case of the usual
double integrals, that this sum necessarily approaches
a limit as the length of the longest side of the in
tervals tends to zero. The limit is the Stieltjes
double integral

From the definition we immediately deduce that (6)
and (7) apply to the double integral also. Instead
of (9) we have

(39) Theorem. If f(x, y) is continuous on J, and the
interval J is subdivided into two intervals Ji and J 2
either by inserting a point of division on the x-axis
between a and A or by inserting a point of division
on the y-axis between b and B, then

Instead of (9) we have

ihO) Theorem. If f(x, y) is continuous on J, and.
[ f (x)| S M on J, then

I JJj f(x, y) dg(x, y) I < MA J.

(33) /Jj f(x, y) dg(x, y).

JJj f(x, y) dg(x, y)
- Ujx f(x, y) dg(x, y) + Jjj2 f(x, y) dg(x, y).
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In general, for the double Stieltjes integral the
process of iterated integration, first with respect
to one variable and then with respect to the other,
is completely without meaning. However, there is one
important case in which such iterated integration is
possible. This is the special case in which the func
tion g(x, y) can be factored into the product of two
monotonically increasing functions, one depending on x
alone and the other depending on y alone; say

(lil) g(x, y) - g^x) g2(y).
In this case, for each fixed x in the interval from a
to A, f(x, y) is a continuous function of y alone;
hence the integral

(U2) ^ f(x» y> ^2^

has a meaning. Moreover, if e is a positive number,
because of the continuity of f(x, y) there is a pos
itive number 6 such that |f(x', y) - f(x", y) | remains
less than e whenever x' and x" differ by less than
o. If we compute the integral (U2) first with x ■ x1
and then with x - x", by (9J the two integrals differ
by at most e[g2(B) - go(b)J, so the integral (Ij2) is
a continuous function of x. This in turn implies that
the integral (Ii2), regarded as a function of x, can
be integrated with respect to g^(x) from a to A. So
the left member of the equation

CU3)
jA | j°

f(x, y) dg2(y)
jdg^x)

-J J j f(x, y) dg(x, y)
has a meaning. The proof that the equation (U3) is
in fact correct is only trivially different from the
proof for the special case g^(x) - x, g2(y) ■ y to be
found in any calculus text.
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11 . Probability measures.

The purpose of the next six sections is -to collect
some of the elements of the theory of probability,
listing some theorems and definitions which will be
convenient for use in later chapters. Since these
sections are not very easy reading, the reader should
knew that the only places in which we make use of prob
ability theory are Sections 7 and 10 of Chapter VI, in
nhich probability theory is used to estimate errors in
niCBrical computations, and Sections U and 5 of ChapterXIII, in which the best coefficients for calculating
drag from firing-range data are investigated. Both
these topics can be omitted without destroying the con
tinuity of the subject matter, so the reader may omit
the rest of this chapter if he prefers.
It is not to be expected that these few sections

will contain a complete, concise and readable account
of everything of importance in probability theory.
For a detailed presentation, including proofs of theo
rems that we shall merely state without proof, we refer
the reader to J. V. Uspensky's Introduction to Matha-
matical Probability (New York: McGraw-Hill Book Compa
ny, Inc., 1937), to S. S. Wilks' Mathematical Statis
tics. (Princeton, N. J.: Princeton University Press,
191*3), or toH. Cramer's Mathematical Methods of Sta
tistics (Princeton, N.J.: Princeton University Press,
19US). The account in this section has been influenced
by conversations of the authors with Professors A. P.
Morse and H. E. Federer; but all details are according
to the authors' tastes and judgment of suitability
for the present needs, and Professors Morse and Federer
may justly disavow paternity if they wish.
like all branches of applied mathematics , probability

theory consists of two essential parts. There is an
aggregate of mathematical theorems, having the typical
mathematical form "if P is true, then Q is true"; and
there is a dictionary by which the mathematical terms
are translated into the language of material objects.
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This dictionary contains an expression "equally likely"
which has often been difficult to translate. We shall
not attempt any general discussion, but shall look at
a few examples instead. Consider first, a die, which
is a cube cut from homogeneous materia L, the faces
being marked 1 to 6. If this die is thrown suffi-
ently often (the precaution being taken that the person
rolling the die is required to make it bounce off a
wall) it will be found that nearly a sixth of the
number? turned up are ones, nearly a sixth are twos,
and so on. We then say that the six numbers are
"equally likely" to appear, and we assign each one
the probability 1/6, which is a way of summarizing
the statement that in a long sequence of tosses we may
expect that each of the numbers will appear about a
sixth of the time.

Consider next, a point moving about a horizontal
circular track of circumference C, being retarded by
air friction ana friction of the track. We assume
that the initial velocity of the moving particle is
imparted by a human thumb, incapable of reproducing
the imparted velocity from trial to trial with any
degree of accuracy, We assume also that the- coeffi
cient of friction of the track is the same at all
points. This is an idealization of the honest roul
ette wheel. We may reasonably anticipate that if we
mark off two arcs of the track with equal lengths, in
a large number of trials the particle will stop in one
arc about as often as in the other; that is, the ra
tio, of the number of times the point stops in arc 1
to the number of times it stops in arc 2 will approach
unity as a limit when the number of trials increases
without bound. More generally, if two arcs have the
respective lengths and L2, we may expect that the
ratio of the number of times the point stops in arc
1 to the number of times it stops in arc 2 will ap
proach 1>\/L2 as the number of trials increases with
out bomd. In particular, if the second arc is the
whole circumference, its length is L2 ■ C, and the
number of times the moving point stops in it is the
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sane as the number of trials. So the ratio of the
number of times the point stops in the arc of length

L]
_ to the total number of trials may be expected to

approach the limit L^/C as the number of trials in
creases without bound. In symbols, if A]_ is the arc
and its length, we assign the- arc ^ the "probability measure" p(A]^) ■ L^/C.

The reader may have been struck by the number of
times we have used vague expressions such as "we may
reasonably expect that ...." Tt would be beyond the
scope of this study to try to investigate more deeply.
This is the point at which we encounter the slightly
hazy connection between the mathematical side of the
dictionary and the world of concrete events. Never
theless, the reader will almost surely find that the
assignment of "probability measure" in the preceding
exatiples is the only reasonable one. For instance,
nothing in nature precludes the possibility that in
twenty successive trials on the roulette wheel the
moving point will each time stop in a short arc of the
circumference, colored green and marked with a 0.
Nevertheless, if this actually occurred the players
would very probably be astonished, and would doubt
that the hypotheses concerning uniform coefficient of
friction, etc., were satisfied. It is in this some
what vague sense that we understand the limiting pro
cesses of the preceding paragraphs. Once we have
passed this point, we have a precise numerical measure
of probaoility to which precise mathematical processes
can be applied.

Next consider the example of throwing two homogene
ous dice (still bouncing them off the wall). We sup
pose these dice distinguished in some visible way,
for example by color, so that we can speak of "the
first die" and "the secono. die" without confusion.
Each throw of the pair provides a pair of numbers (a, b)
each of which is one of the digits from 1 to 6. In

a large number of trials, about one sixth will have

a • 1, about one sixth will have a ■ 2, and so on.
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But the dice are not mechanically interrelated, so
that if we select from all the throws the particular
ones (roughly a sixth of all) such that a ■ 1, for
about a sixth of these (a thirty-sixth of the total)
b will be 1, for about another sixth b will be ?, and
so on. There are, in all, thirty-six pairs (a, b) of
the kind described; and the ratio of the number of
times any particular one of these pairs turns up to
the total number of trials should approach 1/36 as a
limit when the number of trials is increased without
bound. The two dice have been assumed independent in
a physical sense, the motion of one producing no
forces or torques which affect the motion of the other.
The result is that the numbers a and b are independ
ent in a probability sense, that is, a given value
of b is just as likely to appear when a ■ 1 as when
a = 2 or any other particular one of the digits 1 to 6.

Finally, let us consider a system of n circular
tracks each of length C, with a point moving about
each circumference. In order to make it easier to
record results, we suppose that a point on each cir
cumference is chosen as the starting point and label
led 0, each other point being labelled with the num
ber expressing the arc length measured from 0 to that
point in a counterclockwise direction. Thus each
point bears a label not less than 0 but less than C;
the point which this process would label C is the same
as the starting point, already labelled 0, so C itself
is not the label of any point. If all n points are
started off, and the first one stops at the place Xi ,
the second at the place X2> etc., we can record the
result of the trial by means of the n-tuple

(xl> x2 > • • • » xn) »

wherein each x^ is in the interval 0 - x^ < C. To
phrase it more geometrically, each trial corresponds
to a point of the "cube" 0 : < C (i « 1, ...,n)
in n-dimensional space. Let Ai be an arc of length

on the first circle, A2 an arc of length L2 on the
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second circle, and so on. »Ve shall assume that the
various circles (roulette wheels) are independent in
the physical sense, so that the motion of the point
on the first circle gives rise to no forces "that could
affect the motion of the point on the second circle.
In a large number N of trials we may anticipate that
the number of times the point on the first wheel stops
in arc is nearly (L]/C)N, or with the notation al
ready introduced, p(A]_)N. More precisely, the ratio
of the number of times the point stops in A]_ to the
total number N of trials should approach p(A^) as a
limit when N increases without bound. Let us now seg
regate those trials in which the point on the first
circle stops in the arc A^ (as just remarked, there
are approximately Np(A]) of these) and investigate the
number of these segregated trials in which it is true
that the point on the second circle stops in arc A2«
Since the motion of the point on the first wheel does
not affect that on the second, we may anticipate that
the number of these is approximately p(A2) times the
number of trials being investigated, which is itself
approximately Np(A^). Hence the number of trials in
which the point rolling on the first circle stops in
arc A^ and that rolling on the second circle stops in
arc A2 should be nearly Np(A]Jp(A2). Continuing the
reasoning, the number of times that the point on the
i-th circle stops in arc Aj_ for each of the n circles(i»lj ...,n) should be approximately

Np(A1)p(A2)...p(An).

In order to rephrase this result in. terms of the
geometrical representation already mentioned, let us
first observe that if an arc A^ does not contain the
starting point x ■ 0 of the i-th circle, and if we de
note by a^ the label of the beginning point of A^ when
traversed in a counterclockwise direction and by bj_
its end point, then the arc A^ consists of all the
points with labels x between a^ and b^ inclusive. If
the arc A^ contains the origin, and we denote by a^ its
beginning point and by b^ its end point when we traverse
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the arc in a counterclockwise direction, then as the
moving point traverses the arc in a counterclockwise
direction its label x starts at a*, increases up to C
when the point reaches the starting point of the cir
cle, at which point it drops abruptly to 0 and then
starts increasing again until it rises to the value b^.
Thus if does not contain the starting point x « O
it consists of all points with labels x such that,
a^ - x- b^; while if Ai contains the origin it consists
of all points with labels x such that at - x < C and
also all points with labels Such that o5 x- b^. In
either case, the arc Ai corresponds to one or two seg
ments of the Xi-axtis with total length Li - Cp(A^).
The trials in which the point on the i-th circle stops
in arc Aj_ are represented by points in n-dimensional
space for which the first coordinate lies in an inter
val or pair of intervals of total length L^, the sec
ond in an interval or pair of intervals of total length
Lo» and so on. If we understand an "n-dimensional
interval" to be a set of points in n-space satisfying
a system of inequalities of the form h^ 5 x^ - kj_ ( or
similar inequalities with some or all of the signs
-replaced by <) , we see that the points represent
ing the trials in which the i-th point stops in Ai are
represented geometrically by points in n-dimensional
space which Lie in a finite number of n-dimensional
intervals , not more than 2° of them, having total vol
ume L]L2 ... L . The "cube" in n-dimensional space
representing ail possible trials has all its edges of
length C, so its volume is- Cn. The ratio of the num
ber of trials in which the point on the i-th circle
stops in Ai to the total number N of trials is nearly
equal to the product p(Ai)p(A2) ... p(An), which is
the same as L^Lg ... Ln/C.

Next we consider a slight extension of the concept
of probability measure. In the example of the single
die, the probability measure of each single digit 1,
2, etc., is 1/6; in a large number N of trials, the
number of times any one of these digits will turn up
is approximately (1/6JN. So if S is a set consisting
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of several of these digits — for example, S might con
sist of the digits 1, 3 and 5 — and m stands for the
number of digits in S, each of these will turn up ap
proximately N/6 times, and the number of times that
the throw will give us a number in S is approximately
m times N/6. Therefore the probability measure to be
assigned to S is ra/6. Thus each subset of the aggre
gate 1, 2, 3, h, 5, 6 has a probability measure equal
to 1/5 of the number of elements in the subset. In
exactly the same way, any subset S of the thirty-six
pairs (1, 1), (6, 6) in the second example is
assigned probability measure equal to (1/36) times
the number of pairs in S. It continues to be true
that if the number N of trials is large, the number
of times that a pair belonging to S is thrown will be
approximately N times the probability measure of S.

In discussing the other examples, it is convenient
to n-ake use of intervals in n-dirrensional space de
fined by inequalities of the type

ai 'S x± < bi (i - 1, . . . , n),

where the a^ and b^ are numbers such that

0 <
a^ < ^ < C.

Such intervals are usually called "half^open," because
they contain their lower boundaries but not their upper
boundaries. The volume of the interval defined oy the
inequalities just written is the same as if the inequal
ities a^ - Xi K bi were changed to ai - Xi 5 bi, namely
(bi - ax) ... (b^ - an). Let Ji and J2 be two half-
open intervals in n-dimensional space, having no points
in common. The probability that a trial will have a
result in is p(J*i) ■ (volume Ji)/Cn, and similarly
for J2. Let S be the set consisting of the two in
tervals Ji and J2. In a lar-re number N of trials, ap
proximately Np(Ji) will have results in Ji and ap
proximately Np(J2) will have results in J2. None of
these are counted twice, since no trial can have its
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result in both and J2. Hence the number of trials
with results in S will be the sum of the number with
results in and the number with results in J2, which
is approximately

N [p(Jx) + p(J2) ].
Accordingly, the probability measure of S should be
taken to be p(J]_) + p(J2). A similar reasoning applies
to any finite sum of intervals + ... + J2. If the
reader happens to be familiar with the theory of the
Lebesgue integral, he will realize that we are by no
means limited to the consideration of finite sums.
We can define p(S) for sets S consisting of the sum
of an infinite sequence of intervals without common
points, and then use these in turn to extend the range
of meaning of the symbol p(S) to a vast class of sets
S, namely the class of all Lebesgue-measurable sets.
But if the reader happens not to have studied the Leb
esgue integral, he is not hopelessly handicapped as
far as the needs of this book are concerned.

In order to unify the discussion, we observe that
in each of our four examples (and in any other example
we later encounter) we have as a starting point an ag
gregate P of things. In the first example, P consists
of the numbers 1, 2, 3, h, 5, 6. In the second example,it consists of all the points on the circumference of
the circular track, and these can be symbolized by
the real numbers 0 5 x < C. In the third example, P
consists of all the pairs (1, 1), (6, 6). In the
fourth example, it consists of all the n-tuples of the
form (point of first circle, point on n-th circle)
and can be more conveniently symbolized by the n-tuple
(x1 , xn) representing a point in the "cube"
0 5 Xj_ < C, i ■ 1, . . . , n. To certain subsets of the
population we have assigned numbers called their prob
ability measures. This is done for all subsets of P
in the first and third examples, in which there are
only a finite number of such subsets. In the second
and third examples, the sets S to which probability
measure has been assigned include all sets consisting
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of a finite number of intervals; and this class could
conceivably (in fact, actually) be enlarged still fur
ther. Let us say that the sets for which a definite
probability measure has been assigned are "measurable
sets." Then to each measurable set S there corres
ponds a probability measure p(S), and the sets and
their measures satisfy the following conditions.

(la) If S is measurable, then 0 5 p(S) 5 1.

(lb) The set P cons is ting of the whole population is
measurable , and its probability measure is 1.

(lc ) The set consisting pf no points at all is measur
able, and its probability measure is 0.

(Id) If and S2 are measurable, §_o is the set

S]
_ + S2 consisting of all points belonging to one or

both of the sets . Moreover , if and S 2 have no
common points, then

p(Sx + S2)
- p(S]_) + p(s2).

(le) If S^ and S2 are measurable , so is the set of
points which belong both to Sj

_ and to S2.

(If) If is measurable, so is the set S2 consisting
of all points of P which do not belong to S-. ; and
p(Sx) + p(S2) - 1.
All four of our examples satisfy these conditions,

and henceforth we shall assume them satisfied for every
example in probabilities which we shall investigate.

13. Expected values ; measurable functions.

Suppose next that the population has been subdivided
into a finite number of measurable sets S^, Sy,
having no common points, and that a player is playing

a game in which he is to receive a certain sum fi if
the outcome of the game is in S^, a sum f2 if the
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outcome is in S2, and so on. If a large number of games
is played, say N of them, in approximately Np(S]_) of
these games the outcome is in S]_, and his receipts from
these games add up to approximately f]_Np(S]_); in ap
proximately Np(S2) of the games the outcome is in S2,
and his receipts from these games add up to approxi
mately f2Np(52); and so on. His total receipts from
all games will be approximately

N CfiPtSi) + ... ♦ fkp(Sk) ] .
So his average receipts per "game are given by the co
efficient of N in this expression. This average is
called his "mathematical expectation." To represent
it somewhat more conveniently, we define a function
f(q) for all elements q of the whole population P, by
setting f(q) ■ f^ if q is in S^. Then if the outcome
of a came is expressed by the symbol q, the player re
ceives an amount f(q). His "mathematical expectation"
is denoted by the symbol E [f Jj and according to the
foregoing discussion, it is given by the expression

k
(1; E [f ] - S q pCSi).

i-1
The mathematical expectation of f(q) is also called
its "expected value."

This definition may seem ambiguous, for the choice
of the is somewhat arbitrary; for example, if fj_ * 1 2
we can combine and S2 into a sinrle set on which f
is constant, and then there will be only k - 1 sets.
Given any function f of the type described, we can com
bine all sets on which f has each one of its values.
This corresponds to bracketing terms in (1), and does
not change the value of the sum. So the freedom of
choice of the Si does not affect the value of the sum
in (1).

A simple but important property of the expected value
as defined in (1} is
(2; If f(qj < g(qj for each q in P then S[f]< E[g].
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Let fi, f be the distinct values f can assume,
and let be the set on which f » f^. Let g]_, gn
be the distinct values g can assume, and let Sj' be the
set on which g a gj. V/e are assuning these to be
measurable. Let be the set of all points which
belong to and also belong to Sj'. These sets S ^ j
have no points in common; every point of P belongs to
one of them; and they are measurable by (17.1e). Gn
each of them f and g are both constant. In Sj_ j select
a point q-j^j unless Sj^j is empty (in which latter case
discard it;. Clearly

E [f ] = £f(qi}j) P(Si>3)>
E[g ] -£ g^ij^ P(Si,j^'

Since p is never negative, this leads at once to (2).

In the first and third of our examples this com
pletes the definition of expected value; for when the
population contains only a finite number of points
every function f(q) must have only a finite number of
values. 3ut the situation is different when the pop
ulation is infinite, as in the second and fourth ex
amples. In such cases it may be possible to extend the
definition of expected value so as to cover many in
stances of functions taking on infinitely many differ
ent values. This is done by a process essentially the
same as that used in defining an integral. Suppose
that f(q) is a function defined and bounded over the
population. There will always exist functions G(q)
which take on a finite number of values, each on a
measurable set, and which are nowhere less than f(q).
Since we wish to preserve the important property (2),
any reasonable way of assigning an expected value to
f(q) must be such that F:[f]- e[g] for every such func
tion G(q). Consequently, if we form the mathematical
expectation of each such function G(q), we obtain a
collection of overestimates for E[f J, In a like manner,
we can take all the functions g(q) each of which takes
on only a finite number of values, each on a measurable
set, and find the mathematical expectation of each such
g(q). tfe thus obtain a collection of underestimates
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for E[f ]. In favorable cases (for instance, in the
second and fourth examples, whenever f(q) is continu
ous) it will happen that there is exactly one number J
which separates the overestimates from the underesti
mates, each overestimate being - J and each underesti
mate being - J. In such a case, we define the expected
value of f to be this number J. Functions f(q) which
are assigned mathematical expectations by this process
will be called "integrable," since the process is es
sentially an integration. Moreover, it is easy to show
that the elementary properties of the Riemann integral
are also enjoyed by the function E[f ]. For instance,
the sum of two integrable functions is integrable, and
the expected value of the sum is the sum of the ex
pected values. If f(q) is integrable and k is a con
stant, then kf(q) is integrable and its expected value
is kE[f ]. The product of bounded integrable functions
is integrable. Furthermore, from the definition we see
without trouble that (2) continues to be true for in
tegrable functions f and g.

As an instance of the foregoing, in the fourth ex
ample the finite collections of intervals of n-space
could be used as the measurable sets, and in this case
the definition of expected value is analogous to that
of the Riemann integral. A function is integrable in
the sense just defined if, and only if, it is Riemann-
integrable, and in that case Eff] is C"n times the
Riemann integral of f(q) over the cube. If the class
of measurable sets had already been enlarged as in the
theory of the Lebesgue integral so as to contain all
Lebesgue-measurable sets , the functions integrable in
the sense of the preceding paragraph would be the same
as the bounded Lebesgue-integrable functions, the ex
pected value being C~n times the Lebesgue integral.

The definition of expected value can also be extend
ed to certain classes of unbounded functions. If f(q)
is unbounded as q varies over the population P, we
first form the auxiliary functions fnjn(q) defined as
follows. Whenever f(q) is between - m and n inclusive,
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fjjjjjCq) is the same as f(q). Where f(q) exceeds n,
we define fmn(q) to be equal to n; and where f(q)
is below - m, we define fj^Cq) to be - m. Then for
every m and n the function is bounded. Also, as
m and n tend to °°, fmn^Q) approaches f(q) at each q;
for whenever m and n are both greater than | f (q)| the
definition makes f^q) equal to f(q). It may happen
that for each m ana n the function fmnCq) is integrable(i.e., has an expected value) and that as m and n tend
independently to 00 this expected value of ap
proaches a definite limit. In this case we say that
f(q) is an (unbounded) integrable function, and we
define its expected value to be the limit of the ex
pected value of fjjjjj as m and n both increase without
bound.

It is easy to show that if f and g are both inte
grable and f(q) $ g(q) for all q, then E[f ] - E[g];
this follows by a passage to the limit from (2). More
over, if f(q) is integrable and k is constant, then
kf(q) is integrable, and E[kf ] - kE[f]. It is rather
more difficult, but still possible, to show that if
f and g are both integrable so is their sum, and
E[f + g ] ■ E[f] + E[g]. But it is not necessarily
true that the product of unbounded integrable functions
is integrable.

Given any set S, we can define the characteristic
function of the set S to be the. function K(q| q in S)
which has the value 1 if q is in S and has the value
0 otherwise. We may think of K(q |q in S) as the "truth-
value" of the statement "q is in S"; if the statement
is true the "truth value" is 1, if the statement is
false the "truth-value" is 0. We shall resist the
temptation to abbreviate the phrase "characteristic
function or the set" to "characteristic function."
Although we shall not use it, there is a concept well-
known in statistics under the name of the "character
istic function of a distribution," which is entirely
different from the concept "characteristic function
of a set," and we avoid the abbreviation in order to
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reduce the chance of confusion in the mind of a reader
who has already encountered the concept "characteristic
function of a distribution."

The function K(q|q in S) has the value 1 on the set
S, and on the remainder P - S of the population it
has the value 0. So if S happens to be measurable,
by (1) the expected value of K(q |q in S) is
(3) E [K(q |q in S) ] = 1 p(S) + Op(P - S).
Thus if S is a measurable set,
(U) E [K(q|q in S) ] = p(S).
But it is possible that the left member of (U) may
exist even though S was not one of the sets originaLly
listed as measurable. In this case we can enlarge the
class of measurable sets, including in the enlarged
class all sets 3 for which h. ( q |q in 5) is integrable
and defining the probability measure by (li). l''or in
stance, in the fourth example we started with the in
tervals as the measurable sets. Then E[f] is defined,
as we have already seen, whenever f(q) is Rier;ann-in-
tegrable. But there are many sets besides the inter
vals whose characteristic functions are integrable;
in fact, all the elementary geometric figures have
this property. Thus with the help of (h) the class
of measurable sets is enlarged so as to contain a mul
titude of new sets, in particular all the elementary
geometric figures. If the class of measurable sets
had already been enlarged so as to include all Lebesgue-
measurable sets, using (h) would have given as nothing
new.

From now on we shall restrict our attention to a
particular sub-class of the integrable functions, which
we shall call the "measurable" functions. Ihese are
the integrable functions such that for every real num
ber y the set S(f < y) of all points q at which f(q) < y
is a measurable set. If the concept of measure has
been extended as in the Lebesgue theory, this is not
really a restriction, since every integrable function
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is then measurable. But if the Riemann type of def
inition is used for the expected value, the restric
tion to measurable functions may be a real restriction,
which, nevertheless, does not exclude any of the func
tions which we shall encounter later in this book.

19. Cumulative distribution functions.

If f(q) is a measurable function and y is a real num
ber, the statement "f(q) is less than y" is equiva
lent to the statement "q is in the set S(f < y) of
points q at which f(q) is less than y." But the prob
ability that q is in the set S(f < y) is the same as
the probability measure of the set S(f < y) , by the
very meaning of probability measure. In turn, the
probability measure of the set S(f < y) is the same
as the mathematical expectation of the characteristic
function K(q |f < y) of the set S(f < y), as we saw
in (13. h). Hence the probability that f(q) is less
than y is the same as the mathematical expectation of
the function K(q|f < y). For simplicity of notation,
we shall denote by k(y) the probability that f(q) is
less than y. Then k(y) satisfies the equation

(1) k(y) - E [K(q|f < y) ].
The function k(y) is called the "cumulative distribu
tion function" of the function f(q).

In many instances all that we wish to know about
f(q) is summarized in the knowledge of the cumulative
distribution function k(y). For example, suppose that
we wish to form a life insurance conpany, and as a basis
for fixing premiums we first want to know what would
have oeen fair premiums to charge the members of a large
group of people whose life-spans have been recorued.
The population P will consist of the people in this
list, and for each person q in the population, f(q) is
the span of his life. For each y, k(y) is the measure
of the part of the population whose life-spans are less
than y. A table of k(y) is then essentially the
same as a mortality table (the usual mortality tables
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are tables giving values of 100000(1 - k(y))). Such a
table is all we need in order to determine proper pre
miums for any assigned rate of interest.

It is worth remarking, however, that the cumula
tive distribution function of any one f(q) may fail
to summarize all the information about the population
needed for all purposes. For instance, in order to
determine the proper premiums for a special policy to
be issued only to lawyers we cannot rely on k(y) alone,
but must go back to the original population with its
probability measure, select the lawyers from it, and
construct a new cumulative distribution function for
this selected subpopulation.

Since k(y) is the probability measure of a set, its
values must lie between 0 and 1 inclusive. Moreover,if y < z then k(y) 5 k(z), for then the set on which
f(q) < y is included in the set on which f (q) < z, and
so the probability measure k(y) of the former set can
not be greater than the probability measure k(z) of the
latter. If f(q) is bounded, k(y) is 0 for all y less
than or equal to the lower bound of f(q), for then
the set on which f < y contains no points at all and
has probability measure 0. Also k(y) is 1 for all y
greater than the upper bound of f(q), for then the
set on which f(q) < y consists of the entire population
P and has probability measure 1.

If it happens that k(y) is the indefinite integral
of some function k*(y), so that

the function k*(y) is called the "probability density"
of the distribution of f(q).

The probability that f(q) is less than c is k(c);
the probability that it is less than d is k(d). So
if c < d the probability that c - f(q) < d is the

(2) k(y)
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difference k(d) - k(c) between these probabilities.
Thus we are permitted to regard the values assumed by
the function f(q) as a new population lying on the real
axis. Each interval of the form c - y < d has prob
ability measure k(d) - k(c), which is non-negative and
not greater than 1. The whole real axis has probabil
ity measure 1; for as c tends to - co and d tends to oo

the probability that c 5 f(q)< d tends to 1. In fact,
we can verify that the probability measure k(d) - k(c)
satisfies all the requirements (17.1). The important
feature of this point of view is that the new popula
tion, consisting of real numbers, may be essentially
simpler to handle than the original population, which
was of a highly unrestricted nature. Of course the new
population of real numbers, with probability measure
k(d) - k(c), can only be of use in studying functions
which are determined by the values of f(q). For in
stance, the cumulative distribution function of the
function f(q) which is the sum of the numbers turned up
on a pair of dice will give us all the information we
need to discuss probabilities in the game of craps.
But it would be inadequate to determine the probability
that a pair consisting of a one and a three will appear
before a pair whose sum is seven.

The theorem that relates the new population of real
numbers to the original population, and allows us to
investigate the properties of functions determined
by the value of f(q) without going back to the original
population, is the following:

(3) Theorem. If h(y) is continuous for all y, and' f (q)
is an intptjrable function with cumulative distribution
function k(y), then the function h(f(q)j is. integrable
(has an expected value) if and only if h(y) is Stielt-
jes-integrabie with respect to k(y) from - °> to °°;
and in that case

E fh(f) ] h(y; dk(y).- °°
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We shall not try to prove this in general instead,
we shall assume that f(q) is bounded. Let a be a num
ber below the lower bound of f , and b a number above
its upper bound. Then the integral in (3) is the same
as the integral from a to b; for k(y) is iaentically
0 from - » to a and identically 1 from b to », and
by (16.9) and (16. 1L) the integral over each of these
infinite intervals is zero. We subdivide the interval
from a to b by points

a - y0< y1< ... < yn - b,
and we denote by m. and U± respectively the least and
greatest values ofn(y) on the subinterval

If c is a positive number, we may suppose that the
intervals are all small enough so that h(y) changes by
less thane on each one; then Mj. - ny. < c for each i.
Now we define a function jfl(y) on the interval ^ - y < b
as follows: if y is in the interval y±„\ - y < y±,
then M(yJ is defined to be equal to Hj_. We define
m(y) analogously, using instead of Mj. It is clear
that

(U) m(yj < h(y) < M(y)

for all y in the interval a 5 y < b. Another way of
writing the functions to(y) and m(y) is as follows.
First, let F^(y) denote the function which is 1 if
y^ i - y < yi and is U elsewhere. (This is the same
as the characteristic function K(y|y^_^5 y< y^) of
the interval y^-i-y <Y±> but we wish to avoid the
more complicated notation. ) Then we can show that

n n
(5) m(y) = E raiFi(y), M(y) - Z M-jF^y).

i-1 i-1

For if y is in an interval y^i - y < y±> only the
single term with subscript i is different from zero
in each sum; and this term is m^ in the first sum and
in the second.
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Since Iri is the characteristic function of the in
terval y^_\ - y < y±> the expected value of F^(f(q^j
is the same as the probability that f(q) is in the in
terval, which in turn is the probability that f (q) < y-j_
minus the prooability that f(q) < y^_\> which is the
same as k(jr^) - k(y^_^). Hence

E [FjU)] = k(y.j - kCy^).
Ye now multiply by Mj_ and sum for i ■ 1, . .., n, ob
taining with the help of (5)

E V.± C k(yi)
i-1

n

E Mj.E [Fi(f) ]

i-1

n
(6)

i-1

E [M(f ) ].
In the same way, if we multiply by mi and sum we find
that the corresponding left member is equal to the ex-K
pected value of the function m(f(q)):

n
(7) £ mi [k(yi) - k(yi_!) ] - E [m(f) ].

i-1

Since mi and Mi differ by less than e, it is easy
to show that the left members of (6) and (7) also dif
fer by less than e. Also, by the definition of the
Stieltjes integral, if the partition of the interval
from a to b is fine enough, the left members of both
equations (6) and (7) will be arbitrarily close to the
Stieltjes integral

(3) h(y) dk(y).
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Because of (M , we see that E[M(f ) ] is an overestimate
for E[h(f)J, while E[m(f)] is an underestimate for
E[h(f)]. Since the left members of (6) and (7) differ
by less than e, so do the right members, and thus we
have an underestimate and an overestimate for E[h(f)]
which differ by less than e. Thus there cannot be
two distinct numbers separating all overestimates
from all underestimates, which by definition means
that h(f(q)) has an expected value ("is integrable") .
Moreover, there are both underestimates and overesti
mates as close as desired to the Stieltjes integral
(3), which is possible only if this Stieltjes integral
is itself the number which separates overestimates
from underestimates. That is, we have proved (3) for
bounded functions f(q).

To suggest the type of use to which this theorem
can be put, let us imagine a game played with n rou
lette wheels in which a player is to receive a sum
g(y) determined by the sum of the numbers X]_,
which appear on the various wheels. Let

f(q) - x-l + ... + Xjj.

The player wishes to know the expected value of the sum
he will receive. This sum is g(f(q)J, and its expected
value is E[g(f)]. By (3), we can compute this with
out further reference to the population P if we only
know the cumulative distribution function k(y) of the
sum f (q) .
If the function f(q) takes on only a finite number

of values, which we may suppose arranged in increasing
order and denoted by f^, f2, fn, and if we denote
by the set on which f(q) ■ f^, then for each num
ber y such that y.

^ < y 5 y^ the inequality f(q)< y
is satisfied on the set S^ + ... + S^_i and nowhere
else. So by its definition k(y) is the probability
measure of the set:

(9) k(y) - p(Sx) + ... ♦ p(Sw) for yw< y 5y±.
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For example, consider the population in the second ex
ample, consisting of the thirty-six pairs

(1, 1), (6, 6).

For q ■ (a, b) we define f(q) = a + b. The values of
f(q) are the integers 2 to 12 inclusive. For y 5 2
there is no q with f(q) < y, so k(y) = 0. For y > 12
the inequality f (q) < y holds for all q, so k(y) ■ 1.
The set S^, on which f{q) ■ 2, contains the single
member (1, 1), so p(Si ) ■ 1/36. The set S2, on which
f(q) " 3, has two members, (1, 2) and (2, 1), and so
p(S2) = 2/36. Proceeding thus, we find that k(y) has
jumps at 2, 3> •••> 12, being constant between these
values ; and on the intervals 2 < y - 3 » 3 < y - 1* >

11 <y <12 it has values 1/36, 3/36, 6/36, 10/36,
15/36, 21/36, 26/36, 30/36, 33/36, 35/36.

For the function k(y) in (9), the integral of the
continuous function g(y) with respect to k(y) is

(10) j g(y) dk(y) - g(f1)p(S1) + ... + gCfnMSn)^

In the example of the two dice, if f(q) is the sum
of the numbers on the two dice, the mathematical ex
pectation of any function g(f) is

g(2)/36 + 2g(3)/36 - 3g(U)/36 > Ug(5)/36

+ 5g(6)/36 + 6g(7)/36 ♦ 5g(3)/36 + Ug(9)/36

♦ 3g(10)/36 + 2g(ll)/36 ♦ g(12)/36.

Thus if a player is to receive one unit of money if
he throws a natural (meaning a 7 or an 11 on the first
roll) the function g(f) has value 1 for f ■ 7 and for
f = 11, and has value 0 elsewhere. Hence the expected
value is 6g(7)/36 + 2gtll)/36 - 2/9.
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20. Variance; the normal distribution.

Let f(q) be a function having a mathematical expec
tation f. For each q, the difference f(q) - T will
be called the deviation of f(q), or its deviation from
the mean. The mathematical expectation of the devi
ation is

E [f - f ] » E [f ] - E [ f ]
- I - I - 0.

If f(q)' has a cumulative distribution function k(y),
and also is bounded, by (19.3) with h(y) ■ y we find

(1) E [f ] = \ y dk(y).

The expected value of the square of f(q), if it exists,
is called the second moment of the distribution about
0. The expected value of the square of the deviation,
E[(f - f )*] , is called the variance (or dispersion) of
the distribution. If f(q) is bounded and has a cumu
lative distribution function k(y), we need only take
h(y) ■ y2 in (19.3) to sec that the variance is neces
sarily defined and satisfies

(2) E [(f - f)2] = ( y2 dk(y).

The variance is the difference between the second mo
ment about 0 and the square of the mathematical ex
pectation, for

E[(f-f)2] =E[f2] -E[2ff] +E[f2]

The "standard deviation" of f(q) (or of its dis
tribution) is the square root of the variance. It is
customarily denoted by the letter o.
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A particularly important class of functions consists
of those with "normal distribution," which means that
there is a number o such that the cumulative distri
bution function is

f y -(y2/2o2)
(U) k(y) - (l/o ST" ) \ e dy.

It does not follow at once from the proof of (19-3)
that for every continuous function g(y) the expected
value of g(f(q)) is

f °°
-(y2/2o2)

(5) E[g(f)] - {1/oSTH) \ g(y) e dy,

because (19.3) applies only to bounded distributions,
and the normal distribution corresponds to unbounded
functions. However, if g(y) is a polynomial (5) can
be obtained from (19.3) by a fairly siirple limiting
process, which we shall not exhibit here.

It is obvious from (U) that k(y) tends to 0 as y
tends to - 00 . It is not at all obvious that k(y)
tends to 1 as y tends to °°, as is required of every
cumulative distribution function. But the proof that
this is in fact the case can oe found in most advanced
calculus texts.

Taking g(y) > y in (5) shows that E[f ] - 0, since
the integrand in the right member is an odd function
of y. The variance is' found by setting g(y) ■ y2 in
(5). By integration by parts, with the help of the
relations k( <») - 1 and k( - oo ) » 0, we can show that
the variance is oz. Thus the Q in (U) and (5) is
actually the standard deviation of the distribution,
as the notation suggests.
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There are many published tables of the function (U)
as a function of y/o, or -what amounts to the same thing,
of the function (U) as a function of y for a « 1. From
any such table we find that

(6) k(2.5S5o) - k( - 2.58$o) - o.99.
So the probability that f(q) lies between - 2.535° and
+ 2.585° is 0.99.

A function f(q) over a finite population P cannot
be normally distributed; for it has only a finite num
ber of values and, as (19.9) shows, its cumulative dis
tribution function has to be discontinuous. However,if £ is a positive number, the number of elements q
in the finite population P may be large enough to al
low the possibility of functions f(q) whose cumulative
distribution functions are everywhere within e of being
equal to a normal distribution function. If f(q) is
such a function, we see by (5) that the fraction of
the population having f(q) less than 2.535 standard
deviations different from 0 is somewhere between
0.99 - 2e and 0.99 + 2e. Thus the tables of the normal
distribution function can serve conveniently in the
study of functions over a population containing a finite
but large number of elements.

A concept that is often referred to, especially in
connection with symmetric distributions (in which
k(y) + k( - y) • 1), is the "probable error." This
is the number y such that

k(y) - k( - y) - 0.5.
In other words , there is a probability of 1/2 that
f(q) is between - y and y. If the distribution is
normal, we find from the tables of the probability in
tegral that the probable error is 0.67UU90, so that

k(0.67Uj9 o ) - k( - 0.67U49 o) - 0.5.

Ch. I



The concept of probable error is at its most use
ful -when the distribution is known to be normal, for
then it determines the standard deviation, being equal
to 0.67Uli9o, and this in turn determines the distri
bution completely. Thus when we know the probable
error we can find the value of y for which there is
any desired probability that f(q) is between - y and
y. But if the distribution is not normal we can draw
no such conclusions. We must state separately, from
other information, what values of y correspond to dif
ferent probabilities. For instance, the distribution
of the ranges of rcckets fired from a tube at a fixed
small elevation is far from normal. There is presum
ably zero probability of negative range, and the dis
tribution is markedly unsymmetrical. Hence the prob
able error does not tell us very much about the distri
bution. Because of this defect, the use of the prob
able error has become less frequent in the last few
years.

21. Independent distributions.

When we need to discuss two functions f^(q) and
fo(q) simultaneously, we often profit by using the
"bivariate cumulative distribution function" or "joint
distribution function" k(y, z) defined by the equation

(1) k(y, z) - E [KCql^Cq) < y and f2(q) < z) ] .

That is, k(y, z) is the probability that fi be less
than y and f2 less than z at the same time. Given any
four numbers, a, A, b and B such that a< A and b < 3,
thp probability that f1 < A and f2 < B is k(A, B),
while the probability that f ]_ < A and f2 < b is k(A, b).
Hence the probability that f^ < A while b 5 f2 < B is
the difference k(A, B) - k(A, b). In the same way we
see that the probability that f^ < a while b 5 f 2 < B
is k(a, B) - k(a» b). By subtraction, the probability
that a 5 fi < A and b 5 f2 < B at the same time is

(2) *>kJ
- k(A, B) - k(A, b) - k(a, B) + k(a, b),
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J denoting the interval a - y <A, b 5 z <B. (The
symbol in the left member was already defined in
(16.33)). In particular, the left member of (2) is
non-negative, so that the integration theory in the
latter part of Section 16 can be applied. Also, we
can follow the proof of (19.3) for bounded fj. and f2 ,
making only notational changes, and thus prove

(3) Theorem. If f^(q) and f2(q) are bounded measur
able functions t with joint cumulative distribution
function k(y , z ) , and if h(y, z) is any continuous
function, then

E [h(f1, f2) ] - / / h(y, z) dk(y, z),
the double integral being taken over the whole (y, z)-
plane.

In the example of the two dice, we remarked that
the two were independent in the sense that the motion
of the first produced no forces or torques affecting
the motion of the second; and that, as a consequence,
the probability that the number on the first die would
have a value a]_ and simultaneously the number on the
second die would have a value b^ was equal to the pro
duct of the probability (1/6) that the number on thefirst die would be a-i, and the probability (also 1/6)
that the number on the second die would be b^. From
this it follows that for any two subsets S]_, S2 of the
population [l, 2, 3, U, 5, 6], the prooability that
the number pair (a, b) is such that a is in and b
in S2 is equal to the product of the probability that
a is in 5\ and the probability that b is in S2. This
can be conveniently formulated with the help of the
mathematical expectation symbol. Let k(q |a in S]_) be,
as before, the function which is 1 when the point q,
or (a, b), has its first component a in the set and
is 0 when a is not in S]_. The functions K(q|b in S2)
and K(q|a in and b in S2) are analogously defined.
Then the probability that a is in Si is the same as
the mathematical expectation of K(q |a in 3]_), and simi
larly for the other two functions. The independence,
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in a physical sense, of the two dice produces the
mathematical consequence

E [K(q|a in Sx and b in S2) ]
(U) - E [K(q|a in Sj

_
) ] E [K(q|b in Sf
c ) ].

In the example of the n roulette wheels, a similar
situation was observed. If S^,' S2, Sn were arcs
on the first, second, n-th circular tracks, the
probability that the point moving on the first circle
would stop in arc S^, that on the second circle in
arc S2, and so on, was the same as the product of the
probabilities of the separate events that the first
point would stop in S^, that the second would stop in
S2, and so on. In the notation of mathematical expec
tation

E[K(q|x^ in and x2 in S2 and ... and in Sn) ]

(5) - E[ K(q|xj_ in ] E-[K(q|Xg in S2) ] ...

E [K(q|Xn in Sn) ] .

These mathematical consequences of the physical un-
relatedness of the two dice, or of the n roulette
wheels, lead us to a definition of the (mathematical, or
statistical) independence of two or more functions over

a population P. Let f^(q), fn(q) be measurable
functions defined over a population P. Let k^(y) be
the cumulative distribution function of f^(q; (thatis, the probability that f^ is less than yj, and let
k(y-p yn) be their joint cumulative distribution
function (that is, the probability that all the con
ditions fi(q) < y\, fn(q) < yn shall be true).
Then the functions fj_(q) are defined to be independ
ent if for every set of real numbers y^, . . . , y_ it is
true that the probability that all the conditions

f j_(q) < y± hold simultaneously is the same as the prod
uct of the probability that the first one is true,
the probability that the second is true, and so on.
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In symbols, the are independent if and only if
(6) k(y]_, yn) - k^y-^ k2(y2) ... kn(yn).
This may seem to ask a little less than we asked in
the several examples, since these examples dealt with
intervals. But there is in fact no difference. Let

be the interval a^ - y < b^ for each separatei (i ■ 1, n), and let J be the interval in n-
dimensional space defined by the whole set of inequal
ities a^ 5 yj_ < bj_. If n ■ 2, by substitution of (6)
in (2) we find that

(7) "kj - [ kiCbi) - k!(ai) ] [ k2(b2) - k2(a2) ].
Analogous results hold in space of n dimensions. In
words, the probability that the point with coordinates
(f-^Cq), fjj(q)) is in J is equal to the product
of the probabilities that fi(q) is in J]_, that f2(q)
is in J2, and so on. We have already met functions
satisfying (6) in Section 16; it was for just such
functions that the double integral could be computed
as an iterated integral.

One of the many important properties of sets of in
dependent functions is the following.

(9) Theorem. If f(q) and g(q) are independent bounded
functions , and F(y) is. a continuous function of the real
variable y on some interval containing all the values
of f(q), and G(z) is a_ continuous function of the real
variable z on some interval containing all the values
of-g(q), then

E[F(f) G(g) ] - E[F(f) ] E[G(g)] .

Let a 5 y 5 A be an interval containing all the
values of f(q), and let F(y) be. continuous on this
interval. Let the interval b $ z 5 B contain all the
values of g(q), and let G(z) be continuous on this
interval. By (3), (6), (16. b3) and (19.3),
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fA fB
E [F(f) G(g) ] = I \ F(y) G(z) dk(y, z)

-
jA F(y)

| ^
G(z)

dk2(z)|
dkx(y)

- E[0(g)]
jA
F(y) dk1(y)

= E [0(g)] E[F(f)] .

In particular, let f be the mathematical expectation
of f , and g the mathematical expectation of g. Taking
F(y) ■ y and G(z) = z in (8), we find that the mathe
matical expectation of f(q) g(q) is the product f g of
their mathematical expectations. Still more particu
larly, if the expected value of either function is
zero, so is the expected value of the product, pro
vided that the functions are independent.

Next consider two independent functions each with
expected value 0. Applying (8 ) with F(y) - y2 and
G(z) ■ z^ yields
(9) E[f2g2] - E[f2]E[g2 ],
so that the variance of the product is equal to the
product of their variances.

Again, let f and g be independent (bounded) func
tions, having the respective mathematical expectations
f and g. The mathematical expectation of the sum is
F + g, and by definition the variance of the sum is

(10)
E[(f + g "f-i)2]
- E[(f - f)2] * 2E[(f - f)(g - g)] + E[(g - g)2] .

Applying (8) with F(y) ■ y - f and G(z) » z - g, we
find that the second term in the right member has value
zero. Thus the variance of the sum of two independent
(bounded) functions is the sum of their variances.
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From this it follows at once that the standard de
viation of the sum of two independent bounded functions
is the square root of the sum of their squares, and
similarly for the sum of any finite number of independ
ent functions. This does not apply at once to normal
distributions, which are unbounded. But the limiting
process involved is a legitimate one, and it can be
shown that the relation holds for normal distributions
too. Since the probable error of a normal distribution
is a constant multiple (0.67h5) of its standard devi
ation, it is also true that the probable error of the
sum of a finite number of independent normally dis
tributed variables is the square root of the sum of
the squares of their several probable errors.

22. Distributions with different domains of definition.

Suppose that a player engages in a sequence of n
games, independent of each other in the physical sense
(the result of a game having no influence on the out
come of any other game) and not necessarily all alike.
In the first game the outcome is represented by a
point q-j_ in a population P]_, and the player's gain
is f-j_(q-j_); in the second game the outcome is repre
sented by a point q2 in a population Pp (which may
or may not be the same as P]_), and the player's gain
is a function f2^2)5 an<* s0 on f°r aH n games. The
outcome of the whole sequence of games can be repre
sented by a "point" (q-j_, qn), in which q^ is the
outcome of the first game, q2 the outcome of the sec
ond game, and so on. The aggregate of all such n-
tuples is itself a new population, which we designate by
the symbol P. If the outcome of the sequence of games
is represented by the element (q-,, q ) of P,
the player won f^(qx) the first game, fjjCo^ in
the second, and so on. His total gain is

f(q) - f(q • . . ,
(I)

• • • + fn^n>-
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The function f^q^) can be regarded as a function
on the population P. For if q = (q-^, qn) is in
P, the first element q^ in the n-tuple q determines
the value of f^. In the same way each of the other
functions f^ can be regarded as functions on the whole
population P. It does not yet make sense to say that
these are independent functions, because the defini
tion in the paragraph containing equation (21.6) pre
supposes a probability measure on the population P,
and we have not yet defined one. However, there is
an obvious way to introduce such a probability measure.
Let S-^, So, be measurable sets in the respec
tive populations P]_, ?2> . Pn« We then say that
the set of all elements q ■ (q-i, qn) in P such
that q^ is in Sj_, q^ in etc., is a measurable
set, and we may assign it the probability measure
p(S^) p(S2) ... p(Sn). This accords with the idea
of the physical independence of the games, since it
amounts to saying that the probability that all the
events q, in Si, q2 in Sp, etc., is the product of
their individual probabilities. In particular, let
y,, . . . , y be real numbers, and let S^ be the part
of P]_ on which fi(qi) < yv> $2 ^ne Par* °^ ^2 on wn^cn

^2^2^ < v2» anc* 30 on* *nen ^ ^(y^ i-s the cumula
tive distribution function of f^, we have

(2) ki(vi) a pCV* kn(yn) * P(V-
The joint cumulative distribution function of the f^is the function k(y^, yn) which is the probability
that all the conditions f]_ < y^, fn < yn hold
simultaneously. This last is equivalent to saying that
all the conditions q^ in S^, qn in hold simul
taneously. But by our definition of probability
measure, the probability measure of the part of P on
which all conditions q^ in S^, etc., hold is equal
to the product of the separate probability measures
pCS^) ... p(Sn). From this and (2) we see that (21.6)
is satisfied, and the functions f^ are independent.

Some discussion such as the foregoing is needed
to give a precise meaning to the idea of independence
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of the results of several games. If many games are
played on one (honest) roulette wheel, the outcome
of each single game can be represented by a single
point of the interval 0 - x <C, where C is the cir
cumference of the wheel. But to obtain a satisfactory
method of expressing the idea that the outcomes of the
games are independent, and to be able,, for example, to
give a precise meaning to the idea of the cumulative
distribution function of the sum of several functions,
representing the gains in the individual games, we need
to construct a new population, each of whose points
can represent the outcomes of a whole sequence of
games. On the other hand, once the concept has been
clearly grasped, it is often possible and desirable
to avoid specific mention of this population in the
statements of our theorems. For example, by recalling
that the expected value of the sum of functions is the
sum of their expected values, we find from (1) that

In order to comprehend the meaning of this formula, we
must have thought through the construction of the
population P and the measure function on it, or some
equivalent mental process. This is essential in order
to understand what the left member means. In the right
member we can think of each term as determined by the
particular function f^ on the particular population
F^. But in the statement of the formula, no visible
reference to the population P occurs, which contrib
utes to the simplicity of the statement. Equation (3)
is merely a simple example, of a large class of formu
las. One highly important formula permits comput
ing the cumulative distribution function of the sum
fi + ... + fn from the cumulative distributions of
the several functions f^, without going back to. the
original populations. We do not need this formula, so
we shall not derive it. But the possibility of find
ing the cumulative distribution function of the sum
without mentioning the populations P, P^, etc. shows
that we can, for example, find the variance of the sum
without exhibiting the details of the construction of

(3) E[f ] - E [fx] ♦ ... + E[ fn ].
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the population P. This is especially convenient when
we wish to consider an unending sequence of games and
to find some property of the sum (for instance, the
expected value, or the cumulative distribution func
tion) at the end of one game, at the end" of two games,
at the end of three games, and so on without end.
For then each step in the process requires construc
tion of a new population P, first P-[_, then pairs of
elements (q^, q2) with q^ in P^ and q2 in ?2> and so
on. But if the properties, being studied can be ex
pressed in terms of the cumulative distribution func
tions of the sums, then we can avoid the detailed ex
position of these populations, and state the results
more compactly, often with a gain in intelligibility.
This gain in compactness of statement will now be

exhibited in a special case of the highly important
"central limiting theorem of probability theory. " This
we shall state without proof; for the proof, the reader
may refer to the books by Uspensky and CrameY cited in
Section 17.

(U) Theorem. Let f-^, f2> ... be an infinite sequence
of functions all having the same bound, each of which
has expected value zero, and every finite set of which
is independent . Let Vn be the variance of fn , and
assume that the series V]_. +

V"2
+ ... is divergent.

Then the cumulative distribution function of sn tends
uniformly to the cumulative distribution function of
a_ normal distribution with standard deviation ° • 1.

Let kn(y) be * the cumulative distribution function of
sn; by the theorem,

Define

(5J sn - (fx + ... + fn)/ vTfT + V n

(6)
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For example, let an unbiased coin be tossed; if it
falls heads (H) a player wins a doLlar, if it falls
tails (T) he loses a dollar. The set consisting of
the single point H has measure 1/2, as has the set
consisting of the single point T. The function defining
the player's winnings is f(H) - 1, f(T) ■ - 1. The
mathematical expectation is (l)(l/2) + ( - l)(l/2) - 0,
the variance is .(1)2(1/2) + ( - 1)2(1/2) = 1. The
radical in the denominator of (5) is J~Ti . The sum of
the player's winnings after n games is the numerator
in the right member of (5), which is the same as */n sn.If n is large, this will have a distribution function
which is nearly equal to the right member of (6).
In particular, the right member of (6) is 0.005 for
y - - 2.585. So for large n the value of kn( - 2.585)will also be nearly 0.005. That is, in a large number
n of games the player has one chance in two hundred
of losing more than 2.585 -/n" dollars.

For another example, closely related to an appli
cation made in a later chapter, let us suppose that
we are adding n numbers, each having been rounded off
to the nearest multiple of some number a. (If for in
stance we were carrying one decimal place, a would be
0.1.) We wish to find the distribution of the result
ing rounding error in the sum of the numbers. Clearly
we need not bother about the integral multiples of a;
all we have to watch is the discarded part of each
summand. This discarded part (rounding error) is
equally likely to be any number between - a/2 and a/2.
Its cumulative distribution function is 0 for y < - a/2,
1 for y £ a/2, and is linear between - a/2 and a/2.It is in fact the integral of the function k'(y) which
is equal to 1/a between - a/2 and a/2 and is zero else
where; so by (16.13) and (19.3), if h(y) is continuous
for - a/2 5 y < a/2

f a/2
E [ h ] - V h(y) [ 1/a ] dy.

J -a/2
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By (20.1), the expected value of the error is 0. By
(20.2), its variance is

f Q/2 o(7) V = I y2(l/a) dy.
J -o/2

Thus the denominator in the right member of (5) is
a t/n/\2. A.s in the preceding example, there is a
probability 0.005 (approximately) that the sum of n
errors will be less than - 2.535 n/12, which is
about - 0.7U65 a/n. Likewise there is an equal prob
ability that the sum will exceed 0.7li65 a>/n. So the
probability is 0.99 that the absolute value of the
error will not exceed 0.7U65 ou/n. For instance, if the
summands are rounded to the nearest whole number, so
that am 1, and there are 1}

5 summands, the probabil
ity is 0.99 that the error in the sum will not exceed
O.7I465 <

/

1^5, which is very nearly 5. If we wish the
sum of If 5 summands to have an error which has only one
chance in a hundred of being as great as 0.5, we must
write each summand accurately to the nearest tenth.

<
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Chapter II
THE FORCE SYSTEM
ON A PROJECTILE

1. Gravitational and Coriolis forces on a projectile.

A body moving through the atmosphere is subject to
the action of two distinct classes of forces. First,
there is a force due to the flow of the air about
the body. Second, there are the gravitational attrac
tions of the earth and the other members of the solar
system; and if as usual the motion is referred to axes
fixed with respect to the earth, there will also be
the centrifugal and Coriolis forces introduced by the
fact that the axes do not form an inertial frame.
These latter forces will form the subject of this sec
tion. The aerodynamic forces will be discussed in
the following sections.

First, let us dispose of the effects of the at
tractions of members of the solar system other than
the earth itself. For this purpose it is accurate
enough to regard the earth and the sun as spherical,
and composed of concentric homogeneous spherical
shells. In any text on celestial mechanics it is
shown that the gravitational field of such bodies,
outside of their surfaces, is the same as though
their masses were concentrated at their centers. We
shall also suppose that the earth moves in a circular
orbit of radius 93,000,000 miles, having its center
at the center of gravity of th« system consisting of
earth and sun. The angular velocity of the earth's
center about the sun is about 2 TC/31,557,CO0 - 1.99»10~'
radians per second, since there are approximately
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31,557,000 seconds in a year. The centrifugal accel
eration of the earth's center is1 found by multiplying
the square of this quantity by the radius of the orbit
in feet; it is about .019 feet per second per second.
Consider now a system of axes with origin at the cen
ter of the earth and with axes having fixed directions
with respect to an inertial frame. All points fixed
with respect to this system have the same velocity
with respect to an inertial frame, and therefore have
•the same acceleration, which is the acceleration at
the earth's center caused by the gravitational accel
eration field of the sun.

Let a p denote the acceleration due to the sun's
gravitational field at the point P. If a particle
has position vector X with respect to the axes just
described, its acceleration relative to an inertial
frame is the sura of its acceleration x^"* ^ with re
spect to the axes and the acceleration of the axis
system, which is the same as the gravitational accel
eration Oq at the center C of the earth. So if F is
the sum of all forces other than the sun's gravita
tional attraction acting on the particle, its motion
satisfies the equation

( • • ) ■ /Xv ' + a c
- F/m+ap,

where P is the point at which the particle is located.
Therefore if ap were identically equal to Oq we could
cancel these terms and find that the motion of the
particle would be the same as though the earth's or
bital motion and sun's attraction simultaneously dis
appeared. The amount by which the equation X***'"' F/mfails to be correct is the difference between Oq and
ap. It is, not difficult to see that for all points
on the surface of the earth, this difference has its
greatest value at the point P nearest the sun. At
that point the acceleration Op has the same direction
as ar, and its magnitude is greater in the ratio of
(93,000,000)2 to (92,996,000)2, since the radius of
the earth is about U,000 miles. The ratio differs
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from unity by about 1/11,500, and | a c | is about
.019 feet per second per second, so |ap - ac | cannot
exceed .000,001,8 feet per second per second, which is
entirely negligible for ballistic purposes. A similar
discussion shows that the effect of the moon's attrac
tion, though somewhat larger, is also negligible, while
the effects of the other planets are far smaller.

The effects of -the rotation of the earth cannot be
so simply dealt with. They turn out to be large
enough to be worth computing when the trajectory is
a long one. Let us denote the angular velocity vec
tor of the earth by GO . This vector is parallel to
the earth's axis, in the direction from center to
north pole. Since there are 86,16U seconds in a side
real day, the magnitude of CO is

approximately.

Let us choose a coordinate system with origin 0 on
or outside of the surface of the earth, and having
axes fixed relative to the earth. Let r be the vec
tor from the center C of the earth to the point 0, and
let x be the vector from 0 to a moving point P. If
the earta were a homogeneous sphere, the gravitational
acceleration due to the earth's attraction at P would
be proportional to | r + X |-2 opposite in direc
tion to r + x , and would therefore have the form
a - - k( r + x)/| r + x p, where k is a positive
constant. Since the earth is not a sphere, this is in
error by a small quantity e , and we have

Both by theory and by experiment it can be shown that
| e |

is well under one per cent of |
a

|
at all points

on or near the surface of the earth.

(1) a> - | CO |
- 2n/86,l6U

- 7.29«10~^ radians per second,

(2) o ■ - k( r + x)/| r + x |J + 8 .
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Let F denote the sura of all the forces acting on
the particle located at P, other than the gravitation
al attraction of the earth and fictitious forces
arising irom the fact that the coordinate frame is
not inertial. These forces F consist of the aerody
namic forces in the case of a bomb or a shell; for
rockets they "also include the propuJsive force. If
the mass of the particle is m, by (1. 13. 8) the accel
eration x'") with respect to the axis system is
given by

x(") - F/m - k( r + x J/| r + x P + e

(3) K r + x )-(«•( r + x)fl))]
-2 G) X( r + x )(,) •

Since

| r + x |2 . (r + x )•( r + x )

=
| r |2 + 2r.x+

|
x |2,

if
| x J remains less than 100 miles the last term may

be omitted without causing error greater than one
part in 1600. Using the binomial theorem,

| r + x |-3- (| r +x |2)-3/2
(U) -

I r h3d + 2r-x/| r|2)-3/2
- I r I"3 - 3| r |-5(r.x ) +

the omitted terms amounting to less than one part in
a thousand if |

x
|
remains less than 100 miles.

In the term in square brackets in (3)> tne part
involving x is (03 • 0))x - ( 65 • x) 0) . In the dis
cussion following (1.13.8) it was shown that the magni
tude of this vector is the product of a>2 by the length
of the component of X perpendicular to 6) . If [ x |
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remains less than 100 miles, or 528,000 feet, equa
tion (1) of this section shows that the magnitude of
the vector cannot exceed .003 feet per second per
second. He therefore neglect it. Furthermore, we
observe that r is fixed in our coordinate system, so
that r ■ O. When we make all these substitu
tions in (3), it reduces to

x(") - F/m - kr /| r |3 + e

♦[ ( O •
CD ) r - (6) - r)0)l

(5) - kx/| r |3 + 3k(r • x)r/\ r \S
- 2©X * ' ,

only small terms having been omitted. The small error
term o should properly be computed at the point P.
But it does not come up to one per cent of the prin
cipal term kr/| r | > and its change over a hundred-
mile region will be of the order of a ten thousandth
of this principal term, so we may consider it to be
a constant.

If a body is held at rest with respect to the co
ordinate system at 0 and then released, and no forces
except gravity act on it so that F • O > it will be
gin to move with an acceleration found from (5) by
setting F »0« This acceleration we shall de
note by g, so that

(6) g--kr/|r|3+e + (a) • 0) )r - ( CO • r)co .

It is this acceleration which is determined by any of
the experiments used to determine local gravity. Its
direction is the direction of the plumb line with plumb
bob at 0; its magnitude is determined, for example, by
measuring the period of a pendulum at 0, and is cus
tomarily denoted by g:

(7) g - | fl |.
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The line through 0 parallel to g is called the ver
tical at 0; "down" is by definition the direction of
g, and "up" is the opposite direction. The plane
through 0 perpendicular to g is called the horizon
tal- plane through 0, and any line through 0 and lying
in this plane is a horizontal line at 0. A surface
(necessarily curved) which is horizontal (perpendic
ular tog) at each of its points is a level surface.

Suppose in particular that the axis system, which
we have been assuming to be fixed relative to the
earth and to have its origin at 0, has one of its
axes vertical and positive upwards; we call this the
y-axis. The other two axes are horizontal at 0, and
have directions such that the (x, y, z)-system is right-
handed. The vector x has components (x, y, z). In
(6) the first term on the right has magnitude over a
hundred times as great as the others, so in computing
the small terras in (5) it is sufficiently accurate to
replace (6) by

(8) g- - kr/j r |3
,

whence

(9) gik/| r |2.
Then

t

- te/| r |3* - (g/| r |)x
(10)

1

- ( - gx/| r | , - gy/I r | , - gz/| r |).
The vector r has direction opposite g , approximately,

by (8), so it is vertically upwax-d at 0, and

r /| r. |

- (0, 1, 0).

Hence
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3k(r • x)r/| r |*

(11) i (3k/| r |3
) (Ox + ly + Oz) (0, 1, 0)

- (0, 3gy/| r |,0).
In order to transform the last term in (5) to a

form more convenient for computation, it is desirable
to define two new expressions. The astronomical lat
itude of 0 is defined to be the angle between the
earth's axis (or the vector CO ) and the plane horizon
tal at 0. We shall count this angle as positive in
the northern hemisphere and negative in the southern,
and we shall designate it by the symbol \. Thus \

is the same as 90 minus the angle between the vec
tor CO and the positive y-axis, and the y-component
of CO is CO sin \.

The asimuth of a non-vertical vector at 0 is de
fined to be the angle from north to the horizontal
projection of the vector, counted positive in a clock
wise direction. (It is also fairly common to define
the azimuth as starting from south instead of north,
and confusion can result if it is not made clear
which convention is used. Here we shall always use
the definition just given. ) If a is the azimuth of
the positive x-axis, the positive z-axis , which lies
90° clockwise from the positive x-axis, will have
azimuth 90° + a. So a unit vector drawn horizontally
northward at 0 will have x- and z-components which are
respectively cos a and cos (90° ♦ a ) ■ - sin a . The
horizontal projection of CO points northward and has
length CO cos X, so its x- and z-components are re
spectively 0) cos X cos a and - cu cos X sin a. Thus
three components of CO are given by

CO - ( co cos X cos a , ^ sin X , - co cos X sin a) .

The conqponents of the position vector x of the parti
cle are (x(t), y(t), z(t)) in our chosen coordinate
system, so x(') - (i(t), y(t), i(t)). From these
last two equations we see that
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(12)

Let us denote the components of F by (Fx, Fy, Fz)
and substitute (6), (10), (11) and (12) in (5). We
obtain the three equations

x - Fx/m - gx/ |
r

|
- 2cd i sin X

wherein we recall that |
r

| is the distance from
0 to the center of the earth and may be replaced with
adequate accuracy by the mean radius of the earth.

If the axis system is chosen so that the velocity
vector at 0 is in the (x, y)-plane, the initial values
of z and z are both zero. But "the trajectory of a
projectile lies nearly in a vertical plane, so in
this case i will never depart greatly from 0, and the
terms in (13) which contain z or z as a factor may be
discarded without perceptible error.

A unit vector drawn horizontally eastward at 0
will have x- and z-components which are respectively
sin a and cos a. Thus the terms in (13) which in
volve CD may be regarded as the sum of three vectors.
First, the terms with factor y are the components of

(13)

- 2coy cos X sin a ,

» Fy/m - g + 2gy/| r |
+ 2to x cosX sin a

+ 2co z cos X cos a ,

■ - Fz/m - gz/| r | - 2a> y cos X cos a

+ 2co£ sinX,
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- 2 coy cos X (sin a, 0, cos a), which represents an
acceleration westward if y is positive and eastward if
y is negative, and with magnitude proportional to the
cosine of the latitude and the vertical component of
velocity. Second, the terms with factor sin X are
the components of 2 co sin X z, 0, &), which is di
rected horizontally to the right of the direction of
motion and has magnitude proportional to the sine of
the latitude ana to the horizontal component of the
velocity. Third, the remaining terms are the compo
nents of 2 co cos X (0, x sin o + i cos a, 0), which
is vertical and is proportional to the cosine of the
latitude and to the eastward component of the velocity.

For a simple example, let. us consider the case of a
particle moving in a vacuum, starting at time t - 0
from 0 with vertical velocity. Since x and z clearly
remain small, equations (13) take the approximate
forms

x * - 2 coy cos X sin a,

z ■ - 2 coy cos X cos a.
By integrating twice, recalling that x • i » 0 at time
t ■ 0, we find that

rtx - - 2 co cos X sin a JQ y dt,

z • - 2 co cos X cos a J* y dt.'o *

The magnitude of this vector is 2 co cos X| /q y dt |
jit is directed to the west if the integral is posi

tive and to the east if the integral is negative.
Thus a particle fired upward in a vacuum will re
turn to its original level at a point to the west of
its point of departure, since y is positive in the in
tervening tine. A particle dropped from rest down a
mine shaft (aerodynamic forces being ignored) will
fall to the east of the point of release, since y is
negative for all t.
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Henceforth we shall use coordinate systems attached
to the earth or other systems expressed In terms of
such systems In all trajectory computations. The
effects of the rotation of the earth are accounted for
by the last two terms in each of equations (13), and
in all other" respects the coordinate systems attached
to the earth behave like inertial frames. Thus we
are safe in treating coordinate systems attached to
the earth as though they were inertial frames, pro-
TXOed only that we remember to include the correction
terms in (13) whenever we are dealing with a motion
In which these terms produce an appreciable effect.
In particular, the parentheses enclosing the dots
in (5) and similar equations have now served their
purpose, and henceforth will be omitted; if a vec-
■tor x has components (x, y, z) in some coordinate
system fixed to the earth, the vector (x, y, z) will
be designated x .

2. Aerodynamic force system; preliminary discussion.

The major task of this chapter is to find some
reasonable description of the aerodynamic force sys
tem on a projectile. This is a rather difficult but
an exceedingly important project. Early ballisti-
cians failed to realize the magnitude of the aerody
namic forces, in particular the drag. Since early
determinations of the velocity were based on the range
obtained by the projectile there were large and sys
tematic errors in the values of velocity obtained.
In fact, when the velocity of a projectile was first
measured accurately by Robins there was widespread
disbelief in his results. Further, when he made a
rough determination of the loss in velocity due to
air resistance by measuring velocity at different
distances from the muzzle of the gun his results
were subject to widespread criticism and disbelief
by the ballistic! ana of his day. (He refer the reader
to Section 1 of the following chapter where, in the
discussion of resistance firings, this situation is
further discussed.) Today we know that for some pro
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jectiles the air resistance may amount to 25 times
the force of gravity! Thus the importance of analyz
ing the aerodynamic forces on a projectile cannot be
overemphasized.

The analysis which we use today is the result of a
long development. After the importance of the air re
sistance was recognized there was still a long period
when all other forces were neglected. In explaining
certain observed phenomena, errors were made even by
such distinguished mathematicians as Poisson. The
fundamental work on this subject, which did much to re
solve the various difficulties encountered, was done by
R. H. Fowler, E. 0. Gallop, C. N. H. Lock and H. W.
Richmond in their paper "The Aerodynamics of a Spinning
Shell," which appeared in the Philosophical Transactions
of. ibs Royal Society s£ London in 1920. This paper,
together with the application by F. R. Moulton of the
numerical methods of astronomy to ballistic problems,
marks the beginning of modern exterior ballistics.
The aerodynamic force system hypothesized by these
authors was not derived on the basis of any mathe
matical analysis, but on intuitive physical reasoning.
It is therefore not entirely surprising that certain
inconsistencies arose. These difficulties were ex
plained by K. L. Nielsen and J. L. Synge in a paper
published as a Ballistic Research Laboratory Report,
and essentially the same analysis was made by M. A* Biot

- in a manuscript which as far as we know is unpublished.
The description of the force system which is given in
this chapter is precisely that of Nielsen and Synge.
The analysis, we shall see, gives, in a sense, the de
scription of the complete force system on a projectile.

We shall first make an analysis of the force system
in an oversimplified case, in order to illustrate the
method of procedure. Suppose that we have a shell
whose surface is a surface of revolution which is mov
ing with respect to the air with velocity u . Suppose
that the angular velocity of the shell is zero. For
convenience, we shall choose a coordinate system
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with I- , Y- , Z-axes so that the vector u is along
the X-axis and the axis of the shell is contained in the
XT-plane. We call the angle between the vector u and
the axis of the shell the angle of yaw. He know that
we may replace the collection of all aerodynamic
forces acting on the shell by a single force R , the
resultant, acting at a point attached to the body.
This point is called the center of pressure, and is
attached to the body only in a mathematical sense,
since for certain projectiles it may be situated in
front of the nose. Since the projectile is supposed
symmetric and non-rotating, and its axis lies in the
XT-plane, the vector R must be contained in the XT-
plane. The force R, acting at the center of pressure,
may be replaced by an equal force acting at the cen
ter of mass, together with a torque about the center
of mass. This torque is simply the cross product of
the vector from the center of mass to the center of
pressure by R, and hence is perpendicular to the XT-
plane. The overturning, moment M is the component of
this torque along the Z-axis. The drag D and the lift
L are the components of R along the X-axis (parallel
to the vector velocity) and the T-axis respectively.

The three (scalar) quantities D, L and M depend
on the angle of yaw, 6. It is clear that if the di
rection of yaw is reversed, L and H change signs while
D remains unchanged — that is, L and M are odd func
tions of b and D is even. We are not interested in
these functions for all possible values of the yaw.
The aim of the design of a projectile is, among other
things, to insure that it will fly with small yaw. For
small yaw, it is possible to approximate the variation
of D, L and tf by assuming that D is independent of
yaw, and that L and M depend linearly upon the yaw.
We define 1 and m by the equations

L - 7 sin 6,
(1)

II • m sin 6 cos 6,

and presume that 2, m and D are independent of the
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yaw. It is rather strange to use in one case sin 8
and in the other, sin 6 cos 6, but to first-order
terms these are the same. The form for L is actually
the conventional ballistic one. The form for II is mo
tivated by the fact that we shall use axial component of
velocity rather than total velocity in defining aero
dynamic coefficients in the later sections, and m is
defined to be consistent with later usage.

The factors D, J and m depend on many variables:
notably on the shape of the projectile, its size and
velocity, and on a number of constants of the air, its
elasticity, coefficient of viscosity, etc. This sort
of dependence has been discussed in Section I. lb, and
we shall assume that D, JL and m are functions of the
shape of the projectile, the speed u, the density of
air p , the diameter of the projectile d, the coeffi
cient of viscosity \l , and the velocity of sound a.
(The last is equivalent to the statement that D, f_ and
m depend on the temperature, since the velocity of
sound in air is proportional to the square root of the
absolute temperature.) According to (I.15.U2), D can
be written in the form D ■ pu where the dimen-
sionless function depends on the dimensionless power-
products u/a, pud/ji , ^/d, •••> ^n/d* For simplicity,
we suppress the shape pararoeters^/d, • ••» ^n/<* from
the notation, understanding that when we speak of the
Kn we mean the function Kq corresponding to a given
shape of object, which must be specified. An analo
gous discussion can be applied to JL and m, and we find
as in Section 1.15 that D, % and m can be expressed
with the help of aerodynamic coefficients — that is,
dimensionless functions Kp, and %, called the drag,lift and Boment coefficients respectively. These are
defined by

D - pd2 u? Kp,
(2) L - P d2 u2 KL sin 6 or J. - p d2 u2 KL,

If =» P d^ u2 KM sin 6 cos 6 or m = p d^ u? Kjj.
In view of the Buckingham theorem and the discussion
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at the end of Section 1.1$, for a given shape of pro
jectile these aerodynamic coefficients depend on the
dimensionless quantities u/a and p du/u. (In the case
of K y , the specification of shape must also include
the specification of location of the center of mass
in the projectile.) Hence, summing up, the aerody
namic force and moment acting on a. projectile whose
surface is a surface of revolution which has angular
velocity zero can be described completely by rre ans
Of jfchfl three dimensionless functions KD, KL, % of
u/a and p du/^. It has usually been found that for mil
itarily useful projectiles the dependence on Reynolds
number pdu/[i is slight, and Kj), Kj^ KM are commonly
regarded as functions of u/a alone. However, this is
a simplification which we must be prepared to aban
don in those cases where experiments indicate that it
is an oversimplification .

Graphs of these functions for a particular shell
are shown in Figure 1. The ratio

u/a ■ (speed of a projectile) /(speed of sound)

is called the Mach number. It is clear from the graphs
that the aerodynamic coefficients remain almost con
stant for Mach numbers well below one (i.e., speeds
well below the speed of sound). In the neighborhood
of sound (near Mach number one) all the coefficients
change markedly. An intuitive reason for this behav
ior is not difficult to find. Well below the speed
of sound the pattern of the air flow is largely in
dependent of the speed of the projectile. The moving
projectile will affect the pressure and density of the
air both in front and behind it. However, above the
speed of sound, the projectile cannot affect the air
in front of it, since the speed of propogation of a
disturbance is the speed of sound. There is, then,
an entirely different character to the air flow about
the projectile above and below the speed of sound.
This is strikingly illustrated in Figure 2 by a series
of shadowgraphs of spheres, taken at various speeds.
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Figure II. 2. 2
Shadowgraphs of Spheres

Pired at Various Mach Numbers
in Aerodynamics Range,

Ballistic Research Laboratories
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These shadowgraphs will be discussed further in a
following chapter.

It is noteworthy that the aerodynamic coefficients
depend on the shape of the projectile. Nothing we
have said would give any indication of the compara
tive drag of a sphere and a conical-headed shell.
This fact was not clearly realized at one time, and
the first drag coefficient to be tabulated, by a com
mission at Gavre, France, in 1888, actually depended
on experimental data obtained on many different shell
types. The effect of shape is clearly shown by Figure
1, showing versus Mach number for two different
shapes.

It should be emphasized that the aerodynamic co
efficients are not all of equal importance. If a shell
were to pass along on an ideal trajectory, its angle
of yaw would be always zero, and lift and moment
would have no effect. The drag coefficient is by far
the most important from a computational point of view,
and it will be seen that trajectories computed on the
basis of drag alone give very good first approxima
tions to the motion of the shell. Of course, a shell
will not travel with zero yaw. The problem of arrang
ing the shell-gun design so that the yaw will be small
requires a knowledge of % and several other coeffi
cients. Further, the computation of the difference
between the actual trajectory and a "drag-only," or
"particle," trajectory requires knowledge of K^, Kj|
and certain other coefficients, although to a degr.ee
of accuracy rather less than that required in Kn.

3. Aerodynamic forces on an arbitrary projectile.

The discussion of the preceding section actually fur
nishes an extremely inadequate basis on which to dis
cuss the motion of a projectile. As we have said be
fore, it is desirable for a projectile to travel with
a small yaw. It is clear since a trajectory will- in
general be curved, that this requires that the pro
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jectile have some angular velocity. Furthermore,
shell are usually stabilized by imparting to them a
high spin. It would surely seem dangerous to try to
analyze the motion of a shell on the basis of an aero
dynamic system which postulated zero angular velocity.
Our next task is, then, to find a reasonable descrip
tion of the complete force on a projectile. The meth
ods used in accomplishing this are similar to those
of the preceding section. We reduce the determina
tion of aerodynamic forces to the determination of
a (finite) number of aerodynamic coefficients. These
are functions of Mach number and projectile shape and
can be evaluated experimentally, at least to a degree
of accuracy corresponding to their importance in pre
dicting the motion of the projectile. The approach is
essentially empirical, and dimensional analysis again
plays a rather important role.

Let us then suppose that a projectile is moving
with velocity u and angular velocity CO through air
which is at rest. The force and torque about the cen
ter of mass exerted by the air on the projectile are
denoted by F and G respectively. As in the previous
analysis, it is supposed that F and G are functions
of u , CO » the density of air p , the size and shape
of the projectile and the speed of sound a. We are not
interested in the values of F and G for all values
of if and GO . The normal position of a shell, for ex
ample, is that in which both u and CO are parallel to
the axis of the shell, and only small deviations from
this configuration are expected. In v view of this it
will be appropriate to approximate F and G by a Taylor
expansion about "normal" values of u and CO . It is
therefore assumed that the projectile has an axis,
which is distinguished by the fact that in flight the
velocity u and the angular velocity CO are nearly par
allel to this axis. We choose three unit vectors,
x., X2 and X^, which are fixed in the projectile and
form a right-handed orthogonal system; that is,
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*lX 2
-
*3»

and

x3^xl
"
x2*

Further, is supposed to coincide with the axis of
the projectile. The vectors F , G > u a"d CO can
be written as linear combinations of these unit vectors.
The quantities, F^f G^f u^

and 0) ^, for i ■ 1, 2, 3,
are defined by

(1)

F - Fl *i + F2 *2+ *3*3»

G » Gi*i+ G2X2 + G3X3»

u ■ u^x^+ U2»2+ U3X3»

6) - 0^x^+0)2 x 2 +a5*3 *

The quantities and are now functions of p , d,
o, CO , a. Making a Taylor expansion in U2, U3, a>2>

w3 in accordance with the program outlined above
leads to:

Fi " Al + Biu2 + Ciu3 ♦ Di°) 2 + Ei CD3»
(2)

G1
-

At» + B^ + + + Ei'o)3,

for i - 1, 2, 3, where, to a first-order approxima
tion, the Ai, Bi, etc., are independent of U2, U3, CD2
and • ^e coefficients A^, B^, etc., will, after
certain factors involving velocity, etc., are divided
out, be again called aerodynamic coefficients. If the
projectile is without symmetry there are thirty such
coefficients. We shall now hopefully examine the con
sequences of symmetry.
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»

Jt» Consequences of rotational symmetry.

Let us now suppose that the projectile has an angle
s of rotational symmetry, and that 0 < s < Ji radians.
That is, it is presumed that the projectile, rotated
about its axis through the angle s, exactly coversitself. In order to exploit this symmetry, it is
convenient to use the mechanism of complex numbers.
We define

(1) K - u2 + iu3, n. o>2 + i a>3,
where ir ■ - 1. A bar over a complex number will mean
its conjugate. Thus u2 - iu 3, and r\ * a>2

- ico^.Since u 2 and U3 can be obtained as linear combinations
of £ and and similarly for tOg, a>^

and n , Tj, it
follows that any expression which is linear in U2, U3,
C02f^nc^

03
3 can ^e "ritten as a linear function of

K, s, n, and ?. The first of equations (3.2) can
therefore be rewritten in the form

¥±
-

a^ +• b^ ? ♦ b2Tl + Bj^ £ + ^ n ,

(2) ^ - F2 + i F3
* a2 + £ ♦ c2f v ^l dg'S*

In these equations the coefficients, except a^, are
in general complex. The special form of the first
equation is due to the fact that F^ must be real for
all values of £ and n . Let us now consider an axis
system which is that obtained by rotating the vectors
*2 and X3 through the angle of synmetry s. The vari
ous vectors, u , F and 6) will be represented by a
different set of numbers in this system, which will be
denoted the ( X-^ , X^', X^O-system. In particular, in
stead of the quantities given in (l) there will be a
new set which will be related as follows:
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In ( Xp x2, »3)-system In ( x2', x^O-system*i K exp (-is)
n t) exp (-is)
1 ^ exp (is)
T n exp (is)

*3 7 exp (-is)
The coefficients in (2), like those in (3.2), de

pend on p'
, d, Up 0)^ and a and also on the position

of the axes with respect to the body. But turning the
axes about X^ by angle s is equivalent to rotating the
body through an angle - s about X ^ while holding axes
fixed; and because of the symmetry, such a rotation
cannot change the coefficients in (3.2) or in (2).
Hence in the new axes ana *7are still given by (2),
and therefore

Fl*al + bi £ exp (-is) + b^ exP (-is)

+ Bj 5 exp (is) + t>2 *T exp (is),

*3 exp (-is)
" *2 + cl 5 exP (-is) + c2rl exP ("is)

+ drC exp ^is) + d2T> exP (is)«

'.Ve use exp ( ) to mean e to the power ( ), where
e is the basis for natural logarithms. It will be
recalled that exp (a + ib), where a and b are real,
is simply (cos b + i sin b)ett. The fact which is
used above is that in order to rotate a plane vector
by the angle s it is only necessary to multiply its
complex number representation by exp (is).
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Comparing the first of these with the first of (2)
yields

bl£ + b"l£ + b2T1 + b^Tj

. b^S exp (-is) + bi5 exp (is)
+ 0 2*1 exp (-is)+ b^'Ti exp (is),

identically in £ and n. If we choose tj ■ 0, £ ■ b^,
this yields 2bib"i » 2bjFi cos s. Since 0< s < ft,
cos s^l and so bi ■ 0. Similarly b 2 " 0. Compar
ing the second of equations (3) with the second of (2),
we find that for all £ and n,

d]^ ♦ d2n - dxf exp (2is) + exp (2is).
This implies di - di exp (2is), d2 ■ d2 exp (2is).
But exp (2is) <f 1, because 0 < s < ^; so d2 ■ 0.

A similar argument can be applied to 0]_, G2 and
Gy and we thus arrive at the conclusion:

(h) _If J*, pro.iectile is symmetric under rotation
about its axis through an angle where 0 < s < Tt, its
force and moment system can._ b_£ written f to a first
order of approximation . in the form,

*1 ■ *i> *7 ■ f*
2 * ^3 " cl^ + c2 11 *

G l " el» Q " G2 + iG3 " c3 5 + ch " »

where a^, e^ and the c^'s are functions of p , d, u^,
ooi and a, and are independent of the orientation of
the axes x 2 and x^ with respect to the body.

The last clause still needs justification. We form

a new axis system, the ( X, , x2', xy)-system, by rotating X2 and Xi through angle «> about X^ . The
table before (3; holds if we replace s by * . If
a-±\ cjj' are the coefficients for the new system,
then

(olS + c2ti ) exp (-i#) - 7 exp (-id)
- <7« - CjK £exp (-!#)) .+ c2' (tj exp (-id))

178 Ch. II



for all £, n. This , implies c^
1 ■ C]_, C2 ■ c2. Simi

larly the other coefficients are unaffected by the ro
tation.

As in the treatment of the previous section, it
nill be desirable to replace the c's and a\ and ei by
dimensionless coefficients. However, the situation
is different in this respect. Before, the powers of

p and d required to give dimensionless coefficients
were uniquely determined, and the form of the aerody
namic coefficient was completely specified when we de
cided to use u rather than a to obtain zero dimension
in time. In the present case, even if we decide not
to use a to get coefficients which have dimension
zero in time, there is still a choice of u\ or a>i»
Be shall be guided in making this choice by a conse
quence of a different kind of symmetry.

Suppose the projectile has mirror symmetry in a

plane containing the axis. That is, suppose that
there is a plane such that if each point of the pro
jectile is moved to the point on the opposite side of,
and equidistant from, the plane, then the projectile
is carried exactly onto itself. Choose the vectors
«1 and if 2 so that the plane of symmetry is parallel
to the plane determined by these. As in the discus
sion of rotational symmetry, we consider two coordi
nate systems. Let us compute the representation of

U , CD , F and G in a coordinate system based on X^,

X 2 and xy ■ - . The results which mist be demon
strated are that corresponding to ui, U2» U3, co^,
CU2» ^3* Fl» F2» F3> Gl» G2 and G3 a™2 ul» u2> - u3»- ®1, - <*>2>

CD F£, F2, -Yj, - G,, - G
2 and Gy ft

is easy to see that the forms for the u's and F's are
correct, but in order to see the way the CD's trans
form it is necessary to return to the definition of
CO . For any three perpendicular vectors , y2, yx>
fixed in a rigid body, CO is chosen (see (1.7.25)) to
satisfy

Sec. k 179



w - (y2 . y 3)y i ♦ (y3-yi)y2 + ( vry£ Yy
writing x^, X2 andX3* instead of the y's the cor
rectness of the form for the new co's is demonstrated.
In order to obtain a form for the G's, recall that
G is the vector product r X ' * where r is a vec
tor joining two points. Since we know the forms r
and F take in the new coordinate system, it is only
necessary to write out the form for the vector prod
uct to verify the statement about the G's.

An argument such as was applied in the case of ro
tational symmetry can now be used. The functional
relationship in the two systems must be the same.
Writing this statement out mathematically and dis
playing the dependence of the various quantities on
CDj explicitly leads to

c1(-co1) c2(- <!>]_) n
- U - c"i( <ni)K + ~2(coi)t,

c3(-o>i)C- ^(-(oi)! - -Q - - 5"3(coi)C - cIi(a>i)'T,
F x(- -

Fx ( c^),

From these equations we can at once determine which
are odd and which are even functions of cd Thus :

{$) If a pro.jectile has rotational symmetry under
tbjg angle s, 0 < s < fl, and further has a plane of
mirror symmetry , then in the equations (L), F]_, the
real part of c^ and cu and the imaginary part of c p
and 03 are even functions of' co^j Gi, the real part
o£ c2 and. C3 and tfle. imaginary part el c1 aod are
odd functions of to i»

This result will decide the definition of the di-
mensionless coefficients. For each of the various
functions of <•>- f u., P, d and a, one removes the di
mension of mass by "dividing by p, for odd functions
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of <D\ the dimension of t~ is removed by dividing
by remaining dimensions of t~ are removed by
dividing by u]_, and renal ning dimensions, of length
are removed by dividing by the appropriate powers of
d. l«e are thus led to define the aerodynamic coeffi
cients by the following:

ci ■ - P d2 ux KN + i P d3 co 1 KF,

pd^ co x Kyj + ip d3 ux Kg,

- p d^ co
1 KT - i P d3 Ul %,

- P d^ \ii KH + i p d^ co x Kyp,

- p d2 ux2 KDA,

- P d^ ui co i KA .
It is not hard to verify that the various coefficients
are of dimension zero in mass, length and time. It
should be stated again that the definitions of these
coefficients are by no means uniquely determined. <<e

have chosen them so that the K's are all even func
tions of co i, which is a reasonable procedure but not
tiie only logically correct one. The choice embodied
an attempt to get coefficients which are slowly vary
ing functions. The K's are functions of p , u^, d,
to

^ and a, ajid applying again the Buckingham theorem,
are therefore functions of ui/a and co^d/u^. This
last variable has a geometric meaning; it is the spin
per caliber of travel of the projectile. Absolutely
nothing is known of the variation of the coefficients
with this parameter, and we shall of necessity ignore
-this dependence. Of course, the K's actually depend
also on the Reynolds numoer and on other dimension-
less parameters, but we shall limit our discussion
to the dependence on Mach number, which is surely the
most important ballistically. Of course, these also
depend very strongly on the shape of the projectile.

Two more facts should be pointed out in connection

c2
=

*1 =

°1 =
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with this definition. The rather odd sprinkling of
minus signs is in conformity with the notation of
Fowler, Gallop, Lock and Richmond. It was chosen so
that for a "normal" shell all of the coefficients
would be positive. As a matter of fact, for most
shell, Kp is negative. The other fact which should
be pointed out is that the factor u\ is divided out
of the various expressions for force and moment.
Fowler et al used the total velocity u ■

| u | instead,
as did the authors in their previous work on this
subject. The definition (6) is precisely that of
Nielsen and Synge. Its advantages will be shown in
Section $ of this chapter and in the chapter on the
solution of the equations of motion.

Each of the various terms in the expression for
*7 and Q has a name, or to be more precise, one or
more names. This nomenclature is listed below; ' the
first name given is that of Fowler et al, and the
second is that used by Nielsen and Synge.

Nomenclature

Normal force Cross force due to
cross velocity

Magnus force Magnus cross force
due to cross
velocity

* Magnus cross farce
due to cross spin

* Cross force due to
cross spin

Magnus moment Magnus cross torque
due to cross
velocity

(7) Force or
Moment

a. pd2^^

b. ipd^iKpS

c Pd^^n

d. iPd^u^n

e. pd1^^^
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f. ipA^s

g

i. ?d\\k

Overturning
(or righting)
moment

Cross torque due to
cross velocity-

Damping moment, Cross torque due to
or yawing mo- cross spin
ment due to
yawing

h. ipd^jKyp *

Axial drag

Spin-deceler
ating moment

Magnus cross torque
due to cross spin

Axial drag

Spin-decelerating
moment

The adjective "Magnus" always refers to a force or
torque which vanishes when co^

■ 0. The forces and
torques marked * were missing from the force system
of Fowler et al. In fact, the motivation for the work
of Nielsen and Synge lay in their observation that the
force system used earlier was of necessity incomplete.
The inconsistency which led to this conclusion will
be remarked in the following section.

At first glance it would appear that the lift and
drag coefficients defined in an earlier section did
not occur in" this analysis. Actually, the force R
of Section 2 has simply been resolved along and per
pendicular to the projectile instead of along and
perpendicular to the velocity vector u . The connec
tion between the two resolutions is easy to obtain.
The normal force (see Table (7)) has the magnitude
pd^U}Kfl| £| ■ pd^(u cos 6 )%(u sin 6 ) and the axial
drag has magnitude pd^(u cos 6 )2Kda> y^iere 8 is tne
yaw. Computing the components of these along and per
pendicular to the velocity vector, (all other forces
vanish in the case, investigated in Section 2, where
the angular velocity (0 « O ) ,

Sec. h 183



Hence

(8)

Pd u Kl sin 6 ■ pd2u2KN sin b cos2 6

2 2 2- pd u sin 6 cos 6,
p d2u2KD ■ pd2u2Kjf sin2o cos 6

o o ■>
+ pd u KpA cos & •

2 2
KL
*

KN cos 6 ~ KDA cos 6»

2 7
Kn
" % sin 6 cos 6 + cos-' 6.

To a first order of approximation, for small yaw,
KL" KN ~ KDA»

(9)
kd" kda*

This approximation will be used in a later chapter.

Finally, a simple examination will show that the
definition of KM given in (6) is identical with that
given in Section 2.

5. Dependence of the aerodynamic coefficients on the
position of the center of mass.

The aerodynamic force and moment on a projectile
are clearly independent of the position of the center of
mass. Yet in the definitions we have given, it is
reasonably certain that the aerodynamic coefficients
do depend on the Cm position. If we change the Cra po
sition by the amount r the torque about the center
of mass is surely changed by the amount r X, F .
The coefficients must change accordingly. This de
pendence is precisely the same sort of thing as the
dependence of a vector on the coordinate system used.
It is the purpose of this section to find the equa
tions showing the change of the aerodynamic coeffi
cients with change of position of the center of mass.
The principle employed is that for the same values of
velocity and angular velocity, the same force and mo
ment must result, regardless of the Cm position.
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Let us suppose that the aerodynamic coefficients
are known for the force at Cm and torque about this
point, giving these quantities when the angular ve
locity of the projectile and the velocity of the
point Cm are^ known. The problem is tjhen to find the
aerodynamic coefficients for a point Cm, which is dis
tance r in front of Cm and on the axis of the projec
tile. These coefficients will permit the evaluation
of the force and the torque about Cm when the angular
velocity and the velocity of Craare known. Let the
force at Cm be denoted F , the torque about Cm by
G*, and the velocity of the point by u . If the vec
tors xi, X2 and X3 are as before, it is easy to see
that

F* - F, CO* « CO,

6* - G _ r x X F

(1) - (Gx, G2 + rF3, G3
- rF2),

u* » u + CO Xr«i
" (u^, u2 + ro) 3, u-j - roo 2)«

As far as axial components are concerned we have

(2) %
- Fj, Ol

- G*.

In terms of complex numbers, we compute from (1)

"

u*
2 + iu*3

" K- irn,

<Z* - F*2* iF5 -

Q
* -

G
*2 + iG* -Q- ir <
7 .

Let an aerodynamic coefficient with a * denote this
coefficient with C^ as a reference point, and let c's
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with * denote the corresponding combinations as in
(U.6). Then, the definition of the K 's states that

V»C1^+C2T),
Q* - c*

3 C + eg n*.
The equations (3) give the values of t7*, Q*, and
n* in terms of the original system. Substituting
these gives

C£ ( £ - irn) + c^n
- - c^ + c? n ,

(5) c| ( C - irn) * c^
n

-Q* - Q - ir <
7

■
03^ + c^ - ir(c2^ ♦ c2 t)).

This must be an identity in £ and n and the coeffi
cients of these are therefore equal.

cl " cl>

cl * c2 + *rcl*
(6) c^

» - ircp

a
cj^ - ir(c2 - 03 ) + r2^.

These equations give the desired relations, if the
values of the c's in terms of the aerodynamic coeffi
cients are substituted from the definition (U.6).
These relations are more convenient if stated in terms
of p ■ r/d, which is the distance from Cm to Cra meas
ured in calibers. The same process may be applied to
equations (2) on the axial components. These results
may be summarized as follows.

(7) If the center of mass of a projectile is moved
forward by p calibers the aerodynamic coefficients
change as given by the following equations , where *
refers to the coefficient at the new position.
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KDA
"
KDA» KA

"
KA» KN

"
KN» KF " KF'

KXF
*
KXF " PKF» KS

"
*S " PKN»

- Kt - pKp, - % - p% ,

Kyp ■ — p(^jjt * Kr
p

^ + p^Kp.

These equations may be used to point out the in
consistency in the force system used by Fowler et al.
If one omits all consideration of Kg then the trans
formation formula for must read

* 2

KH " % ~ P% ♦ P %•
Let us consider the value of Kfj at a point p + q cal
ibers ahead of the original Cm. Then one can compute
the value in two ways. First, substitution of p + q

for p in the preceding equation must give it, and
second, the value may be determined from the value p

units ahead of the original Cm. These two determin
ations must yield the same result. Using functional
notation to show the place at which the coefficients
are evaluated, the two computations follow.
KH(p + q) - % - (p + q)% + (p + q)2%,
%(p + q) - KH(p) - qKjjCp) + q2%(p)

KH - p% + p2% - q(% - pKN) ♦ q?KN.
Comparison of these two formulas shows a discrepancy
of pqKji, leading to the conclusion that % is zero.
Actually, as a matter of fact, consideration of all
the transformation formulas shows that not only Kg
but also the other coefficients must be adjoined to
obtain a consistent system. (Assuming K^p and YLyry
zero implies Kf and Sp are zero.) The system with all
Magnus coefficients zero is consistent, as was pointed
out by Nielsen and Synge, but unfortunately this system
is not adequate to explain the experimental facts.
On the other hand, we shall see in solving the equa
tions of motion of a spinning projectile that it will
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be impossible to deduce the values of K^p and Kyj- un
less these coefficients are more than ten times as
large as any of the others. The remaining system is
not. consistent, but has the property that, if known
for one Cm position the values for any other position
may be deduced. These coefficients comprise the set
of all those which with present techniques can be
evaluated.

Figure 1 shows these aerodynamic coefficients
graphed against position of Cm. These data were ob
tained in the aerodynamic range at Aberdeen from fir
ings of models of caliber U. 5-inch rockets. They con
stitute the most complete set of data which has, to
our knowledge, been obtained for a projectile. In a
later chapter we will discuss the method of deducing
the aerodynamic coefficients from the motion of a pro
jectile. For the present, the graph shows the approx
imate magnitudes one might expect for the various co
efficients.

6. Angle of attack formula for aircraft.

In discussing the ballistics of rockets fired from
aircraft a result from the aerodynamic theory of air
craft is needed. As this seems the natural place to
discuss this question we will interrupt the general
discussion of rotationally symmetric projectiles. The
problem which must be solved is simple but quite fun
damental. From the information -available to the pilot
of the aircraft the direction in which the aircraft
is going must be deduced. To be more precise, we wish
to know, relative to a frame of reference fixed in the
aircraft, the direction of the vector velocity of the
airplane. It will be sufficient to deduce this direc
tion in a very special case, the so—called equilibrium
condition. Suppose that the aircraft with its wings
level is flying along a straight-line path at a con
stant speed with zero angular velocity. As in Section
2, it can be seen that the only aerodynamic force act
ing on the plane can be resolved into two components,
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the drag and the lift, directed along and perpendic
ular to the velocity vector. For any line fixed in
an aircraft, such as the line of thrust of the pro
peller, the angle of attack is defined to be the an
gle from the velocity vector to the line. The posi
tive direction is taken as upward. We will denote
by a? the angle of attack of the thrust line. Thelift and drag coefficients for the aircraft are usu
ally defined in aerodynamic theory by the following
equations:

In these equations S is the area of the wings, p and
u,the air density and speed. The aerodynamic coeffi
cients Cl and Cj) are functions of a-p. Suppose that
the aircraft is diving at an angle 9 below the horizon
tal. Since the aircraft is presumed to be in uniform
motion in a straight line, the resultant of all the
forces acting on it must be zero. If T is the thrust
exerted by the propeller, this statement takes the
following mathematical form:

2 p uz S Cl (<xt) + T sin ■
mg cos 9,

(2)
^pu2 S Crj (a-j>) - T cos * rag sin 9.

The mass of the aircraft is m. The thrust, T, can be
eliminated from these equations giving the following
equation which determines the angle of attack.

\ p u^ S [Cl cos a x + Cn sin ]

This equation is exact, but a simpler approximate
form is accurate enough for the use we intend to make
of it. As in Section 2, it is convenient to approx
imate the variation of the lift coefficient with angle
by a linear function. There is an angular position
of the aircraft for which there is no lift, i.e., a

(1)
Lift - £pu* S CL(aT),

Drag ■ \p u2 S Cjj(a T).

(3) - mg cos (9 - aT).
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zero of Cl. It is possible, therefore, to approx
imate Cl by the following form:

CM CL(aT) " (dC^da^a T- aQ).
The derivative should be taken as a mean value, and
ccois the angle between the line of thrust and the line
of zero lift. Again, setting up the equation stating
that the resultant force is zero, but ignoring the
contribution of thrust, leads to the equation:

(5) ipu2 S (dCi/da)(aT - Hq) ■ mg cos 9.
This equation can be solved for af, resulting in:
(6)

<xT
-
oQ

+ 2mg cos 9/(pu2dCL/da).
This is the approximate form required.

In the preparation of rocket firing tables, the
line of thrust is not used as the line of reference.
It is more convenient to use a line which is marked
in the aircraft by two studs. This line is called
the gun-level lug line, or more simply, the level
line. The angle of attack of the level line differs
from *r by a constant amount. It can be written in
the form:

(7) aLL " c + km cos 9/p u2.

The numbers c and k are constants de'pending on the
particular type of aircraft. The mass m depends on
the loading and is known to the pilot. This formula
is used in the construction of rocket tables, the con
stants c and k being deduced from angle of attack
measurements.

It might be thought that the factor pu^ would be
difficult to determine in the aircraft. This is not
actually the case. The usual device for measuring
air speed is a Pitot static tube which compares the
free stream pressure with the total head. The total
head is the pressure which would be measured at the
front of a tube pointing directly into the air stream.
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The result of this comparison, as read on the pilot's
speed indicator, is uVp/pQ where p0 is a stand
ard value of the density. This quantity is called
indicated air speed, and is actually the parameter
needed for angle of attack determination.

7. General equations of motion of a symmetrical pro
jectile.

The equations of motion in full generality, in
cluding the complete system of aerodynamic forces, a
variable wind, density and temperature, and the Coriolis
force, would be almost impossibly complicated. Ve
shall, in the later work, go to considerable trouble
to devise a system whereby the various factors can be
treated one at a time, instead of simultaneously. It
will, however, still be necessary to have available
the equations which determine the angular motion of
a projectile, and these form a rather complicated
system. It is the purpose of this section to derive
these equations under the following assumptions.

(1) X, Y, Z are the coordinates of the projectile
in a frame of reference fixed to the earth. This is
supposed to be an inertial frame (the Coriolis force
is neglected). The Y-axis is supposed to point ver
tically upward.

(2) The density p and the speed of sound a are func
tions of Y only.

(3) There is no wind. The atmosphere has no motion
relative to the XYZ-system.

(h) The projectile has an angle s, 0< s< n, of
rotational symmetry and a plane of mirror symmetry.

As in the earlier part of the chapter, u is the
vector velocity of the shell, CO is its angular velo
city and F and G respectively are the aerodynamic
force and moment. The unit vectors X^, X2» *3 are
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fixed in the shell, the Xt -vector lying along the axis.
As before, a letter with the subscript 1, 2 or 3
means the component of the vector along x^, X 2» or
X 3. As before, one real and one complex number will
be used as a^representation of a vector. The follow
ing shows the notation used for the various vectors.

(5) Vector Real and Complex Parts

u, velocity,

0), angular velocity,

F, aerodynamic force,

G, aerodynamic torque,

y, unit vector
parallel to Y-axis,

K ■
u2 + iu-j,

n ^2 + KOy

F2/ ^3'2 cl^ *

- G2 + iG3,

*1>
m y + iy3*

- g y, acceleration
due to gravity, - gy-j_, - g<]^.

Since the projectile is supposed to be symmetric, its
principal moments of inertia about axes perpendicular
to its axis of symmetry are, by Theorem (I.11. lb), the
same. Its moment of inertia about its axis of symme
try (its axial moment of inertia) will be denoted A,
and B will t»e the moment of inertia about any trans
verse axa.3 through the center of mass. The mass of the
shell is m. According to Newton's second law, the
rate of change of momentum is the sum of the exterior
forces. In this case, there are two forces to con
sider, the aerodynamic force F and the gravitational
force - mg y . Hence,

(6) [ m u ]' - F - mg y .

The angular momentum of the shell, since x^, X 2, X3,
are principal axes of inertia, is
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AcuiXi + Ba>2 X2 + BC03 x 3.
It will be more convenient to write this in the equiv
alent form

(A - B)co ! X 1 + B(i).
Since the only torque acting on the shell is G, the
second of the equations of motion, stating that the
rate of change of angular momentum is the impressed
torque, is:

(7) C(A - B) CD! X 1 +Bffl]'« 6.
Let us take time out for a small lemma.

(8) Lemma. Let p be an arbitrary vector, with com
ponents p^, P2, P3 in the X^- , X 2~ > x3~ coordi
nate system. If its real-complex number representation
i§ Pi, (P " P2 + iP3 then the corresponding represen
tation of p is
p-X! - Pi+((Pt- (P T)i/2,
p • X2 + ip •

X3
- (P - ipjjj + ico ! (P.

Proof: Throughout this proof it will be convenient
to use £ ( ). to mean the sum of three quantities
( )x

,
( )2

atfd ( )y „Thus p - L Pj X y Hence

P - Sp.Xj ♦ EPjij. *

Since for each value of j, is a vector fixed in
the projectile,

This vector equation can be reduced to scalar equa
tions by taking components in the directions X]_, X 2*
Xy The component in the x ^-direction, k ■ 1, 2, 3>
is

p ' *k -Pk + s'PjCoX *j* *k.
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The last term can be rewritten:

p * xk " Pk " £pj x kX for k - 1, 2, 3.
This form is convenient for computing since x ^ X*-tis either Zero, if k - j, or, except for sign, the
third of the three unit vectors. Writing out the
three formulas obtained by setting k ■ 1, 2, 3 gives
equations

p ' *i " $1 - P2a>3 ♦ P3C02»
p • x2 3

P2 - P3 «i + Pi<*>3,
p •

x3
-
p3 - ^032 + p2a)1.

The first of these can be rewritten:

P • xx ■ Pj_ ♦ [ (p2 ♦ iP3) ( to2
-
ia>3)

- (P2 - ip3) (» 2 + i«3)] i/2
"
Pi ♦ (<Pn - (pT) )i/2.

The second equation, added to the third multiplied
by i, gives

p •

x2 + ip •
x3
- p2 + ip3 - iPi(»2 + iai3)

+ i<^1(p2 + ip3)
• - lpjji + ia^CP.

which completes the proof of the lemma.

Returning now to the main argument, the lemma
applied to the case p ■ u enables us to replace the
vector equation (6) by one equation in reals and one
equation in complex numbers. These are obtained by
taking components along x^, and taking
(component along x2) ♦ i(component along x3).

Equation (6) then becomes:
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»[&! - (Sn - Cti)1/2] - Fx - mg!,
(9) m U - i^T] + icoiO" - mg^

■
c^S ♦ C21! - mg'ty.

The same procedure will now be applied to the vector
equation (7). By the lemma, the vector

[ co
x« x1 + 0- x2 + 0- x^Y

has cb i>
- i00 tJI for its real and complex number rep

resentation. Similarly, <
jb has

<
i> i + ( nn — ti n H/2 ■ cb x

and

ii - ico ]/] + icoxn » f|
for its representation. Using these facts, the equa
tion obtained by taking the components along Xt in
(7) is

(A - B)d>i 4 Bcbi - G1,
or

(10) Ac6x
- Gi.

The equation obtained from the components along X2
and is:

(A - B) ( - ia> !T|) + Br) - Q,
or

Bfj + (B - A)ico1T) - Q

(11) r"
c3S + c^ TJ.

It is now necessary to derive the differential
equation governing y, for although y is a constant
vector, its components in the moving frame of refer
ence will surely change.. The differential equation
is obtained very simply. Since y is constant, y
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is zero. Replacing p by y in the lemma gives the
equation :

(12)
h' (<^~ ^T,)i/2'

<
ty - iyir) - iti)^.

If the density and the velocity of sound did not
depend on the altitude Y, the equations (9), (10),
(11), (12) would be solvable. That is, they could be
solved and any other information desired about the
motion of a shell could be obtained after completing
the solution. Since p and a depend on Y, it is ne
cessary to adjoin one more equation to this collection
in order to solve the system. This equation is

Y - u • y,

or

Y - ^ yi + u2 y2 ♦ u3 y3
■ »l yi + +

The equations (9) to (13) consist of four real and
three complex equations involving the four real and
three complex numbers Vh , Ky ^n, T) , y^, Y. Their
solution would completely determine the yaw of the
shell at every point along its trajectory. This
is a tenth-order system of differential equations,
but it is not difficult to see that it can be reduced
to a ninth-order system. The vector y is a unit vec
tor, and this fact can be used to eliminate one of the
unknowns y^, y2> y?. Or, instead of the variables
y, Y the product Yy could be used. Thus a ninth-
order system of equations determines the yawing motion
of a shell. However, the solution of this system does
not completely determine all of the facts about the
trajectory of the projectile. Two of the three co
ordinates of the center of mass of the shell, namely

X and Z, are still undetermined. Since the predic
tion of the position of the shell is the principal
problem of exterior ballistics, one can hardly say the
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problem is solved. Actually, both X and Z are solu
tions of the same set of equations , (12) and (13)>
which Y satisfies, but the initial conditions differ
in each case. Adjoining X and Z to the set of vari
ables in the equations would, on the surface, appear
to increase the order of the- system by eight, since
(12) and (13) form a fourth-order system. Again,
there are identities and these reduce the total order
of the complete system to twelve. The reader will un
doubtedly be considerably relieved to know that we do
not intend to solve this twelfth-order system. It
will be quite sufficient for future calculations if
we retain the facts which are collected together in
the following theorem.

(Ill) Theorem. The yawing motion of a rotationally
and mirror symmetric pro.jectile which has small yaw
is determined by the solution of the equations;

a. m( K- iuj/1 + i^xO ■ + c^i - rag^,
b. Bri + (B - A)i03in •

03 £ + c^n,,

c. m [xxi - (§?| -Sn)i/2 ] - Fx - mgy-L,
d. Aa> 1

"

e. 31 - (<tyfi -<tjT])i/2,

f. - iy^ - ico^,
g. Y - ul7l + ( ^+ £<ty)/2.

In these equations c\t 03, C3, c^, F^ and G^ represent
polynomials in the aerodynamic coefficients , in p ,
d, ui and a>i as given in (II.U.6).
8. Normal equations of motion.

For computational work it will be seen that the
solution of a relatively simple system of equations
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gives an excellent approximation to the actual motion
of a projectile. The deviations of an actual trajec
tory from this approximate trajectory can be computed
by a theory of small corrections, or perturbations.
This approximate trajectory is obtained by making the
following simplifying assumptions: the projectile
moves with its axis tangent to its trajectory, and the
only forces acting on the projectile are the drag and
the force due to gravity. The density and the velo
city of sound are functions of the height of the pro
jectile above the earth's surface and there is no wind.
The coordinate frame is inertial.

In this case the projectile will remain within the
vertical plane containing its initial velocity vector.
We choose a coordinate system with the Y-axis pointing
vertically upward and the X-axis horizontal, so that
the initial velocity vector lies in the XY-plane.
The velocity has components X, Y and the drag is di
rected oppositely. The drag has magnitude pd2u2Kn.
where

u2 - X2 + Y2.

Hence the vector drag is
p d2 u2 KD(X, T)/u.

If m is the mass of the projectile, the force due to
gravity is - (0, l)mg. Setting the rate of change
of moaentom equal to the impressed force gives

(1) m(X, Y) - -pd^CX, Y) - (0, l)mg.
This vector equation can be resolved into components.
If this is done and the dependencies written out ex
plicitly, the results are the normal or particle equa
tions of motion:

mX " - p d2uKj)(u/a)X,
(2) mY - -pd^UAOY - mg,

u2- X2 ♦ Y2, p -p (Y), a - a(Y).
Most of the problems in exterior ballistics will re
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quire a highly precise solution of the equations (2)
by numerical integration. This solution will usually
be carried out for a standard density function p(Y)
and temperature function a(Y) and an experimental
drag coefficient Kn(u/a). In many cases the solution
so obtained will be modified "by corrections obtained
from an approximate solution of equations (7.Hi)
and in alaost all cases the solution must be modified
because the density and temperature structures are
non-standard. However, the solution of equations (2)will generally form a basic part of our computation.

The equations (2) have been put in a variety of
forms, convenient for various applications. A very
simple variant, which will presently be useful, is
to write the equations in terms of the inclination of
the tangent to the trajectory and the velocity. We
leave as an exercise the derivation of the following
system:

X - u cos 0, f - u sin 0,

mu ■ - p d^ u^ Kn - mg sin 0,

0 • - g cos 0/u,

p - p(Y), a - a(T).
Another form which will be useful is in terms of

slant coordinates. That is, instead of locating "a
point in the plane by means of its distances from two
perpendicular axes it is located by means of its dis
tance along a slant line, the P-axis, and its vertical
drop Q from this line. The transformation required,if the P-axis passes through the XY-origin at the
angle S, is

X - P cos S, Y - P sin S - Q,
GO

P = X sec S, Q - X tan S - Y.
Under this transformation, the equations (2) become
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mP - - p d2 u Kj) P,

mQ
- - p d2 u KDQ + mg,

(5) u2 - P2 ♦ Q2 - 2PQ sin S,
p = P (P sin S - Q),
a ■ a(P sin S - Q).

These equations are usually used only when some sim
plifying approximation is justified. The verification
of (£) is left to the reader.

Higher order terms in the expansion of the force
function.

In all of our discussion of the aerodynamic force
on a projectile we have been content to use the lead
ing terms in the Taylor expansion in cross velocity
£ and cross spin n. . It is of considerable import
ance to know under what conditions this approximation
will be adequate. Some information can be obtained
from further mathematical investigation, but to a
very large extent this question must be answered on
the basis of experimental work. Each of the func
tions F]_, G]_, and Q, can be expanded in quadratic
terras in £ and t\ . In each case, terms containing
the factors
£2, n2, I2, tJ 2, Cn » K C» qn* Cn> C n >

will be obtained. As in considering the linear terms,
the consequences of rotational symmetry can be invest
igated. Precisely the same argument used before will
show that all of the quadratic terms vanish in the ex
pansion of *7 and Q. (The details of the argument
have been published by C. G. Maple and J. L. Synge, in
the Quarterly Journal of Applied Mathematics , Vol. VI
(I9li9), pp. 3U5-366.) There are, however, possible
non-vanishing quadratic terms in the expansion of F]_
and G^. When the projectile has symmetry under rota
tion through angle s (0<s<tc), the surviving terras
in the expansion of are
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£ £ + +
k3 £n

+

ic
3 C n C^, k2 real),

and there are similar terms in the expansion of Gx«
Expressed otherwise, the quadratic terms are multiplesf the square of the magnitude of the cross velocity

K I 2, of the magnitude of cross spin | n | 2, of the
product of these magnitudes by the cosine of the angle
between cross velocity and cross spin, and the product
of these magnitudes by the sine of that angle.

Of these higher order terras only one has received
any attention. The spin-decelerating moment Gj_, is it
self small and its dependence on cross spin and cross
velocity is, with present experimental equipment, im
possible to determine. Considerable experimentation
has been conducted on the dependence of drag on yaw.
In the usual form, one considers not the axial drag,

p d u*Kj)A but the component pd2u2Kn along the trajec
tory. We write:
(1) Drag - pd2 u2 l> u, a),
neglecting the dependence on n.^ and + £t). These
three variables, KK» u, a have u/a and 5£/u2 as the
only dimensionless products. One usually denotes

£ £/u2 by &2, the square of the yaw (actually the
square of the sine of the yaw). Both Kc' and Kjj& have
been used to describe this dependence, their defini
tions being

Kn - Kno ♦ KD'&2,

KD
-
Kd0(1 + Kd6&2).

For normal shelL. one might expect the drag to double
at about & - 12°. The coefficient Kjj0 is the yaw
drag coefficient and its value would accordingly be
around .OU. It has been found by Dr. A. C. Charters
that the coefficient Kq* ■ Kpg Kd& is more nearly con
stant from shell to shell, and it is presumed that
this coefficient will be used more generally in the
future .
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There is some evidence that and Kl vary with
yaw. The amount of this variation depends quite
strongly on the shape of the shell. This topic will
be discussed further in the following chapter where
experimental determination of the aerodynamic coeffi
cients is considered.
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Chapter III
METHODS OF MEASUREMENT OF

AERODYNAMIC COEFFICIENTS
1. Devices currently used for velocity and retard
ation measurement.

We propose to discuss briefly, from the point of
view of method, some of the equipment now in use at
the Aberdeen Proving Ground for measuring velocity of
projectiles. Since, in principle at least, any velo
city-measuring device can be used to measure decel
eration, and hence drag, a discussion of the measure
ment of velocity can be considered as preliminary to
a discussion of drag measurement.

In any velocity measurement a basic requirement is
a time-measuring device. During the greater part of
the last war the commonly used measuring device was
some model of drum chronograph. In principle this in
strument was as follows. A drum, revolving at high
speed, carries a strip of tape. This tape is marked
by a recording device in one of three ways. The sim
plest scheme, but one of the slowest in response, con
sists merely of a mechanical pen-and-ink writing on
the tape. A more satisfactory apparatus uses a waxed
tape which is punctured by an electric spark. The
■most satisfactory chronographs use tape of light sen
sitive paper, the marking being done by a cathode ray.
In any case, a sequence of "timing lines" is marked
upon the tape. The timing source originally used was
a- tuning fork, but most modem equipment uses as
standard the fundamental frequency of a piece of
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quartz crystal. The velocity-measuring experiment
requires that marks, corresponding to the time that
the projectile passed two measured points, be put on
the tape, as well as the timing lines. The timing
lines then permit, by linear measurement of the tape,
an estimation of the time interval required by the
projectile to travel the measured distance. The accu
racy obtained in the measurement of the time interval
depends on the particular mode-l of chronograph used.
On the most accurate machines—machines for which a
measuring engine is used for the mensuration of the
tape—the probable error of a single time reading is
of the order of one millionth of a second. This ac
curacy is sufficient for all present ballistic experi
ments, and indeed, is so much better than is required
for velocity measurements alone, that the extra time
required to use the device makes it highly desirable
to use a simpler machine. Nevertheless, this time-
measuring instrument is now being superseded, at least
for experiments of the most exacting character, by a
simpler and more accurate machine.

This new machine is called a counter chronograph-
its basic unit is called a cycle counter. A cycle
counter consists of a sequence of tubes, each with a
possible simple on-or-off response. The first of the
sequence is actuated by the fundamental frequency of
a timing standard. (A timing frequency of 100,000
cycles per second is commonly used, and the finest
counters operate at 1,600,000 cycles per second.) The
first tube then simply turns on and off at the fre
quency of the timing standard. By means of an elec
tronic circuit, the second tube is arranged so as to
be activated by every second impulse of the preceding
tube. The device is then used as follows. The counter
is started by a tripping mechanism as the projectile
passes the first of the two measured positions, and
is stopped as the projectile passes the second. It
is then recorded which tubes in the sequence are on
and which off. The time interval can now easily be
calculated as follows. Let us suppose that the unit
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of time is the period of one cycle of the timing
standard. If only the first tube of the sequence is
on, the time interval is 1 unit. If the second is on,
the interval is 2 units; the third, h units. If thefirst, third, sixth, eighth, ninth and twelfth are on
the time interval is 2° + 22 + 2? + 2? + 28 + 211
units. In fact, the counter records units of time in
the number system of base two! The extraordinary ease
of reading this sort of chronograph, together with its
accuracy, makes it extremely valuable for many uses.

The second important component of any velocity-
measuring apparatus is the device used to record the
passage of the projectile. An instrument, commonly
used at one time, consisted of two foil screens , set
parallel to each other and very near together. The
pair of screens were set at a measured position in
front of the gun, and upon Oeing ruptured by the pas
sage of the projectile, shorted a circuit and sent a
signal to the timing device. A single thin wire was
also used on occasion, the breaking of the wire giv
ing a time signal. Both of these schemes suffer from
the defect that they affect, more or less seriously,
the phenomenon which is being observed. The most
commonly used instrument of this last war was a sole
noid. This device is quite usable—the time of re
versal of electromotive force from the solenoid actu
ally depends on the particular area through which the
shell passes, but the dependence is not extreme. For
high-angle fire, a certain amount of vscaf folding is
necessary to support the solenoids, and the equipment
is in general not easily portable. It is therefore
not convenient for field calibration of artillery
pieces .

A scheme of replacing the solenoids was developed
in England during the Second World War. In principle,
the apparatus consisted of a photoelectric cell,
mounted so that it is exposed to a narrow band of the
sky. When the shell passes this- band of sky there is
a rapid change of the total light falling on the cell,
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and this change of intensity is used to provide a
signal to a chronograph. An adaption of this device
was -worked out at the Ballistic Research Laboratories
during the war, and proved to be well adapted to field
use, and in fact also turned out to be convenient for
many laboratory tests as well. These "sky screens,"
though simple in concept, require rather delicate de
sign and intelligent handling.
Finally, we mention briefly the device used on the

aerodynamic range. Here, an electric charge on the
projectile is used to trigger a spark gap. The spark
photographs the shell on a plate, and the discharge
of the spark also transmits a signal to the chrono
graph. This method is discussed quite fully in Chap
ter XIII.
For any of the equipment discussed above the basic

data resulting from a velocity measurement consist
of the times at which the projectile passes two known
space positions. To measure acceleration, we require
the times at which the projectile passes three known
space positions, all reasonably near the muzzle. We
may then compute the mean velocity, and from the ve
locity loss, the force on the projectile. In practice,
the computing procedure is somewhat more sophisticated
than this. The form of the time as a function of
distance from the muzzle is deduced from the equations
of motion of the projectile, and the observed data
are fitted (by means of a least squares process if
there are enough observations to overdetermine the
drag) to a function of this type. The fitted function
then determines the drag of the shell, lfe shall not
go into the details of. this process here, since it is
treated quite completely in the discussion of the
spark range measurements in Chapter XIII.

A variant of this process has also been used to
good purpose. Again, the time at which the projectile
passes three known points is measured, but the space
distribution of the three points is quite different.
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Two of the points are taken near the muzzle, so that,
effectively, a measurement of muzzle velocity results.
The third point is at the end of a short, flat tra
jectory. It is quite feasible to deduce the drag of
a projectile from such data as these, consisting of
a muzzle velocity and a time of flight for a short,
flat trajectory. The details of this procedure are
discussed in Chapter V.

2. Determination of drag by means of direct obser
vation of position.

A number of experiments have been conducted which
differ from the resistance firings discussed in the
previous section in details of execution but not in
fundamental method. The first of these experiments
(as far as we know) was conducted by Cranz. This work
will be discussed rather briefly here since a full
account is given in K.J. Cranz' s Lehrbuch der Ballistik.
Vol. HI, Experimentelle Ballistik. 2nd ed. (Berlin:
Julius Springer, 1927). A mechanism was designed and
constructed which would fit inside a shell, the purpose
of the mechanism being to emit a flash of light at in
tervals after the firing of the shell. The shell was
then fired at night, and the position of the flashes was
recorded by means of cameras. Simultaneously a record
was made of tr.e time at which the flashes occurred, so
that a complete time -posit ion record of the flight of
the projectile was obtained. The acceleration and hence
the force on the projectile can be deduced from these
data by methods which will be discussed below. In
Cranz' s experiment, the flashing light was constructed
by pyrotechnic methods, the mechanism being essential
ly a powder train, setting off periodically a charge
of magnesium. The same method was used to determine
experimentally the trajectory of a rocket by a group
at the California Institute of Technology under Dr.
W.R. Smythe in the summer of 19U5. In this case, the
observations were made by means of motion picture
cameras, the cameras being equipped with an optical
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device which permitted simultaneous photography of
the phenomenon and a clock. Before discussing the
mathematical difficulties associated with reduction
of these data it might be advisable to point out an
objection to the method which is of purely experimen
tal character. A rocket or a shell which is period
ically emitting puffs of incandescent gas may or may
not move in a manner closely resembling the motion of
an ordinary rocket or shell. That is, measurement
is made of a phenomenon which differs from the one in
which we are interested by a more or less indetermin
able amount. The validity of this objection depends
of course on the accuracy which is desired and upon
the degree to which the shell constructed differs from
its prototype.

A mechanism was constructed by L.A. Delsasso and
L.G. de Bey of the Ballistic Research -Laboratory which
is not subject to this objection. In their experi
ment, the projectile under study was a $00 pound Gen
eral Purpose bomb, so that a great deal more room for
equipment was available. (The sane type of experiment
had been performed on a bomb at the time of the First
World War by D.L. Webster.) The equipment constructed
by Delsasso and de Bey consisted of an Edgerton type
lamp mounted in the nose of the bomb with batteries
placed within the bomb. A condenser was charged by
the batteries and at intervals of about one second
discharged through the lamp, giving an extremely bright
light of short duration. A transmitter in the borrib
gave out a radio signal at the time of the flash and
this signal was recorded on a chronograph. Plate
cameras of the same type used in routine range bombing
recorded the position of each flash. The particular
features of the method were that the bomb used matched
the prototype in external contour and in weight dis
tribution, and the accuracy of space position and time
recording was superior to any previously obtained.

Superficially, the mathematical analysis of such
an experiment is extremely simple. The available data
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are the X-, Y-, Z-coordinates of the projectile as func
tions of time, the density p, the components of wind

and and the temperature as functions of alti
tude Y. Assuming that the yaw of the bomb is zero
and that the only forces are drag and gravity, the
equations governing the motion of the bomb are easy
to derive. The XYZ-coordinate system is fixed to the
ground, but the drag of the bomb depends on the ve
locity with respect to the air. Let u denote the speed
with respect to the air. That is,

u2 - (X - Wx)2 ♦ Y2 + (Z - WZ)2.
The drag has magnitude pd^u2Kj) and has the direction
of - (X - Wx, Y, Z - W2). Hence the vector equation
of motion is

m(X, Y, Z) - - pd2uKD(X - WY, Y, Z - Wz)
(1) - mg(0, 1, 0).
The quantities X, Y, Z and X, Y, Z can be obtained
from the experimental data by numerical differentia
tion and then any one of the three scalar components
of the equation (1) can be used to evaluate Kj). The
temperature determines the velocity of sound and hence
the value of Mach number to which this value of Krj
corresponds.

The difficulties arising in the execution of the
above program can be illustrated by a very simple ex
ample. Suppose that the position of the bomb is de
termined at intervals of one second, that the timing
is exact, and that there is no wind. If the bomb is
-dropped from medium altitude, say about ten or twelve
thousand feet, its velocity at the end of its tra
jectory would be of the order of 800 feet per second.If the bomb is the 500 pound General Purpose men
tioned earlier, the deceleration due to drag is about
fifteen feet per second per second. Suppose that the
errors in the determinations of the coordinates are
approximately normally distributed, with standard de
viations of about nine inches, or probable errors of
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about six inches.. The y-component of the velocity
at the mid-point of a one second interval would be
determined as the difference of the y-coordinates at
the beginning and the end of that second, and the ac
celeration would be the difference of two successive
velocity determinations. If y^, Yz and v3 are succes
sive determinations of the altitude, the y-component
of acceleration would thus be determined by the ex
pression y3 - 2y2 + J\* But by Section 21 of ChapterI, the probable error of this expression is */l + U + 1
times the probable error of each y-coordinate, or
roughly 1.25 feet per second per second. We are then
determining a quantity of the order of 1? feet per
second per second with a probable error of about 1.25
feet per second per second, or roughly 8 per cent. The
situation is actually rather worse than this in prac
tice, since the probable error of a coordinate is
likely to exceed six inches, and furthermore the wind
and density are not known perfectly and there are also
errors in timing. In order to use effectively experi
mental data of this type, the most refined methods of
numerical analysis are needed. Since these methods
are not peculiar to ballistics, a detailed discussion
will not be given. The same sort of problem will be
discussed in some detail in connection with the re
duction of data from the aerodynamic range. Due to
the extreme accuracy required in the direct determina
tion of the trajectory, very few data of this sort
have been successfully reduced. If the experimental
difficulties are overcome, extremely valuable data
result, since the experiment i's performed under con
ditions identical with those under which the weapon is
used.

There is only one objection of a theoretical nature
to the methods described. It is assumed that the yaw
of the projectile is small and that drag is the only
force other than gravity acting on the projectile.
The experiment, since it involves no measurement of
yaw, will not in itself determine whether this assump
tion is justified. It must be known, by means of
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other experiments, that this assumption is justifiable.

3. Bomb drops with accelerometers .

An experimental method was used at Aberdeen to
find the drag of bombs which avoids certain of the
difficulties mentioned in the previous section. An
accelerometer was devised by the National Defense Re
search Committee to fit inside a bomb. In essence,
this was simply a small weight attached to a coil
spring; the spring was attached to the bomb. The axis
of the spring was coincident with the axis of the bomb,
so that deceleration of the bomb caused a displacement
of the weight from its equilibrum position. The po
sition of the weight is then a measure of the axial
component of force on the bomb. Furthermore, if the
bomb is in free flight, gravity has no effect on the
position of the weight relative to the bomb since
gravity acts both on the bomb and on the weight. To
be more precise, in flight there are two axial com
ponents of force acting on the weight: first, the
axial component of gravity and second, the force due
to tension of the spring. There are also two axial
components of force on the bomb, gravity and the axial
component of drag. If the relative motion of the
weight with respect to the bomb can be neglected, the
total axial acceleration of both must be the same,
and the acceleration of the weight due to displace
ment must be the same as the acceleration of the bomb
due to drag.

In the accelerometer used in the experiments the
position of the weight was telemetered to a receiving
station on the ground. A small transmitter in the
bomb transmitted a frequency which was a function of
the position of the weight. The basic data from the
experiment were the axial drag on the bomb as a func
tion of time, the initial position and velocity of the
bomb at release and the wind, density and temperature
as a function of altitude. From these data it was
necessary to deduce the position and velocity of the
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bomb throughout i^s trajectory, so that the speed,
air density and Mach number to which the observed
value of drag corresponded would be known". In order
to perform the calculation the equations (2.1) may
be used. Let a(t) be the acceleration measured by the
accelerometer. Then, ma(t) =pd2u%j), and the equations
(2.1) may be written in the following form:

(1) (X, ?, Z) - - a(t) (X - Wx, Y, Z - Wz)/u
- g CO, i, 0).

These differential equations may be solved by the
methods of numerical integration which are discussed
in Chapter VI. The numerical solution, though tedious,
does not lead to any surprising loss of accuracy as
does the numerical differentiation discussed before.
The results of the integration are the coordinates
X, Y, Z as functions of t. The drag may then be divided
by the correct values of p, d^ and u^ to give the
drag coefficient Kj> The results of one such anal
ysis, as made by' Iff. Mills, are shown in Figure 1. It
is noticeable that the record shows an oscillatory drag
at about 20 seconds after release. The period of this
oscillation is approximately the natural period of
yaw of the bomb. This shows that the fundamental re
quirement that the bomb have small yaw was not met in
this practical experiment.

A good overall check on this experiment is furn
ished by the numerical integration of the trajectory.
The bomb was dropped over the regular range bombing
instrumentation. The position of the airplane at
release and its initial vector velocity were measured
as well as the time of flight and the position of im
pact. The numerical integration, carried from the
beginning of the acceleration record to the end, gives
the total horizontal distance the oomb travelled dur
ing its flight and its total drop. These computed
values may be checked against the. measurements ob
tained in the range bombing. It was found for the
bomb whose record is shown that the computed horizon-r
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tal travel was over a hundred feet less than the
measured travel. Furthermore, according to the com
putation the bomb was two hundred feet under ground at
the end of the record. A complete solution of the
equations of motion as described in Chapter XI shows
that this sort of result might well be expected if the
computation is done on the basis of drag only. How
ever, the discrepancies should be smaller.

The acceleroraeter unit used was not the final
model. There is considerable reason to believe that
this accelerometer did not measure the axial component
of acceleration only. The later models were known
to be insensitive to acceleration perpendicular to
the axis of the bomb.

The accuracy of the measurement of acceleration is
estimated to be 0.3 feet per second per second. The
estimate of drag coefficient obtainable is accurate
then to, at best, one per cent. That is, when the
bomb has reached its maximum velocity the drag is of
the same order of magnitude as the acceleration due
to gravity and 0.3 feet per second per second is one
per cent of the total drag. A rather comprehensive
program was. under way at Aberdeen utilizing this meth
od and the method discussed in the previous section
to evaluate the drag coefficient for several bombs.
The program was temporarily suspended due to redesign
of certain bombs, whicn was necessitated because of
evidence that the yaw of the bomb during its flight
mas not small. This fact makes both methods ineffec
tive, and as a matter of fact, the bombs too.

U. Wind tunnel tests; static tests.

One of the most useful experimental methods of
measuring the aerodynamic forces on a projectile is
essentially a reversal of the method so far discussed.
Instead of firing or dropping the projectile through
the atmosphere the projectile is held fixed and air
is moved past it. The measurements are not limited
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to drag alone, and this nakes the method particularly
useful in the design of finned projectiles. These
projectiles, bombs, mortar shell and rockets, are
supposed to have a restoring moment. That is, the
torque due to yaw is supposed to tend to decrease the
yaw, and is supposed to be negative. Measurement of
drag alone is useless in the design of such projec
tiles.

Most of the work of this sort in this country has
been done at the National Bureau of Standards by
H. L. Dryden and R. H. Heald. During the war a rather
large body of data was also Obtained at the Hydraulic
Machinery Laboratory, California Institute of Tech
nology, under the direction of R. T. Knapp. Although
this later work was performed in a water tunnel, the
results compare very well with the most reliable sub
sonic wind tunnel work.

Good descriptions of wind tunnel method are avail
able in W. F. Durand, Aerodynamic Theory (Berlin:
Julius Springer, 193U). Therefore we will be content to
discuss briefly the general principles. A wind tunnel
(or a water tunnel) is designed to send air (or water)
through a test section in such a manner that the vector
velocity of the fluid at every point in the section is
the same. For subsonic flow, immediately preceding the
test section there is a larger section where the ve
locity is much lower. The density of air, its velocity
and temperature in the test sections are computed from
various measurements. In an idealized case, the com
putation proceeds on the following principles. The
three basic measurements are measurement by means of
orifices in the tunnel walls of pressure Pt in the test
section, and of the pressure PQ and the temperature T0
in the section preceding the test section.

The temperature is difficult to measure if the ve
locity is high, so that a direct measurement of Tj

. is
inaccurate. The gas law, P/p - kT, k a constant de
pending on the gas, gives a relation between the pres
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sure, the temperature and the density, so the density
Po in the pre-test section can be computed. The
tiro velocities V-^, V0 and the density in the test
section must be computed. This may be done on the
basis of three physical laws. These are the laws of
conservation of matter, of momentum and of energy.
Each of these laws gives one equation relating Pt,
^t» an<^ ^0* Po> V o» anc* these equations can be
solved for Vt, Pt and VQ. The temperature Tt is then
obtained from Pt, Pt by means of the gas law. In ac
tual practice this procedure is modified considerably,
and corrections must be made, based on comprehensive
calibration tests.

The model to be tested is suspended in the test
section on a strut. The strut is rigidly connected
to a balance system which consists essentially of a
table which is free to make small movements. The
force and torque which are necessary to prevent move
ment of the table are measured and give directly the
force and torque on the model and the strut. In order
to get the force on the model alone we must subtract
from the measured force the force on the strut. A
way of measuring the force on the strut alone is to
remove the model and repeat the same series of tests.
It is, of course, desirable to keep this correction
as small as possible. For this reason, a windshield
usually fit's around the strut. The windshield is
connected to the tunnel wall, or to some framework
which is independent of the balance system. The cor
rection, then, is for the part of the strut that is
exposed to the air flow. This is called a tare cor
rection. It is also desirable to make a so-called
interference correction. The air flow around the
bomb is not« the same as if the strut were not there.
The change of the force on the bomb due to the pres
ence of the strut (not the force on the strut) is
called an interference effect. It can be estimated
by means of an image test. A dummy strut is fitted
into the opposite side of the model and the same
series of tests is run. Two sets of data are then
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available. One gives the total force on the model
with two struts and one gives the force with one
strut. An extrapolation then gives the force on the
model with no strut. This procedure would be perfect
ly correct if there were no air flow across a plane
through the axis of the model and perpendicular to
the strut.

For subsonic work probably the best suspension is
not by strut, but by a net-work of fine wires. The
force on the wires is then computed by removing va
rious ones of them and measuring the resulting force.
Unfortunately this sort of suspension makes the work
go slowly and one of the "big advantages of the wind
tunnels is lost, namely, the speed of operation.

In testing a particular model a program soiie thing
like the following might be laid out. A certain num
ber of speeds would be selected, depending on the
speed expected in actual flight and on the capabil
ities of the tunnel. At each of these speeds the po
sition of the model would be varied through a number
of angular positions. At each angular position,
measurement would be made of drag D, lift L, and mo
ment M. The resulting values can be graphed as func
tions of yaw 6 for each speed. It is noteworthy that
these graphs are not usually symmetric about 6=0.
The lack of symmetry is supposed to be due to lack of
symmetry of the model. However, there is usually a
point of symmetry on the curve. That is, on the lift
and moment curve there is a point such that the curve
falls on itself if rotated about the point through
180°, and for the drag curve there is a vertical line
of mirror symmetry. The best estimate of the corres
ponding force or moment of the idealized projectile
is obtained by taking averages of points on both sides
of the point of syiwnetry. This has a justification if
we assume the asymmetry of the curve is due to a small
protuberance which adds a constant amount to the force
or moment measured.
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It is not necessary in examining the data to make
the assumption that the lift and moment are linear
in the angle of yaw. Instead we may examine the data
and decide for ourselves over what range the linear
approximation is valid. It is still desirable to ex
amine dimensionless coefficients and the ones usually
Ohosen in ballistics are the following:

KD - drag/pd2u2,
(1) kL - lift/pd2u2,

ky = moment/ pd^u2.

The latter two are related to the coefficient Kl, % ,
in a very simple way. Namely, kj, » Kl sin 6 and
kM B Kji sin 6. Actually the use of sin 6 instead
of 6 is hardly justified. The departure of the co
efficients kjj and k^ from linearity is usually more
serious than the difference between sin 6 and 6.
The most satisfactory way of obtaining K l and K^ is
to select an interval about 0° yaw on which kLand
ky appear to be linear, and to fit a straight line to
the observed data over this range. The values of Kl
and shown on Figure 1 were obtained this way.

The tremendous advantage of the wind tunnel method
is the directness and rapidity of the measurement.
The directness of observation is also extremely use
ful in another way. Certain phenomena may be observed
in a qualitative fashion in such a way that a good bit
of information is obtained about the probable perform
ance of a model. In particular one can observe sep
aration of the air flow. Around the front end of a
projectile which is not too blunt, the air flow,will
be steady, that is, the vector velocity of the air
at points npar the projectile will not change with
time. On the other hand behind the projectile the
velocity at any place will vary rapidly with time,
like the flow in the wake of a boat. It is highly de
sirable to design a projectile where separation occurs
as far back as possible. If the flow about the fins
is unsteady their restoring action is greatly dimin-

Sec. h 219





ished. Also early separation inevitably gives a very
high drag. There are two methods commonly used to
observe whether or not the flow is steady. The sim
plest method which can be used in a subsonic tunnel is
to attach small tufts of yarn to the surface of a
model. The tufts indicate the direction of flow and
inmediately show whether or not the motion is steady.
Photographic methods permit a much more careful study
of the flow pattern. These methods can be used best
at supersonic and at relatively high subsonic speeds,
since they depend on the fact that the density of the
air varies from point to point in the air stream. The
value of the observations of this sort is shown by
photographs 2a, 2b. In the photograph 2a the angle
between the sides of the model and the tail cone is
too great, and the flow separates. In the second
photograph the model has been modified and no sepa
ration occurs. In itself this fact is of no import
ance but it shows a reason for the extremely important
fact that the first model is unstable, while the second
is stable. That is, the first model has an overturn
ing moment and the second has a restoring moment.

Interpretation Of wind tunnel results requires con
siderable care. Although higher accuracy can be ob
tained, most wind tunnel work on projectiles contains
uncertainties of the order of five or ten per cent.
Some care is also necessary in setting up design re
quirements. A finned projectile is, in a certain
sense, stable if Kj^ is negative; that is, the model has
a restoring moment. This criterion of stability is
actually inadequate in itself. Some definite margin
of stability is needed. In Section 5 we shall dis
cuss a more suitable criterion of stability which in
volves, naturally, enough, both aerodynamic and phys
ical properties of the projectile.

There is a limitation on the size of the model that
can be tested in any particular wind tunnel. It ia
clear that if the model is too large the air flow will
not resemble the flow about the projectile in free
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Figure III.h. 2a
Schlieren Photograph of Bomb Model at Mach No. 0.35

Model MB 11, Air Flow Separates
Bomb Tunnel, Ballistic Research Laboratories



Figure III. It. 2b

Schlieren Photograph of Bomb Model at Mach No. 0.80
Model MB 12, Air Flow Does Not Separate

Bomb Tunnel, Ballistic Research Laboratories



flight. In order to check on whether the model is
too large it is only necessary to measure the pressure
at intervals along the wall of the test section. If
these measurements agree with the pressures obtained
with the tunnel empty, it is reasonably certain that
the model is sufficiently small.

It is particularly unfortunate that any model is
too large if the tunnel speed is sufficiently near
the speed of sound. There is always an interval in the
range of Mach number in which the effect of the tunnel
walls on the air stream about the model is not negli
gible. The range of Mach number in which tests are
impossible depends on the size and shape of the model,
but ordinarily tests between Mach numbers .85 and 1.1
are difficult and unreliable. It is unfortunate that
the limiting speed of most of our bombs lies precisely
in this blind range. For this reason, and for other
reasons, wind tunnel tests on bombs must always be sup
plemented by free flight data.

5. Wind tunnel tests ; dynamic tests .

In the preceding section we have discussed measure
ment of drag, lift and moment. If the projectile un
der consideration does not spin, the Magnus forces and
couples vanish and there are only one force and one
torque in addition. These are the damping moment,
or the torque due to cross spin, and the force due to
cross spin. Ail measurements of the damping torque,
with the exception of a single series of tests in the
Twenty Foot Wind Tunnel at fright Field, have been
made at the National Bureau of Standards. The only
wind tunnel measurements of the force due to cross
spin were made in the Wright Field series.

There are two methods which have been used to
measure the damping moment. The first, the so-called
log decrement method, was first used by H. L. Dryden
and R. H. Heald. The second, the forced oscillation
method, is due to G. B. Schubauer, also of the Bureau
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of Standards. We will discuss the log decrement meth
od first.

The model is mounted upon a spindle which runs
through the position corresponding to the position of
the center of mass on the full scale bomb. The other
end of the spindle is set in a bearing. The model is
then turned from its equilibrium position and released,
so that it oscillates and gradually comes to rest. A
record is made of the angular position as a function
of time. The differential equation governing the
motion of the model is not difficult to derive.* LetI be the moment of inertia of the ^model and spindleabout the spindle axis. Then j& is the rate of
change of angular momentum. The damping torque is- d^u% , and the righting moment d-VKji . (Recall
that Kj

| is negative for fin-stabilized projectiles.)
The equation of motion is then

(1) I 6 - - p d^u% o + p d3u2Ky 6.

For convenience let us define
(2) h - ♦ pAd^, m - - pdVt^,
so that (1) becomes

(3) 16 + ho + m& - 0.
The quantities h and m are positive. The equation (3)is linear homogeneous with constant coefficients andits solution is of the form

6 » &i exp \jt + a2 exp \2t,
•where a^ and a2 are constants and X-^ and \2 are the

*In this equation account should be taken of fric
tion. The friction can be assumed to be of the form
(constant )( angular velocity) + (constant), and two
constants can be determined experimentally. The analy
sis of the experiment in this case is more tedious
but not essentially more difficult than the idealized
analysis which we give.
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solutions of

(It) IX2 + hX + m - 0.
This can easily be checked by substitution. If both
X^ and X> are negative the bonib comes to rest without
oscillation. The oscillation of a bomb in a water
tunnel would generally be of this type. F°r most pro
jectile models in a wind tunnel, h* - Ijml is negative.
The roots X^, X2 are then complex numbers, and the
solution is oscillatory. We may write
exp X^t ■ exp ( - h + /h2 - l4ml)t/21

- (exp - ht/2I) (cos /Uml - h2t/2I
+ i sin </ Uml - h2t/2I).

For most projectiles hMI is very much larger than
h . so that without loss in accuracy we may replace
t/lwL - ha/2I by Since 6(t) is a real linear
combination of expXit and exp X& it must have the
form

(5) o - c(exp - ht/21) cos (/m/I t ♦ <
|>
)

where c and 4> are constant. Let us choose the or
igin of .time at a point of maximum yaw. Then fort-0, o-o, &-&0 and (5) must have the form

(6) 6 - 6Q(exp - ht/21) cos ( /mfl t + f)/cos 4,

where tan |>

- - h/2A/mI.
Let P be the time from maximum to maximum. Clearly,
(7) Period - P - 2n«/T7m.
If the period is measured from the record of yaw
against time, then solving (7) for m and solving (2)
for % gives

(8) % = - l*2l/pdVp2.
In order to evaluate % from the yaw record let us

compute & at successive, maxima and minima.
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^lst max so»

&lst min "
f>o exp (- hP/Ul),

6 2nd max
"
&o exp (- hP/2I),

6 2nd min
" * exp (- 3hP/UD.

Let

Al * ^lst max " ^lst min,
A 2 ■ 6 2nd max - 6 2nd min.

These are better quantities to measure than o itself,
since the zero of the yaw record is usually uncertain.
Substituting from (9) gives directly

Solving this equation for h, and then for Kh gives
the required formula,

The accuracy which can be obtained in determining
by this method is not too high. The difficulty lies
mainly in the fact that the yaw damps out very rapidly,
and the error in K g is directly proportional to the
percentage error in the measurement of angle. The
combination of a limited number of observations, and
limited accuracy on each, leads to fairly substantial
uncertainties .

A somewhat more satisfactory method was devised by
G.B. Schubauer. The principal purpose of his mechan
ism was to set up a forced oscillation which would
permit neasurement of a steady instead of a transient
phenomenon. As before, the model is mounted on a
spindle, free to rotate. The bottom of the spindle
is then attached, through a torsional spring, to an
oscillating disc, as shown in Figure 1. In addition
to the torques shown in equation (l) there is then an
additional torque, which will be proportional to the

(10) Ax/A2 s exp hP/2I.

(ID 21 logeAi/A2
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difference in angular position between the model and
"the driving disc. If the frequency of the drivingoscillation is v and its amplitude is Oq , the angularposition is given by otc^os v t. The torque exerted onthe model is then, according to Hooke's law, proportional to 6 - Oocosvt. The constant of proportionality will be denoted k, and is called the spring constant. The equation governing the motion is then obtained by adding this term to equation (l).
(12) 16 - - hb - mb + k(6 - OqCOs vt).
We assert that this equation has a solution of theform
(13) o - 60cos (vt +
Here &Q is the amplitude of the model's oscillation,
and ^ is called the phase difference. Substitution
of (13) in (12) leads to

- I&qV2 cos (vt + $)
(Ik) - h6Qv sin (vt + $)

+ (k - m) b 0cos (vt + t J - k a0cos vt.
In order to have this equation satisfied identically
we replace cos vt by

cost (vt + <
>
) -

= cos (vt + ^
) cos ^+ sin (vt + 4>
) sin 4>

and equate the coefficients of cos ( v t + ^ ) andsin ( v t + ♦ ) .

- I60v2 - ^(k - m) - kao cos ^
,

0 - h v 60 - koo sin ^
.

These equations may readily be solved for b0 and ^

■which shows that there does exist a solution of the
form (13). In other words, for any frequency v and
any amplitude <x0 of the drive system there is a

possible solution b - 60 cos (vt + 9 ). For a fixed

v and oQ there are, of course, as many solutions as
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there are sets of initial conditions. However, the dif
ference between any two solutions of (12) is a solu
tion of (l), and this difference is therefore damped
out rapidly.

The experimental method based on this analysis is
the following. The frequency v of the driving system
is varied, until a phase difference ^> of 90° is ob
served.* When this phase difference is obtained the
amplitude &0of bombs oscillation and the frequency
v are measured. The second of equations (15), set
ting 4>

■ 90°, gives

(16) h - ka0/v bQ,

and hence

(17) Kh = kao/v
Since the spring constant k and the amplitude aQ of
the drive are known, the evaluation of Kg is accom
plished.

This analysis is based on a linear theory. How
ever, by varying the amplitude of the drive, the am
plitude of the model's oscillation can be governed and
an idea of the mean value of Kg as a function of yaw
results. As might be expected, there is considerable
variation with shape of model.

The determination of force due to angular velocity
requires no new type of experiirent. Suppose that Kg

*In Schubauer's experiment indicators were linked
to the model and the drive, with a 90° phase differ
ence built into the linkage. *The desired value of the
frequency then caused the indicators to oscillate to
gether. In the Wright Field experiment an apparatus
designed by Dr. A.C. Charters flashed a light at the ex
tremes of the oscillation of the drive. This "stopped"
the indicator of the model, revealing directly the
phase difference.
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is determined for a model and that the spindle is then
shifted r calibers forward and the experiment repeated.
If the resulting value of damping coefficient is K^*,
according to (II. 5. 7)
(18) %* - % - r(Ks + %) + r2%.
Hence,

(19) % - (KH - %* - rKM + r2%)/r.
This method of determination of Ks was used in the
Wright Field experiments. Due to uncertainties in

the determination of Ks was probably subject to
uncertainties of the order of hO per cent.

The value, of measurements of damping has been
demonstrated by empirical stability tests. It should
be noted that the present methods, though giving re
sults somewhat less accurate than is desirable, are
capable of considerable improvement through further
development of the instrumentation.
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Chapter IV

THE NORMAL EQUATIONS
1. The normal equations of the trajectory.

In Section 7 of the second chapter we have derived
equations whose solution would describe the motion of
a projectile with accuracy entirely adequate for the
purposes of ballistics. However, these equations are
far too complex to be manageable in the form given.
They involve the density of the air at various places
and this is a function of position which changes from
day to day. They involve the winds, which also vary
with time. They involve a large number of aerodynamic
functions, varying from one model of projectile to
another; and they also involve the initial conditions
of motion. For any given values of the functions en
tering the equations it would be possible, though dif
ficult, to solve the equations with any desired degree
of accuracy, by the methods to be explained in Chapter
VI. But this is evidently impossible in the field.
The trajectories would have to be computed and tabu
lated in advance. This, on the other hand, would re
quire anticipating every possible arrangement of winds,
densities, etc., a manifestly impossible undertaking.

One feasible way of extricating ourselves from this
difficulty is to split the problem into two parts. In
the first stage, the problem is intentionally over
simplified. All the small terms in the equations of
motion are omitted. The density is assumed to be
always the same function of y, the vertical coordinate,
alone, and likewise the temperature. The wind is
always the same constant value. For each one of a
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selected few drag coefficient functions Kn, it is now
possible to compute a collection of trajectories cor
responding to the remaining parameters in the equa
tions of motion, namely (dr/m) and the initial speed
and angle. From these the pertinent data, that is the
range, time of flight, angle of fall and striking ve
locity can be found and tabulated against the par
ameters. In particular, for a given shell or bomb the
initial conditions needed to produce a hit on a target
in a known position can be found; in other words, a
firing or bombing table can be prepared for the pro
jectile, for use in the field. This however still
leaves the second part of the problem, which is to de
vise usable methods for calculating the effects of
the small forces which were ignored and for differ
ences between the actual conditions of temperature,
density, etc., prevailing at the time of firing and
the conditions which were assumed to hold when the
trajectories were computed. This latter part of the
problem will form the subject matter of Chapters VII
to IX. This chapter and the next two will be devoted to
a study of the first part.
Consider first the question of selecting a stand

ard density function. There are two aims that we must
keep in mind. First, the function must be such that
on any given day the actual density is unlikely to
differ much from our chosen standard. The reason for
this is that the method which will be used in calculat
ing corrections for departures from standard has its
greatest percentage accuracy when the departures are
small, and can show greater errors when the departures
become large. The second aim is an obvious one; the
function should be chosen so as to be convenient to
use in computation. Exactly similar considerations
apply to the selection of a standard temperature. It
does not matter to the ballistician that his' chosen
standards may not be compatible with the physics of a
stable atmosphere of the composition of the earth's
atmosphere. If he wishes, he may think of his stand
ard atmosphere as a temporary structure, lasting only
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long enough for the projectile to traverse it and then
going over into turbulent motion. But this is really
not essential. The purpose of the selection of the
standard structure is to give a mathematical point of
departure, from which the desired ballistic data can
be found by applying corrections appropriate to the
structure actually existing at some particular moment.

Since most artillery trajectories start from points
not vastly higher than sea-level, it is reasonable to
assume as a standard condition that the trajectory
starts from the point (0, 0, 0) and that this point
is at sea-level. The standard air density at sea-
level will be denoted by p*. In U.S. ballistics this
is taken to be .075126 pounds per cubic foot. It is
also assumed that the density is a function of y alone,
and its ratio to p* is denoted by H(y), so that
(1) P(y)- P*H(y).
(Cases in which the start of the trajectory is not
near sea-level will be discussed in the next section.)
Two different standards for H(y) are frequently used.
In the case of trajectories whose highest and lowest
points have altitudes differing only by a few hundred
feet, the assumption is usually made that H(y) is con
stantly equal to 1, so that p(y) is constantly equal
to p*. For trajectories extending through a consider
able depth of atmosphere the standard assumption is
(2) H(y) « e"hy,

where the quantity h has dimensions [L]~ . The stand
ard value of h in the United States is .00001;$ logigeif y is in meters; that is
(3) h - .0001036 m-1 - .00003158 ft-1.
Since the exponential law loses its accuracy in the
stratosphere, other standard density ratios have been
discussed which depart from the exponential at large
values of y. However, up to the present little if any
ballistic computation in the United States has been
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based on laws other than the constant or the exponen
tial H(y).

Before we discuss "the choice of a standard temper-
ature law, it might be advisable to allay the possible
puzzlement of a reader who has not noticed any temper
ature mentioned in the equations of motion. The drag
coefficient Kd is a function of Mach number, which
is the ratio of the speed of the projectile with re
spect to the air to the velocity of sound in the un
disturbed air near the projectile. It is accurate
enough for our purposes to suppose that the velocity
of sound in air is proportional to the square root
of the absolute temperature of the air. As a matter
of fact, we could appropriately say that we are choos
ing not a standard law for the variation of tempera
ture with height, but a law for the velocity of sound
as a function of height. We shall continue to givelip service to the traditional statement that we are
choosing a temperature standard; but in case the dis
tinction should ever become necessary, we should keep
in ndnd that it is really a standard selected velocity
of sound that we actually make use of.

For trajectories whose highest and lowest points
have little difference in altitude it is reasonable
to suppose that the temperature is constant, and this
is usually done. It was also done at the Ballistic
Research Laboratory at Aberdeen Proving Ground when
the trajectories were prepared which form the basis
for the bomb ballistic reduction tables, used in pre
paring the bombing tables for the war which ended in
19hS' There was a valid computational reason for this
choice, to be explained in the next section. However,
for trajectories extending through a great depth of
atmosphere it is customary to assume a temperature
law more nearly representing recorded temperatures.
The law now taken as standard at Aberdeen is that the
absolute temperature in degrees Kelvin (that is, ab
solute Centigrade) is a function of y alone, and is
(U) e - 286e'2aiy,
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where

(5) &l - 2h/21,
k having been defined in (3). This is a striking ex
ample of selection in accordance with the two aims
discussed in the third paragraph of this section. The
law selected is serviceable in that on any given day
the temperature at height y is not likely to depart
very greatly from this standard; this is especially
true at great altitudes. And as for the second aim,
the fraction 2/21 in (5) was chosen because this is
an easy gear ratio to obtain with the gears available
for use with the differential analyzer at the Ballis
tic Research Laboratory.

Equation (5) leads to the law for the speed of
sound at height y

where us is the speed of sound at height y and the
speed of sound at height 0 is taken to be that corres
ponding to a temperature of 1$° Centigrade (=288°
Kelvin = 59° Fahrenheit). This is approximately 1120
feet per second.

In the United States the ballistic standard gravi
tational acceleration is taken to be

exactly.

Our final simplifying assumption is that Kn, which
is a function of Mach number, Reynolds number and
shape parameters (see Sections 1.1$ and II. 2), is in
dependent of Reynolds number and for a given shape of
projectile depends on Mach number alone. This is cer
tainly untrue if widely different Reynolds numbers are
compared. Experiments have shown a ten per cent dis
crepancy between the values of iS

q at the same Mach
number for two similar projectiles whose diameters
were approximately six inches and one-half inch re-

(6) Ufl(y) - u8(0)e-aly,

(7) g = 9.8 m/sec
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spectively. But little precise information is now
available, and we are not now in a position to im
prove on the assumption that Kn depends on Mach num
ber and shape alone. After all these simplifications,
our equations of motion (II. 8. 2) take the form

3c- - (d2/m)p(y) KjjWu^y)) vi,
(8) f - - (d2/m)p(y) %(Vu»(y)) vy - g,

?- - (d2/m)P(y) KcCv/ugCy)) vi,
where

(9) v - + y2 + iz.
It is interesting to note to what extent we have com
mitted ourselves by choosing this form for the equa
tions. U'e have discarded all the small terms, such
as the forces perpendicular to the trajectory and the
change in gravity and the Coriolis forces, and have
retained only drag and gravity. We have disregarded
any possible dependence of drag on Reynolds numberj
and we have assumed that the air is stationary with
respect to the axes. We have not needed to assume
t-hat the axes were stationary with respect to the
earth. They could be in uniform translation with re
spect to the earth, provided that the air moves with
■them. We have not yet, in (8), committed ourselves to
any particular standard density or temperature laws,
such as (2) or (U). So if the projectile is moving
through an air mass which is. itself moving uniformly
with respect to the earth, and we know the density
and temperature distribution in the air mass, we could
solve (8) to obtain an approximate trajectory. It
would still be in error to the extent of the effects
of the small forces and the effect of the dependence
of K d on Reynolds number .

In the nineteenth century it was not understood
that temperature had any effect, and it was conse
quently believed that Kjj depended on v alone. -Thus
for motion through air at standard density the first
of equations (8) would have been mistakenly written
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in the form / \
1 - (d2/m)[p*KD(T)v]i)

and the others in a corresponding way. The factor
d /m was called the ballistic coefficient on the
European. continent j in the English-speaking countries
that name was given to m/d2. The expression in square
brackets was called G(v), and several tables prepared.
We shall now show how we can make practical use of
these tables without involving ourselves in the fal
lacy that Kn is a function of v. This 'is a necessary
task because it is traditional in ballistics to trans
form equations (8) into a form involving G. There are
two methods by which we can correctly bring (8) into
traditional form; these methods are formally differ
ent, but produce the same sets of numerical values
when the unite used in the computations are those cus
tomarily used in ballistics in the United States.
Both methods are frequently referred to, so it is de
sirable to explain both of them.

In the first approach, we recall that G(v) is what
the expression p^)v would be if density and tempera
ture were standard. Sometimes the product pKn is
also used, under the name B(v). Accordingly, we de
fine the ballistic coefficient C by the equation

and we define B, G to be what pKp and pKjy would be
at velocity v provided temperature and density were
both standard:

These are named the retardation coefficient and the
drag function respectively. For compactness of no
tation we also define the relative sound velocity
function to be

(10) C = m/d2,

(11)

(12)

B(v) = p*KD(v/u8(0)),
G(v) - p*KD(v/ufl(0))v.

(13) a= 4 e/e8(o),
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where Q is absolute temperature and 08(O) is stand
ard absolute temperature at sea— level (ordinarily
taken to be 288°K). It is obvious that the velocity
of sound is
(Hi) u8 - aus(0).
Hence when we have selected a standard temperature
law, standard temperature at altitude y being ©B(y),
(13) furnishes us with a standard relative sound ve
locity law, related to u8(y) by equations (lli). By
(11) and

MO P*KD(Vus(y)) = p*KD([v/u8(0)]/a)
U5J

= B(v/a),
whence by (12),

p%(v/us(y))v = [v/a]B(v/a)a
= aG(v/a).

With the help of these equations, (10) and (11), equa
tions (8) take the form

S- - (R/C) B(v/a) vi
= - (H/C) G(v/a) ax,

•y - - (H/C) B(v/a) vy - g

= - (H/C) G(v/a) ay - g,
a = - (H/C) B(v/a) vz

=» - (H/C) G(v/a) ai.
The second form, involving G, has been much more fre
quently used than the first, involving B. As a rule,it is somewhat more adapted to numerical work. How
ever, many trajectories have been computed on the dif
ferential analyzer with the first form of the equa
tions. It is evident that the choice between the two
forms is purely a matter of convenience. When com
puting machines (or logarithmic tables) are used,, it
is more convenient to tabulate B or G against

(17)
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rather than against v. The reason is that in the
process of numerical integration the velocity com
ponents x and y are found, and it is easier to com
pute v, which is the sum of their squares, than to
compute v, which would require finding the square root
of v2.

With the definitions Just given, it is clear that
C has dimensions [m]/[l] , H and a are dimensionless,
while B has dimensions [M]/[L] and G has dimensions
[liy[L^[T]. Equations (17) are valid in any consis
tent set of units. Unfortunately, they are not so
used, and some care is needed to avoid being lost in
a maze of assorted units. Except in some of the most
recent tables prepared at the Aberdeen Proving Ground,
the units used in (10) are the pound and the inch;
standard air density at sea-level is .075126 pounds
per cubic foot; and v is expressed in meters per sec
ond, so that either x, y and z must be expressed in
meters or else a conversion factor must be applied
in computing v2 in order to find the value of G (or of
B, in case the first form of (17) is used).

The situation with regard to the units is more
easily seen through if we adopt the second of the two
sets of definitions mentioned above. In this approach,
a standard projectile is defined. This standard pro
jectile is geometrically similar to the one whose tra
jectory is being discussed, but it is supposed to
have a standard mass and a standard diameter. The
standard projectile for U.S. ballistics is defined to
have a diameter of one inch and a mass of one pound.
For each shape of projectile there will of course be
a standard projectile, but all the different standard
projectiles have the same diameter and mass. We de
note the standard diameter by d* and the standard mass
by m*, and we define

(18)
m/d2

C -
m*/d*2

'
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(19) B(v) = (d*2/m*)p*yv/ua(0)),
(20) G(v) = v3(v).
With these definitions we again obtain equations (17)
for the motion of the projectile. Now however, C is
dimensionless, B has dimensions [L]~^and G has dimen
sions [t]"*. If we express all lengths in feet, all
masses in pounds and all times in seconds, the first
factor in the right member of (19) is l/lUh and the
second is .075126 when the standard U.S. values are
chosen, so that (19) becomes

(21) B(v) = %(v/1120)/1916.7,
while (20) becomes

(22) G(v) = vJfc(v/ll20)/l9l6.7.
The constants 1120 and 1916.7 in these equations are
values in the units chosen of the quantities us(0) and
(m*/d*2)/p*, which have dimensions I l]/[t] and LLj re
spectively. Thus if the meter is to be used as the
unit of length, equation (22) must be replaced by

(23) G(v) = vKD(v/3Ul.U)/583.95,
and (21) must be similarly amended. Equations (22)
and (23), though they appear different, must yield
the same value for G corresponding to any velocity of
the projectile, provided that the velocity is expressed
in feet per second in (22) and. in meters per second
in (23). This is evicent from the fact that G has
dimensions [T T"\ Thus if a table of values of G has
been prepared with argument in meters per second, all
that is needed in order to obtain a table of G with
arguirent in feet per second is to convert the argu
ment; the values of G will not need change.

Equations (17) can be still more compactly written
by introducing the symbol

(2U) E = aH(y)G(v/a)/C - H(y)vB(v/a)/C.
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Then they become

(25)

Ex,
Ey - g,
Ez.

The only excuse for introducing so trivial a variant
of (17) is that the notation (2l») is traditional and
is convenient in the computation of trajectories.

Although the use of the ballistic coefficient C has
been traditional for many years in the United States,
it. is not a particularly convenient parameter. In many
instances it has proved convenient to use, instead of
C, its reciprocal

For example, at a fixed altitude and initial velocity
the range of a bomb is fairly nearly a linear function
of y* except for the very lightest models of bombs.
This makes interpolation in tables easy. In terms of
the reciprocal ballistic coefficient, equation (2U) be-

equations (25) remaining valid.
If the functions H(y), &(y) and G(v) (or B(v)) have

continuous derivatives, as we shall always assume,
equations (25) have exactly one solution for each set
of initial values x(0), y(0), z(0), x(0), y(0), z(0).
In particular, if z(0) - z(0) - 0, and we solve the
first two of equations (25) with z » 0 to obtain x and
y and then set z identically equal to zero, we obtain
a solution. This is then the only solution with the
given initial values. Henceforth, in discussing the
normal equations, we shall always suppose that the
coordinate system has been so chosen that the initial
velocity is in the (x, y)-plane. Then z and z vanish
at time t = 0, and therefore remain identically equal
to zero. Thus if we wish we may retain only the first

(26) T - 1/C

comes

(27) E - YH(y)aG(v/a) = YH(y)vB(v/a),
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two of the normal equations, keeping in mind that the
trajectory will be entirely in the plane * - 0. This
justifies a statement made in Section 3 of Chapter II.
However, when we come to compute the effects of the
small forces which we have ignored, the effects of
cross winds, etc., the third equation must rejoin the
other two.

2. Applications of the normal equations to bomb and
aircraft artillery trajectories.

Although it is not mathematically necessary, it is
evidently convenient to consider the trajectory as
always starting from the origin and to take the time
as 0 at the time of starting, so that the initial con
ditions

(1) x(0) - y(0) - z(0) o 0

will be taken as standard. This is appropriate in
ooast and field artillery problems, in which the start
of the trajectory is usually from some point not
greatly above sea-level. However, in problems concern
ing firing and bombing from aircraft we meet a diffi
culty. The air density at the origin, in the normal
equations, is taken to be standard air density at sea-
level. But bomb trajectories may start from as much as
six miles above sea-level, where the air density is
roughly a third as great as at sea-level. This clearly
is not the sort of difference that can be corrected for
by means of a small correction- term. It is at this
point that the exponential density law proves extremely
convenient.

Suppose that the origin of coordinates is at an
altitude Y above sea-level. The point (x, y, z) will
have altitude Y + y above sea-level, and if the stand
ard density law has been well chosen the air density
at this point will not differ greatly from p*H(Y + y) »

where as before p* denotes standard air density at sea-
level. So a trajectory computed with air density
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p(y) ■ p*H(Y + y) will be nearly enough accurate to
allow making a small correction for the departure of
conditions at time of firing from the assumed condi
tions. In the same way, the ratio of the velocity of
sound at the point (x, y, z) to the standard velocity
of sound at sea-level is approximately a(Y +y).
Thus the equations which we wish to solve are obtained
from (1.25) by replacing H(y) by H(Y + y) and a(y) by
*(Y + y), and so have the form

x - - YH(Y + y) G(v/a(Y + y)) a(Y + y) x,

(2) - YH(Y + y) G(v/a(Y + y)) a(Y + y) y - g,
a - - YH(Y + y) G(v/a(Y + y)) a(Y + y) z.

If we select the standard density law (1.2) we find
(3) H(Y - y) = e^V* - e"hYH(y).
Substituting this in (2) yields

X- -ire-hT\ H(y) G(v/a(Y+y)) a(Y + y) x,
(U) y = -CYe-hY]H(y) G(v/a(Y + y)) a(Y + y) y - g,

'a
* - -tYe"hY]H(y) G(v/a(Y +y)) a(Y +Y) i.

These are not identical with (1.25). But if we are
willing to use the standard temperature law a= 1,
thus assuming the same temperature at all altitudes,
equations (U) differ from (1.25) only in that the con
stant Yin (1.25) is replaced by the constant [fe~^ ]
in (I4). In bombing ballistics it is customary to de
fine the summital ballistic coefficient Cs by the
equation

(5) C8 = CehY,

so that its reciprocal, the reciprocal summital ballis
tic coefficient or summital Y for short, is
(6) Ya = Ye-hY.

Thus equations (U) differ from (1.25) only in that
is replaced by Ys«
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This remark has great importance in connection with
bomb ballistics. Let us suppose that we are undertak
ing the task of preparing a table showing the range
and time of flight of a bomb launched horizontally, as
a function of its initial velocity, its reciprocal
ballistic coefficient and the altitude of release. We
would anticipate having to prepare a collection of tra
jectories for several values of each of these varia
bles, spaced closely enough to permit trustworthy in
terpolation. But if we are willing to assume stand
ard sea-level temperature throughout the trajectory,
so that a is constantly equal to 1, we need only pre
pare a collection of trajectories for a set of values
of Y and initial velocity, which constitutes a great
reduction in the number of trajectories to be computed.
Now, given any values of Y» altitude Y of release and
velocity vb a^ release, we first compute Yb dv (6).
Then with this Ys and v0 we find the time at which the
boxb has fallen a distance Y and we find the x-coord-
inate (which is the range) of the oomb at this time.
The work involved in computing the trajectories is
still considerable; but without this simplification it
would hardly be within the bounds of possibility for
human computers equipped with ordinary computing ma

chines .

In computing bomb trajectories one further small
modification of equations (h) is customary. Since the
trajectory is entirely below the point of release, the
y-coordinate in the system we have been using would
always be negative. To avoid an incessant repetition
of minus signs, we change the coordinate system by
choosing aownwards as the positive y-direction, x and
z being unaltered. If we also aaopt the standard

a = 1,
equations transform into

X = - Yeehy G(v) x,
(7) y- -Y3ehy 0(v) jr + g,

■ - - yBJV G(v) z.
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As previously remarked, the third of these is super
fluous if we assume z(0) = z(0) - 0. The first two
are the equations whose solution forms the basis for
bomb ballistic tables.

3. Ballistic tables and firing tables .

Since considerable confusion has been observed in
discussions of ballistic tables and firing tables, it
is worth while to devote a few lines to distinguishing
the two. A ballistic table consists essentially of a
summary of the pertinent information gained from a
collection of solutions of the normal equations. A.

collection of "normal trajectories," that is solutions
of the normal equations (1.25) or (2.U), is computed.
From these the range and time of flight corresponding
to various initial conditions and various values of
Y are obtained by interpolation and are tabulated
against the initial conditions and reciprocal ballis
tic coefficient as arguments. This table is the heart
of the ballistic table. In addition it may contain
tables of striking velocity and angle of fall against
initial conditions and Y, and if quite complete should
also contain the means ol computing the effects of de
partures from the standard conditions assumed in the
normal equations. Thus a ballistic table is computed
for a set of conditions, the "ballistic table condi
tions," which assume a flat non-rotating earth with one
fixed value of g, no forces acting on the projectile
other than drag and gravity, no wind, and a standard
distribution of density and temperature.

A firing table expresses primarily the relation
between angle of departure and the range of a particu
lar projectile, launched in a specified way. For ar
tillery the table will relate to a particular combin
ation of projectile and gun, with a specified powder
charge. For bombing the table will relate to a par
ticular bomb, giving range and time of flight in terms
of speed of launching and altitude of release. For
aircraft rockets the table will refer to a particular
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rocket launched from a particular airplane with a par
ticular propellant charge. In addition to the primary
table of range and time against angle of departure,
etc., it will also contain tables of corrections to
be applied for that particular weapon when the wind is
known and not zero, when the temperature is not stand
ard, when the projectile is above or below standard
weight, etc. The firing or bombing table is made for
the use of the man using the weapon, and its basic
purpose is to produce a hit on a target with the par
ticular weapon. The ballistic table is made for the
use of the nan who prepares the firing table, and its
basic purpose is to permit him to prepare an adequately
accurate firing table fast enough to meet the needs of
the using service.

k* Errors in firing tables produced by erroneous
choice of drag function.

People who have some knowledge of the order of
accuracy of the determination of drag functions, but
who are inexperienced in the use of ballistic tables,
have frequently expressed astonishment or amusement
about the number of significant places carried in such
tables. It seems obvious, at first sight, that if the
drag function is not known to better than one per
cent, there is no sense whatever in using it to com
pute a table in which the entries are given to five sig
nificant figures; the ranges could not be determined
more accurately than the drag function justifies.
This would in fact be correct if the ballistic table
were used in a highly stupid manner. This naive meth
od would be to measure the diameter d and the mass m

of the projectile and then to compute Y ■ d^/m. Now
corresponding to any initial velocity
(1) v0

= J*(o)2 * y(0)2
and to any angle of departure

(2) 0O
- arc tan y(0)/x(0)

we look in the ballistic tables to find the range and
the time of flight. These can almost be guaranteed to
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be too much in error to be of any use.

In actual practice, the ballistic tables are not
used in this way. Suppose that a projectile is being
tested whose drag function G(v) is not the same as the
drag function G*(v) on which the ballistic tables were
based, but happens to be a constant multiple of it,
say

(3) G(v) = (l/i)G*(v)
In this case the number i is called the form factor
of the projectile with respect to the drag function
G*. In order to avoid complicating the ideas involved,
let us imagine that the projectile is fired on a day
on which all the conditions are the same as ballistic
table conditions or differ so little from them as to
produce no significant effect. The initial velocity
vQ and the angle of departure 90 are measured, and also
the range X. The trajectory of the projectile will
not differ significantly from the solution of the
normal equations

U) x -- [d2/m]H(y) G(y/a) ax,

etc. But by (3) these are identical with
(5) 5! = -[id2/n]H(y) 0*(v/a) ax,

etc. That is the trajectory coincides with the normal
trajectory based on G* with

(6) Y = id2/mj

for the three equations of which (5) is the first are
exactly the same as (1.25) with the definition (6)
for y • Now, if we are quite certain that (3) is cor
rect, we are finished. For the range and the time of
flight of the projectile corresponding to any initial
conditions would be those in the ballistic table cor
responding to the same initial conditions and to re
ciprocal ballistic coefficient defined by (6). The
firing determined the range and time of flight corres
ponding to one set of initial conditions, and by using
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the tables we can find the y which with the initial
conditions produces the observed range. This deter
mines i by (6). With the same y we can' enter the
ballistic table to find the range and time of flight
corresponding to any other initial conditions. This
shows that it is possible for a table based on a drag
function everywhere in error by a factor 1/i to yield
exactly correct results, if properly applied.
If the shape of the projectile being fired differs

at all from that of the projectile whose drag function
is G*, it would be most unlikely that equation (3)
would hold exactly. It would be far more probable that
the ratio G(v)/G*(v) would be a smooth and slowly
varying function of the velocity v. Suppose again
that the projectile is fired on a day on which all
conditions are normal, and that the initial velocity
vQ and the angle of departure 60 are measured. Along
the trajectory the velocity will vary between certain
limits, and between those limits the ratio G(v)/G*(v)will vary between a maximum value which we denote byl/il and a minimum value which we denote by l/i2«
Then along the whole trajectory we have

If we are willing to accept the plausible statement
that when two projectiles have the same mass and di
ameter but one has at all velocities a greater drag
function than the other, then when they are fired with
the same initial conditions the one with the smaller
drag function will have the greater range, it is
easy to see that equation (7) implies that the r.ange
of the projectile will lie between the ranges corres
ponding to the reciprocal ballistic coefficients
ild2/m and igd^m. It will therefore correspond to
a reciprocal ballistic coefficient

where ix is between i^and i 2- (The subscript x con
notes that the form factor was deduced from the range . )

(7) (l/i2)G*<G < (l/i^G*.

(8)
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The form factor ix is a sort of mean value of the ra
tio G*/G. It is a rather complicated sort of weighted
mean; the value of the ratio at the beginning of the
trajectory is evidently more important than its value
near the end, since the deceleration of the projectile
near the beginning of the trajectory affects all its
subsequent flight while the deceleration near the end
has not time to produce much of an effect on the po
sition of the projectile. At this moment we do not
care very much just how this mean can be found. But
it is reasonable to suppose that it is an integral
mean, weighted by some sort of function depending on
the velocity and the air density. The point of great
est importance at this instant is that such a mean
may be expected to vary in a smooth slow way if any
of the initial conditions, such as angle of departure,
are varied. Thus if range firings are conducted at
several angles of departure, with ranges consisting
of the greatest range, a short range, and two or three
points between them, each of the firings will yield
a value of ix, or ofY x. These values will not all
be equal, but we may expect them to vary slightly and
smoothly between the points at which they are deter
mined. Even if we are unable to determine any formal
law governing the change of ix with range, when we
have found the values of ix corresponding to four or
five different values of the range and discovered that
the values are nearly equal and lie on a smooth curve,
we are entitled to feel some degree of confidence that
for values of the range between those used in the ex
perimental firings the value of ix can be accurately
estimated by interpolating between the values exper
imentally determined. Even though the ratio G*/G
varies from 1 by quite a considerable amount, this
process can yield a firing table of adequate accuracy.

The time of flight can be treated in the same way
as the range. At each range at which an experimental
firing is conducted, there will be found a value of
Y such that the time of flight found in the ballistic
tables corresponding to the given initial conditions
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and this Y is the same as the experimentally deter
mined time of flight. The reciprocal ballistic co
efficient thus determined will be denoted by Y f At
long as the ratio of G to G* is variable, there is no
reason to expect that Yt will be the same as Y x*

If we regard the technique described above from an
abstract point of view, it will appear that the ballis
tic tables constitute a means of effecting a change of
variables from initial conditions and range fvn, 0O, X)
to initial conditions and reciprocal ballistic coeffi
cient (v0, ©0, T). Unless the drag function is very
ill-chosen, this transformation will have the property
that for a given projectile, if X(v0, Sq) is the range
corresponding to the initial conditions, the points

60 » Y) int0 whicn the sets (vo» eo > X(v0, 60))transform have the values of Y which vary slowly
and smoothly with vQ and 6Q. From this point of view
(which at least temporarily ignores the question of
corrections for departures from standard) it would
not matter how the table is derived, or whether any
trajectories or any drag function had anything to do
with it. The ballistic table is merely a mathematical
aid to interpolation between experimentally determined
ranges. But to be useful such a table should be given
to more decimal places than the experiments yield, and
should be smooth to facilitate interpolation. This
is the explanation for the five significant figures
in a table which is based on a drag function whose
experimental determination may have been several per
cent in error.

A discussion like that just completed applies to
the use of approximate methods of solution of the
normal equations. In the next chapter we shall study
the Siacci method, an important feature of which is
the simplification of the equations of motion by re
placing v by some constant multiple of x to permit a
rapid approximate solution. If this method were used
with Y = d^/m, or even with the Y defined by (6) and
determined with the help of the ballistic tables from
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an experimental firing, the ranges deduced would be
grossly in error. Let us momentarily give the name
"Siacci range" to the range computed for given recip
rocal ballistic coefficient and initial conditions by
use of the Siacci approximations. The firing having
been done, we find the y such that the "Siacci range"
corresponding to this Y &nd the given initial condi
tions is the same as the experimentally determined
range. This is done at several ranges; the values of
Y thus found may be expected to form a slowly and
smoothly varying set, and the values of y correspond
ing to intermediate values of the range can be esti
mated by interpolation. This being done, the angle
of departure needed to attain the given range with
the given initial velocity is found by the same approx
imation method, and may be expected to be reasonably
accurate .

Now it becomes necessary to put in a word of cau
tion. By now the reader may have the feeling that
there is no advantage in using the correct drag func
tion or in using accurate methods of integration of
the equations of motion. This is not the case. For
one thing, if the drag function used is seriously in
error the values of Yx found by the firings at differ
ent ranges will vary more than they would if the drag
function were nearly correct. The more variable the
values of Yx found by the firings, the less confidence
can we feel in the results of interpolation between
them. In other words, a badly chosen drag function
may yield a fairly good firing table, but a well-chosen
drag function will yield a better one. For another
thing, there probably never was and never will be a
day on which all conditions were the same as ballis
tic table conditions. Thus it is not feasible merely to
measure the range and the time of flight of the pro
jectile. We must also be able to correct for the
departures from ballistic table conditions before we
can use the tables to findYx orY-t* Also we must be
able to furnish correction tables in the firing tables
so that the user can correct for the conditions at the
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moment of use of the weapon. Now it will be seen in
Chapter VIII that these corrections depend on the drag
function used. If the drag function is not of the
right shape, the corrections of the experimental re
sults for departurea from standard conditions will be
incorrect, and so the experimental evidence will be
misinterpreted. Also the using service will be fur
nished with erroneous tables of corrections for the
conditions of the time of firing. In fact, it is not
necessary to await the discussion of small corrections
in general before seeing the truth of this statement.
One interesting example will illustrate it without
any computation. Suppose that the drag function
chosen in making the ballistic table were based on a
constant Kjj; this is in fact done in the Euler method.If we inspect the normal equations in the form (1.3)
we see that the temperature enters only through the
argument v/us(y) of Kp, and if is constant the
value of this argument is >of no importance. So in the
ballistic tables no effect of temperature will be
found. If the true drag function of the projectile
is such that ^ is not constant, the trajectory will
depend on the temperature. The use of the ballistic
tables will furnish a firing table which may be quite
accurate whenever the temperature structure is the
same as that on the day of the experimental firing.
But the ballistic tables furnish us no information
at all that will enable us to correct the firing
table entries when the temperature structure differs
from that during the experimental firing.

Choice of drag function and of method.

It is quite evident that the ideal situation for
the ballistician would be first, an exact knowledge
of all the aerodynamic coefficients of each projec
tile fired, together with an exact knowledge of all
other forces acting, and second, access to a comput
ing machine which would compute the solutions of the
equations of motion with great speed and accuracy.
Some devices were designed during the course of the
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past war which come closer to the latter specification
than anything available up to September 19U5. How
ever, the nearest approach to such a computing machine
available for use in preparing firing tables during
the war was the differential analyzer.

Insofar as the normal equations are concerned, the
crucial aerodynamic coefficient is Kp. The choice
of Kg, or of the drag function G(v) corresponding toit, will be dictated by two considerations. First, we
are clearly limited by our ignorance of the drag func
tion -of the projectile being studied. The most ob
vious instance up to the time of writing this chapter
is the case of aircraft bombs. As yet (19U5) there
has been no single bomb for wnich a drag function has
been determined with any satisfactory degree of accu
racy. All the bombing tables have been based on the
Gtvre drag function, not because of confidence that
this is the best possible choice but because of ig
norance of anything better. In the previous section
it was explained how it is possible that in spite of
this ignorance, the ballistic tables can nevertheless
be used to prepare bombing tables accurate enough for
all the purposes of warfare.

However, if a large number of highly accurate drag
functions for various types of bombs had been avail
able, the ballisticians of the U. S. Army and Navy
would have been hard put to make adequate use of them.
The differential analyzers at Aberdeen and at the
University of Pennsylvania were busy night and day
with computations for artillery tables, and the two
differential analyzers at the Massachusetts Institute
of Technology were also engaged to the fullest extent.
So the computations for bombing tables were necessarily handled by older methods, that is by hand compu
tation using computing machines. The preparation of
a complete ballistic table by such means is a long
and laborious task, and it would not be feasible to
do it all over again for each new drag function. Some
scheme would be needed by which the ballistic data
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corresponding to the new drag function could be ob
tained by appropriate modifications of the results
already tabulated in the ballistic tables based on
the Gchrre drag function, and the devising of such a
schene would call for a high degree of ballistic com
petence.

Consider next the problem of preparing a firing
table for some gun of large caliber, with the help
of the differential analyzer. Finding a drag func
tion for a large projectile requires either the firing
of the full-scale projectile or the making of extreme
ly accurate models in a smaller size. In either case
considerable time and expense are involved. Never
theless, over half a dozen different drag functions
for artillery projectiles have been determined. The
most accurate way of using these with the differen
tial analyzer is to make a template, on which the
graph of the drag function or the drag coefficient
Kn is represented in relief, so that when the compu
tation has indicated a velocity v for the projectile
the analyzer can "read" the value of G or of Kn cor
responding to v/a. Making such a template requires
some care, although it is of course nothing to com
pare with the labor of making a ballistic table. At
Aberdeen templates have been prepared for the more
than half a dozen drag functions previously referred
to. Now when a given model of shell is to be fired for
the preparation of a firing table, one of these drag
functions is selected and the .corresponding template
set in the analyzer. By methods similar to those dis
cussed in the previous section (we do not now care to
discuss what is done to account for the effects of
non-standard conditions at the time of the experiment
al firing) the ballistic coefficient is found for each
range at which firing takes place, and the value for
other ranges estimated by interpolation. At this
stage we can tell whether the drag function has been
well chosen. If it has, the values of C deduced from
the several firings will be nearly equal, and we can
feel confident of the results of the interpolation.
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As a final example, let us consider the case of
small caliber projectiles fired from aircraft. De
velopments in experimental techniques have proceeded
to such an extent that it is no longer a major prob
lem to find a drag function for such projectiles; on
one occasion the necessary firings were completed and
the drag function computed within the space of twenty-
four hours. However, if we wish to use the differen
tial analyzer we are faced with the difficulty that
the trajectories start at a wide variety of altitudes
and temperatures, and many trajectories are needed.
Besides that, probably someone else is using the an
alyzer. The saving feature here is that the trajec
tories desired are flat, so that the nethod of Siacci
(to be presented in the next chapter) is applicable
with little error. In fact, the error made by using
the approximate method of solution is often very con
siderably less than the error that would result from
using any one of the half-dozen drag functions. So
in this case it is possible to attain both accuracy
and speed by using the Siacci method. This alone
would be a sufficient reason for the continued use
of an approximation method which might have been ex
pected to be forgotten when the more accurate solu
tion methods, based on numerical integration and in
troduced into U. S. ballistics by F. R. Moulton during
the war of 191U-191S, became available for trajectory
computation.

It need hardly be remarked that the authors sin
cerely hope that ballistics will never again have any
use more serious tha-. the computation of rocket, tra
jectories to help the Post Office in the rapid deliv
ery of mail. But if it should ever again happen that
ballistics is a matter of vital importance to the na
tion, it would be ill-advised to put all our trust in
the performance of any machine, however accurate and
convenient and fast. For at the time at which the
machine is of greatest importance, it might be pre
sented with a flood of small problems, each one fairly
easy for it or even for a good computer, but arriving
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at such a rate that the human beings who operate it
would be overwhelmed with the task of changing the
iiachine from problem to problem. Numerical integra
tion methods did not entirely supplant the Siacci
method, and 4he differential analyzer did not entirely
supplant either. If new and better mechanical aids
to computation become available, they will assist the
ballistician. But they will be of the greatest as
sistance if they are operated by men who are familiar
with all the methods of attack on problems of ballis
tics, and they probably will still leave over a mul
titude of problems to be handled by the older methods.
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Chapter V

APPROXIMATE METHODS
1. Change of independent variable.

The normal equations of the trajectory (IV. 1.2%)
involve a function G whose values are determined exper
imentally. It is possible to approximate this func
tion by analytic expressions to within any desired
degree of accuracy, but such analytic expressions will
naturally be quite complicated. This one fact alone
is enough to indicate that Uiere is no hope of effect
ing a solution of the equations in terms of a finite
number of elementary functions. So in order to obtain
usable results, many early ballisticians tried various
methods of replacing the normal equations by approx
imate forms which were amenable to treatment by elem
entary methods. It would be (and has been), easy tofill long chapters with the details of such attempts.
However, most of them have lost their interest, and
we shall therefore present only three methods of ob
taining approximate solutions. These three were se
lected because each of them was found Hiseful in prob
lems which arose during the war of 1939-15. The first
which we shall discuss, and to which we shall attach
the name of Siacci, is useful in cases in which the
trajectory is "flat," meaning that its tangent does
not turn through a large angle. The second, histor
ically the. oldest, is applicable to projectiles whose
velocity is well below that of sound and which do not
extend through a great depth of atmosphere. This is
the method of Euler. The third approximation device
was designed especially for use with dive-bombing and
yields a rather simple formula for range and time of
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flight of projectiles launched at low velocity at
angles considerably below the horizontal.

In the treatment of these methods it is found. de
sirable to use several different choices of independ
ent variable. Also, in order to avoid duplication of
effort we shall not discuss the normal equations alone,
but shall also include terms representing various de
partures from standard conditions, for use when we dis
cuss differential corrections in Chapters VII, VIII
and IX. As before, the components of velocity with re
spect to the axes will be denoted by vT, vy, vz. If
the air has a velocity with respect to the axes, the
components being wx, Wy, wz, the velocity of the pro
jectile with respect to the air will have components
Uj, Uy, Uj, where ux - vx - wx, etc. The length of the
vector (ux, Uy, ua) will be denoted by u; this is then
the air speed, or speed with respect to air, of the
projectile. With the symbols of Section 1 of Chapter
IV, the drag will have components - Eux, - EUy, - Eua.
The standard gravity vector will be (0, - g, 0), where
g is the standard value of gravitational acceleration.
In addition to drag and standard gravity, there will
be other accelerations, usually small, which we lump
together and call the vector (ax, ay, az). This will
include, for example, the difference between actual
gravitational acceleration and standard, - the Coriolis
forces, and some lesser aerodynamic accelerations. The
equations of motion now are

(1)

irtiere

X - Vx, f ' Vy, Z " Vj,

y ' - Eux + V
Vy
- - EUy + By - g,

vz - - Euz + az,

E -YHaG(u/a).
If we imagine these equations solved for some interval
t05 t < T of time, the six variables X, y, z, vx, vy,
vz all appear as functions of the time t, and so do
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other quantities such as the slope m and the angle of
inclination 9 of the line tangent to the trajectory.
(Throughout this chapter m shall stand for the slope.
No confusion should arise from the fact that it pre
viously stood for the mass of the projectile, since the
mass will not enter the discussions in this chapter . )
Let p be a function of t which for to < t < T has a
non-vanishing derivative. Then the equation p * p(t;
can be solved for t; to each p between p(t0) and p(T)
corresponds exactly one value of t, and the t thus de
termined is a differentiable function of p. Also, if
F(t) is a differentiable function of t, F(t(p)) is a
differentiable function of p, and

(2) dF(t(p))/dp - [dF(t)/dt] [ dt/dp].
We shall denote derivatives with respect to p by primes.
By (2), equations (1) takes the form

(3)

X' ■

y' ■ v*s
z' ■ vzt' ,

■ - Euxt'
V ■ " Euyf * ayt« - gt» ,
vz« ■ - Euzt' + azt«.

In the normal equations the functions H and a are
assumed to have their standard values, and the accel
erations ax, ay, az and the wind vector (wx, wy, wz)
are supposed to be zero. Also the initial values of
z and vz are zero. This implies that the entire normal
trajectory lies in the (x, y)-plane, so that its slope
is
(L) m =» dy/dx ■ v /v .y x
Even in the disturbed case, in which z may not be iden
tically zero, we retain this same definition of the
symbol m, although it may differ slightly from the
slope of the trajectory. From (U) it follows that
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v ■ mvx, so by differentiation we obtain
(5) ra'vx = vy' - mvx' .

Substituting from the fourth and fifth of equations (3)
and also substituting vx - wx for xl^ and vy - Wy for
Uy transforms equation (5) into
(6) m'v - t» [ - g + a -ma + E(w - raw ) 1 .X L & y x Vy x'J

As a first application, let us choose p ■ x. Then
x' - 1, so V - lAfc by the first of equations (3).Now by (3), (U) and (6) we obtain

dt/dx - 1/vx,
dy/dx ■ ra,

dm/dx - [ - g ♦ a - ma + E(w - raw J] /v ,

dVj/dx - L - Eux ♦ axJ/vx,
dz/dx • vz/vx,

dvz/dx - [ - Euz + aj /\%.
The corresponding normal equations are obtained by
setting the departures from normality equal to zero,
(that is, a and H are standard and a^ .ay, az, wx, w ,v

are zero) and z and vz equal' to zero at the stari.
Then z is identically zero, and we may omit mention ofit from the normal equations. . These are then

dt/dx - l/vx,
dy/dx - m,

dm/dx - - g/vx ,

dvx/dx - - E.
It is an interesting and important feature of these
equations that the last three can be solved independ
ently of the first. For t does not enter explicitly
into E, so that the last three equations involve only y,
ra and vx. The first equation can be solved later by a
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quadrature.*
Next let us takf» p ■ m. Then m' - 1, and from (6)

we obtain the first of the system of equations

(9)

dt
dm [- g + V - max + E(wy -
dx v 2

da [- g + a -ma + E(w -
y

2
7

dy
c

dm [- g + ay " *ax ♦ E(wy -
dvx . [.• Evx. + Ewx + ax ] vx
dm c- g + ay " max + ES -
dz

dm [- g ♦ a - ma + E(w -
y x y

-z - [■- Eva ♦ Ew, ♦ a,] v,c
dm [- g + *y - max + E(wy - -„>]*

From the first of equations (9), with the first of (3),
we obtain the second of (9); and from this in turn, with
.(h), we obtain the third of (9). The fourth of (9)
follows from the first of (9) and the fourth of (3X.
The remaining two follow from the first of (9) with the
third and sixth of (3).

*A quadrature is the computation of the definite inte
gral of a function of one variable. Several useful
quadrature formulas are established in Section 3 of
Chapter VI. The word "integration" has a broader mean
ing. It is used to refer to the finding of a solution
of a differential equation. Methods of integration form
the principal subject matter of Chapter VI.
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The corresponding normal equations are

dt/dm - - vx/g,
dx/dm - - v 2/g,

(10) A lA 2/dy/dra - - rav /g,
2

dv^dra
-
Evx /g.

These equations split up even more strikingly than did
equations (8). The last two can be solved together as
a system, since E is determined when m, vx and y are
known. Subsequently t and x can be computed by a
quadrature (say by Simpson's rule) from the values of
vx, by virtue of the first two of equations (10).

The change to independent variable 6 is most easily
made from (9) and (10). We consider only the normal
equations, since these are all we shall need. Since

m ■ tan 6

and

dm/de « sec26,
equations (10) become

dt/d8 " - vx secz6/g,
dx/de - - vx2 sec2e/g,

UD dy/de - - v sec e tan e/g,

dvx/de - E vx2 sec2e/g.

On either tne ascenaing or the descending branch of a
trajectory It is permissible to select y as independent
variable. This cannot be done on an arc containing
the summit of the trajectory, since near the maximum
value of y both x and t are double-valued functions of
y. For simplicity we restrict our attention'to the
normal equations. If we choose p * y, the second of
equations (3) yields t' - l/vv. Then (6) becomes

2 2
m' = - gt'/vx ■ - gmt'/vy - - gmt' ■ -

gm/vy .
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So, with conditions normal, (3) takes the form

dm/dy ■ - gm/vy2,
(12)

■ dVdy '-E-S/V
dx/dy ■ l/m,
dt/dy - l/vy.

Here the first two equations form a system which can
be solved independently of the other two, the values
of t and x being obtained afterward by quadratures.
For level bombing this system would offer still another
advantage, since the problem then is to determine the
range and time of flight corresponding to a particular
value of y, and the use of y as independent variable
would avoid much annoyance in interpolation. However,
along with these advantages equations (12) have a ser
ious defect. At the summit, which is the starting
point of the trajectory in level bombing, Vy has the
value 0, and so has m. So the right members of (12)
have infinite discontinuities, which have so far balked
all attempts to utilize these equations in computing
trajectories.

Finally, let c be a positive constant, and choose

(13) p - cvx.
We shall again consider only the normal equations.

By (13), vx' - 1/c, so the fourth of equations (3)yields

1/c - - E(p/c)t',
or

(Ik) dt/dp - - 1/pE.
By substituting (13) and (1U) in the first of equations
(3) and equation (6), and using (h), we obtain
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dt/dp - - 1/pE,
dx/dp » - 1/cE,
dy/dp » - m/cE,
dm/dp ■ + cg/p^E.

2. The Hitchcock-Kent modification of the Siacci
method.

During the past century a number of methods of ap
proximation to the solution of the normal equations in
the form (1.15) have been proposed, having as common
elements the assumption that air density is constant
and "temperature also, and that in computing G(v) the
velocity v is replaced by a multiple of vx. Three of
these methods were devised by F. Siacci, who also com
puted the tables of auxiliary functions needed to make
the method readily applicable. Siacci1 s methods were
designed to be applicable to flat trajectories with
small angle of departure , say 6 < 15 degrees . More
recently modifications of the Siacci method have been
devised which permit its use in computing flat trajec
tories with high angle of departure, as in anti-aircraft
fire. For instance, such a method was ptesented by Com
mandant Gazot. The version which we shall discuss is
due to Hitchcock and Kent.* In its first phases, which
will be developed in this section, it resembles the
method of Gazot; but the later refinements permit
closer approximation to the correct result.

Let us then make the following assumptions. First,

(1) The difference in height of the highest and low
est points of the trajectory is small enough so that we
may assume that H(y) is constantly equal tc its value

*H. P. Hitchcock and R. H. Kent, Applications of
Siacci 's Method to Flat Trajectories. Ballistic Research
Laboratory Report No. Ill; (Aberdeen Proving Ground:
1938).
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at the origin.

We shall not assume that the origin is at sea-level,
since we wish the results obtained to be applicable to
fire from aircraft. Let us denote the height of the
origin above sea-level (the muzzle altitude) by Ym.
The ratio of the density of the air at any altitude Y
to the standard air density at sea-level is denoted by
H(Y). In particular, at the muzzle this ratio has the
value H(Yra). As in (IV. 2. S) we define the "ballistic
coefficient corrected for muzzle altitude" to be

(2) Cs » C/H(Ya>.
Second, we assume:

(3) The value of v is approximated by vx sec 6Q along
the whole trajectory with sufficient accuracy to per
mit us to replace v by vx sec 60 in computing E.

Since the equation
(U) v ■ v cos 6

is exact, this second assumption amounts to saying that
cos 9 changes but little along the trajectory. It is
therefore satisfied when the trajectory is sufficiently
flat, in the sense that the error in the assumption
tends to zero as the total curvature of the trajectory
tends to zero.

We further assume that:

(5) The difference in height of the highest and low
est points of the trajectory-is small enough so that
the temperature may be taken as constant along the
trajectory; that is, along the trajectory the ratio
a of the velocity of sound to standard sea-level ve
locity of sound is a constant.

The "pseudo-velocity" p is defined to be

(6) p - vx sec 60.
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Under assumptions (1), (3) and (5), E is given by

E - G(p/a)a/Cs
(compare equation (IV.1.2L)). But (6) is the same as
(1.13), witli c - sec 90. So equations (1.1$) are
satisfied with this same value of c:

dt/dp - - ca/{ apG(p/a) } ,

(7)
dx/dp - - C, cos 80/{ aG(p/a) } ,
dy/ap - - C3 ■ cos 9Q/{ aG(p/a)} ,
dm/dp - v gc8 sec 60/{ ap2G(p/a)} .

In order, to express the solutions of these equations
in a convenient form, four functions are tabulated. A
number U is selected and fixed, larger than the great
est velocity at which the projectile is likely to be
used, and for values of u < U the following four inte
grals are computed, by numerical quadrature:

(8)

fU
S(u) - { 1/G(u) } du,J u

T(u) - \ / l/uG(u) } du,
Ju

Ku) - | { 2g/u%(u) } du,

fu
A(u) - { I(u)Mu) } du.Ju

These are the "Siacci functions," or more specifically
"the primary Siacci functions," for the drag function
G(m

By (6), the initial value of p is Po ■ v0, the in
itial velocity, since at the initial point

vx ■ v0 cos 60.
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The other initial values are

xo " yo " °» mo " tan 90.
Integration of the members of the first of equations
(7), with the substitution p ■ au on the right, yields

t(p) - - (Cs/a) { l/pG(p/a)} dprJ Po
fp/a

(9) - - (Cs/a) { l/uG(u)} duJ P0/a
- (Cs/a){ T(P/a) - T(Po/a)} .

In a similar way we obtain

(10) x(p) - Cs cos 90 { S(p/a) - S(po/a)},
(11) m(p) » m0 - Cs sec 60{ l(p/a) - I(p0/a)}/2a .

Substitution of the value of m from (11) in the third
of equations (7) and integration yields, with the help
of (10),

y(p) - x {mQ + Ca sec eol(p0/a)/2a }

12) - C8 { A(p/a) - A(pQ/a) }/2a2.
For the Mayevski drag function, the four primary

Siacci functions and a number of secondary functions
(not defined above) can be found tabulated in J. M.
Ingalls' Ballistic Tables. Artillery Circular M (Fort
Monroe: 1593; revised, 1917). Within the past five
years the S- and T-functions have been computed and
tabulated for a considerable number of drag functions ,
mostly corresponding to projectiles of small caliber.

Suppose, for instance, that a projectile is fired
through a velocity-measuring apparatus and then travels
on to a target at a known distance x, the time of
flight from apparatus to target being also measured.
Assuming that the trajectory is nearly level, as it
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is in ordinary range firings of this type, equations
(9) and (10) take the form

Here we know the left members, and also know p0 * v0,
and a (the temperature having been measured). From
(13) follows
T(p/a) - { ta/x} 5(p/a) + T(p0/a) - { ta/x } S(p0/a) ,
and the solution p < p0 of this equation can be found
by successive trials, ending with an interpolation be
tween the two successive tabular values of p/a for
which the difference between right and left members of
the above equation has opposite signs. As soon as
p/a is determined, so is Cs by either of equations
(13), and from this and the density of the air C can be
determined.

If a projectile passes before two motion picture
cameras, its motion being nearly level and slow enough
to permit photography, and the cameras are simultan
eously photographing clocks, it is possible to deter
mine the horizontal component of the velocity at two
places a known distance apart. We then know both
p0/a and p/a, and Cs is determined by the second of
equations (13).

Alxhough the Siacci method is rather outmoded
for field artillery, let us consider the problem of
determining C from a range firing in which the angle of
departure 60, the initial velocity vo - p„ the rela
tive air density, the relative velocity of sound a and
the range X have been measured. We suppose that there
is no wind, or that its effects .have in some way been
allowed for. Impact is assumed to occur when y re
turns to 0. The first step is to determine the value
of p at which y(p) vanishes, while x(p) - X. From (10),

(13)
t(p) - Ca{ T(p/a) - T(Po/a)} /a,
x(p) - Cg

{ S(p/a) - S(pQ/a) }

Cs - X sec 60/{S(p/a) - S(Po/a) } .
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If we substitute this in (12) and set y(p) - 0, after
a certain amount of manipulation we obtain

A(p/a) - A(p0/a)
{Ik) -

{
S(p/a) - S(Prt/a) }

'
{ KPc/a) + a2 sin 26j;s(p/a) - S(Po/a)] A } •

By successive trials a solution p/a is found, after
which (10) yields Cgj hence C is determined.

In Artillery Circular M this last problem is rendered
easier of solution by use of a number of auxiliary
tables, containing "secondary Siacci functions." This
was a sound idea at the time when Siacci methods were
dominant, and only a single drag function was in common
use. Since almost all artillery problems would then
involve the use of these tables, it was advisable to
include all aids to computation that were feasible.
However, the recent uses of the Siacci method have in
large part been in computing firing tables for small
caliber projectiles fired from aircraft. Experiments
have indicated a considerable variability in the shape
of the drag functions for these projectiles, and so
tables have been needed for a variety of shapes of
drag function. This makes it impracticable to consider
computing a complete set of auxiliary tables of secon
dary functions for each drag function. In fact, the
practice has been to compute the S- and T-functions
only, and to replace equations (11) and (12) by others
which leave a numerical quadrature to be performed to
find y along each trajectory. This device will be
discussed in Section 5 of this chapter.

3. Oblique coordinates.

In several of his papers on ballistics, K. Popoff
has shown the usefulness of a certain system of ob
lique axes. Let the L-axis be tangent to the trajec
tory at its initial point, and let the D-axis be vertical, with the positive direction downwards. Then
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(1) x ■ L cos 60, y ■ L sin 6Q
- D

and

(2) L - x sec 90, D ■ x tan 60 - y
are the equations of transformation between this sys
tem and the original (x, y)-system. Since we are deal
ing only with the normal equations, we need not dis
cuss z. To have analogous notation for the two sets
of axes, we define

(3) vL - dL/dt, vD
- dD/dt

as the oblique components of velocity of a moving
point. (It should be observed that vl is not the per
pendicular Component of the velocity vector along the
L-axis; it is the component obtained by projecting
the velocity vector onto the L-axis by vertical lines.)
Then

U) vL
-
vx aec eQ, vD

=
vx tan Qq

-
vy.

The normal equations obtained from (1.1) by set
ting a * 0 and omitting the equations for z and vz
are

x - vx, 7 - Vy,
(5) v - - Ev ,

X X

vy
- -

Evy
- g.

From these we readily deduce

L » vL D - vD,
(6) vL

- - EvL,
VD

* - EvD + B«

The first two of these are the same as <3), the third
is obtained by multiplying by sec 0Q in the third of
equations (5), and the fourth is obtained by multiply
ing the members of the third and fourth of equations
(5) by tan 60 and - 1 respectively and adding.
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Equations (6) differ from (5) only in the change
of notation from x, y to L, D and in the replacement
of g by - g. Thus all the manipulations performed in
Section 1 of this chapter are equally applicable to
the system (6). (However, it would hardly be advis
able to Use the word "slope" as a name for the quan
tity m ■ dD/dL defined by (l.U) as rewritten in the
notation of (6)). In particular, (1.8) holds in the
form

dt/dL - l/vL,
dD/dL = m,

dm/dL = g/vL2,

dvL/dL - - E,
while (1.13) and (1.1$) become

(8) p - cvL
and

dt/dp - - 1/pE,
dL/dp - - 1/cE,

(9) /dD/dp * - m/cE,
2

dm/dp - - cg/p E

respectively.

If we again assume constancy of density and temp
erature along the trajectory, and also assume as be
fore that vx sec 90 is an adequate approximation for
v in computing E, we see by (U) and (8) that in our
present notation we are assuming that Vj is close
enough to v to use in computing E, and that

(10) E = aG(p/a)/C8
is sufficiently accurate for our approximate compu
tation of the trajectory, wherein p ■ v^. The initial
conditions are
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(11) P0
-
vQ
- v^, vDo-0, Lo-Do-0.

In (9) we are choosing c • 1, since we have chosen
p - v^. But now the angle of departure 60 has dis
appeared entirely both from the equations (9) and (10)
and from the initial conditions (11). Thus, to the
degree to which our assumptions concerning the short
ness and flatness of the trajectory are correct, the
drop D , the time t and the rate of change of D with
respect to L are all functions of L alone.

To find the specific form of these functions re
quires little additional work. For the special case
©o = 0, equations (2) reduce to L ■ x, D * - y, while
m0

■ dD/dL has the value 0. So equations (9) to (12)
of the preceding section yield

t(p) - CB{ T(p/a) - T(P(/a) }/a,
L(p) - C8{ S(p/a) - S(P(/a) } ,

(12) dD/dL - C8{ I(p/a) - Kp^a) }/2a2,

D(p) - - C^Kp^/a^a2
+ C

2
{ A(p/a)- A(Po/a) }/2a2.s

5ince these hold for 80 » 0 and the solution is in
dependent of 9Q, they represent the solutions of tne
equations (under the approximation (10)) for all angles
of departure.

There is a convenient geometric interpretation of
this independence of QQ. Imagine a sheet of graph
paper in which the two systems of lines are each rigid,
and the points of intersection are rigidly attached
to the lines, but the angle of intersection can be
varied. A piece of window-screening affords a good
example. With the D-axis vertical and L-axis horizon
tal, graph a trajectory whose initial direction is
tangent to the L-axis. If we now deform the paper,
keeping the D-axis vertical but tilting the L-axis
and all the lines parallel to it, the rectangles of
the graph paper go into parallelograms, and by the
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preceding paragraph the graph of the trajectory con
tinues to be the graph of a trajectory, with the same
initial velocity and a non-zero angle of departure.
That is, the solutions of the Siacci equations possess
what may be termed "parallelogram rigidity." This
property has sometimes proved extremely convenient
when a number of trajectories with the same initial
velocity but with different angles of departure had
to be computed. When these can be handled accurately
enough by the Siacci method, all that is needed is to
prepare a single trajectory and obtain the others from
it by "parallelogram rigidity."
It is an interesting mathematical fact that under

the assumptions (2.1, 3, 5) there is in a sense only one
trajectory for each drag function. That is, corres
ponding to each drag function we can compute a single
trajectory, beginning at a velocity higher than any
at which the projectiles of the type may be expected
to be fired; and from this one trajectory, by forming
linear combinations of terms with constant coefficients,
we can find drop and time of flight for any L corres
ponding to any ballistic coefficient, any density,
any temperature and any angle of departure. The angle
of departure has already been taken care of in the
preceding paragraph; if we have a trajectory with
initial slope 0 we can find those with other angles
of departure by use of parallelogram rigidity. Hav
ing chosen a value U of velocity greater than any
which may reasonably be anticipated, we solve the
equations

(13)

d T/du
d£ /du
d n./du
d n /du

- - l/uG(u),
- - 1/G(u),
» - u/G(u),
- g/u2G(u),

with the initial values
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(1U) t(u) - <(u) - n(u) - n(u) « o.

These equations could be solved by the method of
Section 2, but this is not essential. Suppose now
that we wish to obtain a solution of (2.7) with velocity of sound equal to a times standard sea-level ve
locity, ballistic coefficient C, air density H(Ym)
times standard sea-level density and initial velo
city v0. As previously remarked, we may suppose that
the angle of departure is 0. Then the initial con
ditions are

(15) P0
- vQ, x0 - yQ - tQ - mQ

- 0.

Let us define

to m T(Po/a), K0 = K(pJa),
(16)

lo * ^(Po/a), u0 = ntpj/a).

Then by substitution we find that the functions

p ■ ua

* " c.{5 -K0 },

(17) t - C3{ T - x0 }a,

m - Cs2( u - uQ }/a2,

satisfy equations ^2.7) with ©o = 0 and also satisfy
the initial conditions (15). Thus from the single tra
jectory (13) we can deduce any other trajectory by sim
ple arithmetic operations, without, any more processes of
integration. Of course equations (17) are in effect a
mere notational revision of the Siacci equations
(2.9, 10, 11, 12). But the point of view is somewhat
different. The Siacci functions S, T, I and A are shown
to be the travel, time, slope and drop (except for a
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factor 2 in I) of a particular trajectory, namely the
trajectory corresponding to standard temperature and
density, ballistic coefficient 1, angle of departure
0O ■ 0 and initial velocity Uj and the Siacci equations
(2.9, 10, 11, 12), by which the trajectory is computed
with the help of these functions, show themselves to be
the equations of a geometric tilting of axes and change
of scale along the axes by which this fundamental tra—
jedtory is adapted to fit any initial conditions.
In order to have a comparison of the various methods

to be presented in this chapter, they will all be ap
plied to the same problem. This will be the computa
tion of the trajectory of a projectile whose drag
function is the Gavre function, with respect to whichit has ballistic coefficient 1. The initial velocity
is 2700 feet per second and the angle of departure
is The temperature is assumed to be sea-level
standard at all altitudes, so that a(y) is identically
1. Here we compute the trajectory; the final results,
with those obtained by other methods, are summarized
in Section 10 and are there compared with the results
of a much more accurate computation procedure.

With p0 - 2700, we find from tables of the Siacci
functions that

The first two of these may be found in the tables at
the end of this book. The other two are taken from
tables available at the Aberdeen Proving Ground, but
not reproauced here. The first column lists the
value of L. Other columns are obtained by the follow
ing procedures. From (12), with a « Cs - 1,

The corresponding p is read from the S-table and en
tered in the third column, and the T(p) corresponding
to this p is entered in the fourth column. Again

(18)
S(pQ) - 2681. 7U,. T(p0) - 0.86U,
I(po) - O.OU931, A(Po) - 105.91.

S(p) - S(pQ) + L - 2681. 7U + L.
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by (12), with present values,
t(p) - T(p) - T(Po) - T(p) - 0.86U.

The values of l(p) are entered from the I-table (not
reproduced In this book) . The next column contains
the values of A(p) from the A-table (not reproduced
here), and the next Is CflzA(p)/2, which is A(p)/2.
Next D(p) is computed by (12), which with present
numerical values takes the form

D(p) - A(p)/2 - 0.02U65 L - 52.95.
The slope m(p) is computed by (2.11);

m(p) - 1 - (0.707107) {Kp) - 0. 01*931} .

In the next column we enter the value of the inclina
tion 9(p) » arc tan m(p), found from a trigonometric
table. The next column, sec (Hp), is also from a trig
onometric table. If we observe that the horizontal com
ponent of velocity can be expressed either as p cos 80
or as v cos &, we find the speed corresponding to slant
range L (and therefore to the corresponding p) is

v(p) ■ p cos 60 sec 6 (p).
This is computed and entered in the last column.

In this computation and all the subsequent ones
of this chapter we have intentionally retained more
significant figures than are justified by the accuracy
of the methods. The reason is that we wish the compar
ison in Section 10 to exhibit the differences in the
results of the methods themselves, unclouded by any
rounding errors.
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L S(p) P T(P) t(p)

(ft) (ft) (ft/sec) (sec) (sec)

0 2681. Ik 2700.00 O.86I4 0.000
1000 3651.714 21407.18 1.261 0.397
2000 U681.7U 2133.00 1.703 0.839
Uooo 6631.714 I6I43.I4O 2.773- 1.909
6000 8681.71* 1259.83 1.169 3.305
8000 10681.71 1031.92 5.9UO 5.076

10000 12681.71 910.72 8.013 7.1149
12000 1U681.7U 82I4.82 IO.32I4 9. 160
ltooo 16681. 7U 75U.39 12.861 11.997
16000 18681. 71 692.93 15.629 114.765
18000 20681.71 637.59 18.639 17.775
20000 22681. 7h 586.90 21.910 21.OI46

L Kp) A(p) Cg^(p)/2 D(p)

(ft) (ft) (ft) (ft)
0 O.OU931 105.91 52.95 0.00

1000 0.05922 159.99 79.99 2.39
2000 0.07176 225.22 112.61 10.3h
hooo 0.10873 1402.U9 201.21 U9.67
6000 0.17182 677.39 338.70 137.81
8000 0.27313 1115.65 557.82 307.63

10000 O.L1133 179U.U6 897.23 597.72
12000 0.58323 2783.33 1391.69 IOI42.88
lUooo 0.79051 14151.0U 2075.52 1677. UO
16000 1.03700 5971.58 2985.79 2538.36
18000 1.328514 8329 i06 U16U.53 3667.79
20000 1.67269 11320.67 5660.33 51114.28
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L m(p) e(p) sec e(p) v(p>

(ft) (deg) (ft/sec)

0 1.00000 h5.00 1.U1U21 2700.00
1000 0.99299 1.1*0930 2398.83
2000 0.98U13 U14.51 1.10283 2115. 8U
Uooo 0.95798 U3.77 1.38U73 1609.15
6000 0.91337 U2.U1 1.35U514 1206.68
8000 0.8U17U UO.09 1.30700 953.69

10000 0.7U1»01 36.65 1.2h6U2 802.67
12000 0.622U2 31.90 1.17790 687.00
H4000 O.U7589 25. U5 1.107h7 590.76
16000 0.30159 16.78 LOW 511.78
18000 0.095lh 5.U5 1. 0014514 U52.89
20000 -0.114791 -a.ui 1.01086 U19.51

If. Formulas for approximating the drop.

From the first three of equations (1.8) it is easy
to see that jLf m0 ■ 0 the equations

are satisfied. Let us denote by p, and assume that
the Siacci method is applicable. Then by (2.7) we
have

(2) p - - apG(p/a)/C .
s
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For the special drag function with constant Kn, that
is, with drag proportional to the square of the velo
city, G(v) is a constant times v, and (2) takes the
special form
(3) p" - - cp2,
c being a constant which we shall dispose of later.
The solution of C3) is
(U) (1/p) - ct + (l/p0),
bo by -the first of equations (1)
(5) m - - g {(ct2/2) ♦ (t/p0)

}
.

When this is substituted in the second of equations (l)
and the integration performed, it is found that

y - - g {(t2A) ♦ (t/2Poc)
- (l/2p02c2) log (cp0t ♦ 1) '} .

By (U), p0c - { (po/p) - 1 }
A, so c can be elimi

nated from (6). The result is
(7) y - - \ gt2*2(p/Po)>
where

(t, +2(p/po)
• * *

<
" 1 T\-

{ (p</p) - 1 r log (P(/P) ,

the logarithms being to the base e. A table of val
ues of 4)2*111 08 found at the end of this book.

The choice of drag function was of course quite ar
bitrary, and we might reasonably fear that, if the drag
function of some projectile is considerably different
from a mere multiple of v, formula (8) might be seri
ously in error. So let us try another. For many modern
projectiles, the drag at supersonic velocities is fairly
well approximated by a multiple of the three-halves
power of the velocity. If we should choose this resis
tance law instead of the quadratic, equation (3) would
be replaced by
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(9) p - - 2kp3/2,
where k is a positive constant. Integration yields
(10) p ~1/2 - J(t) « kt + po_1/2 ,

where % is merely an abbreviation for the linear func
tion in the right member of (10). By (1),

- g \ X2 dt
(11)

- - gtf3 - Z30)/3k,
so by the second of equations (1)

, y - - (g/3k2) V { 03)/?2} dX

- - (g/3k2){ U2/2) + tf03/J) - (3fe2/2)} •

By (10), k - (X - X0)/t. If we write r - Xo/Xt equa
tion (12) becomes

y - (gt2/6) { (1 - 3I2 + 2r3)/(l - r)2 }

- '(gt2/6)(2r + 1).
That is, y satisfies the equation

(13) y - - igl2 4>3/2(p/Po),
where

(1U) ^3/2(p/p0) - { 1 + 2^p7p7 }/3.

The subscripts in (7) and (13) were of course chosen
to serve as reminders of the drag functions on which
they are based.

Formulas (8) and (1U) seem to be totally unrelated
It is interesting to observe that nevertheless for
values of p/p0 not too widely different from 1 they
give nearly the same values for the factor multiply
ing gt /2. For example, at p/pQ ■ .75 we find that
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^2
" .91086 and $3/2 * .91068. At p/p0 = .5 we find

<
j>
2 " .80685 and f3/2 - .80b7b. So even after the

projectile has lost half of its x-component of velo
city the two estimates of the drop differ only by about

a fourth of one per cent.

This close agreement between the estimates derived
from two very different drag functions would naturally
lead us to hope that the drop as deduced by either
formula might be reasonably close to the actual drop
when the drag function is that of any projectile.
As a matter of fact formula (7) has been tested under

a variety of circumstances and usually gives estimates
of the drop which are closer to the truth than one has
any evident reason to expect. Some numerical examples
are given in Section 10 of this chapter.

The preceding formulas have been written as though
the initial tangent to the trajectory were horizontal.
But in accordance with the results of the preceding
section, we can immediately apply these formulas to
any trajectory. For the drop is independent of the
angle of departure, to the same order of accuracy as
the Siacci method applies, and so it is given approx
imately by

(15) D - i^(p/p0),
where is defined either as in (6) or as in (lh).

One obvious use of these formulas is in the case in
which a trajectory of only moderate accuracy is called
for, and only S- and T-tables are available. By the
S- and T-tables we can find t and p as functions of
travel L, and then we can find the drop approximately
by (15). Another use to which the formulas and accom
panying tables of 9 2 have been put is to furnish a

running check on other computations. In these instances
the drop was computed by the methods of the next sec
tion. At the same time it was also computed by (15).
The difference between the two computations was small
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and slowly varying, so that any numerical error was
quite conspicuous. It is interesting to note that these
same computations furnished a check on the accuracy of
(15), since the drop was also being computed by a more
accurate method at the same time. For small caliber
projectiles fired forward from aircraft, with ranges
up to 2000 yards, the error remained under two yards.

In order to show the errors of the two approxima
tion formulas, the drops were calculated by both for
mulas for the trajectory which is being used as a test
sample for the various methods. The results will be
found in Section 10.

5. The Hitchcock-Kent treatment of variable density
and ballistic coefficient.
For trajectories of anti-aircraft shell fired at

large angles of departure, assumption (2.1) of the
Siacci theory may be seriously in error, since the
shell may reach heights at which the air density is
much less than it is at sea-level. If the trajectory
is still flat, it can be handled by a method due to
Hitchcock and Kent, which is so different from that
of Section 2 as to merit the name of "Hitchcock-Kent
method," rather than the name of a modification of
the Siacci method.

Since the altitude of the projectile above sea-level
is ym + y,
(1) E - H(Ym ♦ y)aG(v/a)/C,
and the second of the normal equations (1.15) can be
written in the form

c { H(lm + y) G(v/a)/C G(p/a) } dx
(2)

= -
{ 1/a G(p/a) } dp.

As in Section 2 we choose

(3) c - sec 60.
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Given any sort of first approximation for y as a func
tion of x, say y - y0(x), the density ratio H(Ym + y)
can be replaced approximately by a function of x. For
flat trajectories a rather good first approximation
to y is given by

and this is used in examples by Hitchcock and Kent;
but if in specia'l instances a better approximation
happens to be available, it could be used in place of
(h) without changing any of the subsequent develop
ments. As in the Siacci theory, it will now be assumed
that the trajectory is flat enough so that G(v/a) is
nearly equal to G(p/a). The normal equation (2) is
thus replaced by the approximate form

(5) sec 90 { H(Tm ♦ y0(x))/C } dx - - dp/aG(p/a).
Let p be the pseudo-velocity corresponding to abscissa
x. By integration of both members of (5) we find, with
the help of (2.8),

Here it is not necessary to regard C as a constant.
In fact,- since a projectile ordinarily has a certain
amount of yaw near the muzzle, its drag near the muz
zle is greater than the drag function alone would pre
dict. In such cases it is sometimes desirable to re
gard the ballistic coefficient, as varying with dis
tance travelled, so that C appears as a function of x.
This does not complicate (6).

Equation (6) determines p as a function of x. It
remains to find the other elements of the trajectory.
Here the Siacci methods do not seem to be helpful,
and we abandon them. But since by equation (3) we have
vx • p cos 90, equations (1.8) can be used. In in
tegrated form, these are

y0(x) - x tan 6,

(6)
- S(p/a) - Stpo/a).
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t sec 601 (1/p) dx,
J 0

(7)

7

m

)0 \ Jo
Observe that these are not approximations. If the
pseudo- velocity p is exactly determined as a function
of x, these equations will yield exact solutions of
the normal equations. Of course when the values of
p are only approximately determined, as in the method
now under discussion, the values of t, m and y deter
mined by (7) will likewise only be approximations.

To use these formulas, it is convenient to subdivide
the interval of values of x in which we are interested,
cutting it into smaller equal subdivisions. At each of
these subdivision points the value of p is found by (6),
and l/p and 1/p are computed and tabulated. Now the
quadratures called for in equations (7) are performed,
for example, by Simpson's rule. -The result of the quad
ratures is to provide a value of t, m and y for each
tabular value of x. In Section 3 of Chapter VI we shall
discuss some quadrature formulas that are more appro
priate to this problem than Simpson's, but nevertheless
the latter is quite usable.

The method just described has a feature of great im
portance even when the trajectory is short enough so
that the assumption of constant air density is accurate
enough. The only one of the Siacci functions used is
the S-function. Hence, this method is applicable in
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the many cases in which the drag function is one of
those for which only the S- and T-functions have been
tabulated.

It is easy to transform to the oblique coordinates
defined in the beginning of the third section of this
chapter. The first approximation to the altitude yo(x)
becomes ^0(L) - yo(L cos 60), and by (3.2) the change
of variable of integration from x to L in (6) yields

(8) ( {H(Ym + Y0(L))/C } dL - S(p/a) - S(p0/a).J 0
If we differentiate the third of equations (7) twice
with respect to x and use (3.2), we obtain

d2D/dL2 - - cos2e0 d2y/dx2

■ ♦ g/p2.
Since dD/dL vanishes at x ■ o, successive integrations
of (9) yield the two equations

dD/DL = g \
L
(1/p2) dL,

J 0
L

(10) D - \ (dD/DL) dL
J 0

So I io(Vp2)
"

}
dL'

while the time is obtained by change of variables in
the first of equations (7), which becomes

(11) t * ( (1/p) du.
J 0

Suppose, for example, that a trajectory has been
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computed for a projectile having a given initial velo
city, D and t being tabulated against L. We assume
that the trajectory is short and flat enough so that
the assumptions (2.1, 3, 5) are adequate. Let a target
have distance X from the muzzle and have angular al
titude * above the horizontal line through the muzzle.
We wish to find the angle of departure 0O needed to
produce a hit. Let e be the superelevation, that is
(12) e =

0O - *.
Then

(13) L » X cos e + D sin eQ.

Since the trajectory is flat, we may replace cos e by
1, and in the small term D sin 9C we may replace the
proper value D(L) by the approximately equal value
D(X) and also replace 90 by *. Then (13) yields a
rather accurate estimate of the value of L correspond
ing to X at angular altitude With this L we de
termine the corresponding D. Then by the law of sines

(Hi) • sine » (D cos *)/L.
The D in this equation was determined to a second-order
approximation, since the first approximation was D(X)
and this was used with (13) and the tabulation of D
against L to obtain the second approximation used in
(llf). However, this second approximation will not
differ much, for reasonably flat .trajectories, from the
first approximation D(X), which was independent of
$. So (llf) will yield a solution sin e which is very
nearly proportional to the cosine of the angular al
titude of the target, *.

This relation can be incorporated in the design of
a gunsight for high-angle fire of small caliber weap
ons. Imagine, say, a machine gun with a bead-type front
sight and a hinged leaf -type rear sight. We suppose
that the hinge of the rear sight is at a distance b
from the front sight, and that the line joining the
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hinge to the front sight is parallel to the bore of
the gun. The point on the leaf at a distance bD(X)/X
from the hinge is marked with the label "X" ; it is
this point which is to be collineated with the front
sight and the target when the distance of the target
is X. By means of a pantograph or a hanging weight
or seme other device, the leaf of the sight is forced
to remain vertical, whatever the inclination of the
gun barrel. From the figure we see that the super
elevation a of the gun barrel above the line of sight
satisfies

sin a cos #

b D(X)/X
"

b '

whence we see that sin a satisfies the approximate
form of (1U) with X in place of L. Since this is a
very good approximation at all ranges at which a ma

chine gun is effective, the sight would be highly ac
curate. Such sights have been designed more or less
independently by a number of ballisticians, and some
have been constructed.

In order to test the accuracy of the method of this
section it will be applied to the same trajectory as
the other methods; that is, the drag function is the
Gavre, C * Cs ■ 1, a ■ 1, v0 ■ 2700 feet per second
and 80 ■ h$ degrees. We again assume exponential
density so that the left member of (8) is

exp ( - h sin 60 L) dL

-
{ 1 - exp ( - h sin 60 L) } /h sin 90.

Since the numerator in the right member of this equa
tion can be found from the table of H(y) the numeri
cal quadrature can be avoided. However, in order to
follow the pattern that would be used with other density
laws, the integral was in fact computed by numerical
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quadrature. In the computation below, the inte
grand is tabulated in the column headed H/C, and
its integral in the next column. As in the earlier
computation, S(p0) ■ 2681.714, from the S-table. The
remaining values of S(p) are found by (8j, which *n
this case wkes the form

S(p) - S(pQ) +

\^
(H/C) dL.

The values of p are now found from the S-table and
listed. Next its reciprocal 1/p is computed and listed,
and by numerical quadrature we obtain (see (11)) the
value of t. Next g/p2 is computed; to avoid a multi
plicity of zeros we list K)6g/p2 instead. A numer
ical quadrature furnishes us with dD/dL, as in (10);
and a second numerical quadrature furnishes D. The
second of equations (7) is easily transformed into

m - tan 6Q
- (dD/dL) sec 0Q.

From this we compute

sec 9 • J\ + m^,

and finally we compute v, as in Section 3» by the
formula

v = p cos ©q sec 0.
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L H/C )1 (H/C) dL
1 n

S(p) P
) U

(ft)
•

(ft) (ft) (ft/sec)
0 1.00000 0.00 2681.71* 2700.00

1000 0.97793 988.90 3670.6U 21*10.33
2000 0.95628 1956.00 1*637.71* 211*1*. 68
1*000 0.911*56 3826.U5 6508.19 1682.33
6000 0.87160 5615.1*1 8297.15 1322.89
8000 0.836U2 7326.01* 10007.78 1091.05

1O000 0.79986 8962.17 1161*3.91 966.63
12000 0.761*93 10526.57 13208.31 885.91*
lljOOO 0.73152 12022.91 lli701. 65 823.91*
16000 0.69955 13153.61 16135.35 772.56
18000 0.66899 11*822.01* 17503.78 728.25
20000 0.63977 16130. 1*6 18812.20 689.15

L 1/P t 106g/p2 dD/dL

(ft; (sec/ft; (sec)

0 0.0003701* 0.0000 U.liiolj 0.000000
1000 0.0001*11*9 0.3921 5.53h2 0.001*91*5
2000 0.00014663 0.3321 6.9901 0.011179
1*000 0.000591*1* 1.8867 11.3603 0.029151*
6000 0.0007559 3.21*53 18.3723 0.058381
8000 0.0009165 I*

. 9097 27.0098 0.103727

10000 0.001031*5 6.8829 31*. 1*101* 0.165596
12000 0.0011287 9.0318 1*0.9639 0.21*0301*
U4000 0.0012137 11.3916 1*7.3608 0.32931*7
16000 0.00129l*lf 13.8837 53.8698 0.1*30322
18000 0.0013731 16.5679 60.621*7 0.51*1990
20000 0.0011511 19.3757 67.6990 0.673033
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L D ■ sec 6 T

(ft) tft) (ft/sec)
0 0.00 1.000000 1.1*11*21 2700.00

1000 2.38 0.993001 1.1*0927 2101.91
2000 10.32 0.981*190 1.1*0300 2127.68
Uooo U9.20 0.958770 1.38527 161*7.91
6000 13U.39 0.917U38 1.35700 1269.38
8000 293.62 0.853308 1.3UU9 101U.12

10000 560. U8 0.765812 1.2596U 860.98
12000 96U.69 0.659U52 1.19782 750.38
lUooo 1532.71 0.53U233 1.13373 660.53
16000 2200.21 0.3911*33 1.07310 586.66
18000 3263.27 0.229268 1.0259U 528.31
20000 14*78.93 O.OU8186 1.00116 187.87

Unless slopes are wanted, the computation can be
somewhat simplified by using two formulas to be estab
lished in the next chapter. Nothing is altered in the
columns preceding the one headed dD/dL. In this only
the entries for L ■ 0 and L - 2000 appear; the latter
is computed by Simpson's rule. The entry for D at
L - 2000 is computed by (VI. 3. 12). From this stage on
dD/dL is not needed. The second differences of D are
computed by (VI. 3. 9), which in the present case states
that the second difference of D on any line is the sum
of 1/3 the second difference of 10Pg/pZ on the same line
and I* times the value of 106g/p2 on the preceding line.
Thus for example on line L - 1*000 we would have

A2D - (1.7905/3) + 1(6.9901) - 28.5572,
while on line L ■ 6000,

A2D - (2.681U/3) + U(11.3603) - 1*6.3213.
The latter disagrees with the previous computation by
about .01 ft., liiich is* unimportant.
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6. Successive approximations «

In the heyday of the Siacci method, at the end of
the nineteenth century and the beginning of the twen
tieth, it was often applied at the margin of its do
main of reliability. To help it out in such cases, an
assortment of compensating factors was devised, some
with a theoretical basis, others to reconcile the pre
dictions with experimental firings. We shall not set
forth any of these ad hoc corrections. When they are
necessary, the Siacci method has begun to break down,
and the best procedure is to abandon it and turn to one
of the more accurate processes described in the follow
ing two chapters. However, it is true that a rather
natural extension of the Siacci method can be made which
yields a rapidly converging sequence of successive
approximations to the trajectory. The effort involved
in computing a trajectory to the maximum accuracy per
mitted by the fundamental tables would be rather more
than twice as much as in computing the same trajectory
by the method of Section 5.

From (2.U, 6) we have

(1) v cos 9 ■ vx ■ p cos 0O.

Hence if we are using the rectangular (x, y)-coordi-
nate system, from a knowledge of p and m we can find

(2) v ■ p cos 90/ cos (arc tan m).

If we are using the oblique (L, D)-system, the slope
m does not appear directly; instead, the computation
process yields values of
(3) D' • dD/dL.
But from this we can readily find the value of m, since
by (3.2)
(li) m - tan 0O

- D« sec 9Q.
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Let us suppose, to be specific, that we choose to
use the oblique axis system. We make some sort of
first approximation Y0(L) to the altitude which the
projectile will have when its L-coordinate has value L,
and as a first rough approximation to a(y) we take its
value a0 - a(Yra) at the origin. By (§.8, 9, 10, 11 J
we compute p, t, D' and D as functions of L. In order
to proceed to the second approximation we transform
equation (5.2) by substituting (5.3) and (3.2) and
multiplying both members by a G(p/a) /a0G(p/a0). The
result is

{H(Ym - y) G(v/a) a / C a0 G(p/a0) } dL
(5) - - { l/a0 G(p/a0) } dp.

Integration yields

(L { H(Ym + y) a G/v/a(y)) / C a0 G(p/ao) } dL
J 0

(6) - S(p/a0) - S(Pc/a0).
We already have y approximated as a function of L, by
the first stage of the solution, so we have approximate
values of a(Ym + y) and H(Ym + y). Also, by (h) and
(2) we have an estimate for v, so from the table of
values of G or l/G we can compute the value of the ratio
G(v/a(Ym + y))/G(p/a0). So the integrand in the left
member of (6) is known to a higher precision than in the
first approximation. We compute the integral by numeri
cal quadrature, and by (6) determine a new approximation
for p as a function of L. A repetition of the use of
(5.9, 10, 11) yields improved estimates of t, D' and D.If desired the process can now* be repeated to obtain a
third approximation; the new values of D and D1 give a
closer estimate of the integral in the left member of
(6) , and this closer estimate furnishes a new estimate
for p as a function of L.

In applying this method to a numerical example, it
was found desirable to compute not the integral in (6),
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but the smaller amount by which this integral differs
from the first estimate. For simplicity, we shall
confine our attention to the case in which temperature
effect is ignored, so that a is taken to be a constant
along the trajectory. The first estimate for H is

Hi - exp [- h(L sin 90)] ;

the second approximation is
H2

« exp [ - h(L sin BQ
- D)].

The first approximation to the left member of (6) was

L
C"1

{
exp[- h(L sin 6 ) ]}dL.

0

The sum of this and S(p(0)) gave a value of S which
with the help of the S-table furnished the first ap
proximation to p(L), which we shall call pn(L). That
is, Pi(L) was determined so that S(pi(L); - S(p(0))
was equal to the integral just above. The second ap
proximation to the left member of (6 ) was

L
/ exp[- h(L sin 6 - DJ ]}

0
.-1.

{
a G(v/a) } { C a Gtp^U/a ) f1 dL.

The sum of this and S(p(0)) gave a value of S which
with the help of the S-table furnished the second ap
proximation p2(L) to the correct value of p(L). That
is,p?(L) was determined so that S(p9(L)) - S(p(0))
was equal to the integral last written. So that
S(p2(L)) - S(pj_(L)) is equal to the difference between
the two preceding integrals :

( AS)2 = S(p2(L)) - S(p1(L))

(7) - i
L

{
exp[- h(L sin Qq)]}{ C G^/a} J"

1

J 0

•{ (exp hDKG(v/a) - G(p1/a) } dL.
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The second fraction in the integrand is a small quan
tity, and not many significant figures will be needed.
After the integral is computed, it is then added to
S(pi(L)) to find S(p2(L)), which in turn determines

P2U).
A similar modification was found desirable in pass

ing from the second approximation to the third. The
difference between second and third approximations can
be investigated by a process like that which led us
to (7), and which we shall not present in detail. The
result is

( as)3
- S(p3(L)) - S(p2(L))

(8) {[exp(hD2)G(v2) - G(p2)]/G(p2)
- [exp (hDxMvx) - Gfp^J/GfpjjKHx/CrtdL.

In the preceding paragraphs we have taken the al
titude of the nuzzle to be 0. But as we have seen, when
the exponential law of density is used this involves no
loss of generality. The same method applies to any
height of nuzzle; as shown in Section 2 of the preced
ing chapter, all that is needed is to replace C by
C exp(hTm).

For flat trajectories the estimate is a good
one to start with. If, however, we should wish to use
the method of successive approximations to compute a
trajectory which departs considerably from flatness^
as for example the complete trajectory from muzzle to
ground of a projectile with angle of departure h$°, we
could do better. For example, if we can form some
rough estimate X* of the range, for our first rough
approximation we could assume the trajectory to be a
parabola with slope 1 at the muzzle and intersecting
the line y - 0 at x - X*. This would yield

D - [ sin 90 cos Sq/I* ] L2,
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or
(9) YQ(L) - L sin 90 - L2 [sin 90 cos 90/X*].
However, a still better technique is available. Sup
pose that the interval between successive values of L
in the computation is %, so that the tabular values
of L are 0, %, 2%, .... The second approximation to
t, etc., on the line L ■ njL is independent of the values;
of the first approximation on later lines of the com
putation. It is therefore possible to carry through
the computation to the second approximation, and if de
sired to higher orders of approximation, on any given
line before writing anything at all on the succeeding
lines. Suppose that this has been done, and that
the process has been carried out on line L ■ (n - 1)%
until satisfactorily accurate values of t, D' and D
have been reached. In the process the value of the
integrand in the left member of (6) will also have
been f ound with adequate accuracy. By inspecting the
values of this integrand on line L ■ (n - 1)% and the
preceding lines, we should be able to form a good guess
as to the value which this integrand will have on line
L ■ nX. (Extrapolation will be discussed in more de
tail in Section 2 of Chapter VI). This guess is en
tered as a rough approximation, the value of the in
tegrand computed by numerical quadrature, and the first
approximation to p found by (6). In theory this pro
cess is not essentially different from that of using
some a priori estimate like (9) or for Y0(L).
But by delaying the choice of the first rough estimate
until the last possible moment, we are guided by the
past behavior of the trajectory, and it is possible to
make a more accurate selection of the first estimate.

By now our process has become one of numerical in
tegration, and more properly belongs in the class of in
tegration methods which will be discussed in 'Chapter
VII. Of the original Siacci process nothing survives
but the use of one of the four primary Siacci functions.
We shall n ot pursue the subject further in this chap
ter, but shall leave for later investigation the
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questioh of the appropriate choice of methods of numer
ical Integration, in particular whether the method here
described is a good one for practical computation. It
is nowever of some slight interest that a sequence of
small changes and improvements has led us from the
Siacci method of Section 2 to a method of numerical
integration, having no limit to its mathematical ac
curacy except the number of significant figures carried
and the errors in the numerical processes used, which
are at the disposal of the computer.

In the application below to the same trajectory that
has already been computed by other methods, the sub
scripts 1, 2, 3 refer to first, second and third ap
proximations respectively. The first approximation is
taken directly from the computation at the end of Sec
tion 5. The first five columns are self-explanatory.
The column d( AS)2/dL contains the values of the in
tegrand of equation (7), computed from the preceding
columns. The next column is obtained from this by
quadrature, and the next by adding (^S)2 to the first
approximation S(pi). The S-table furnishes the value
P2(L) corresponding to this new estimate of S. From
here on the computation of the second approximation is
like that of the first approximation, in Section 5.

The third approximation follows closely the pattern
of the second; the principal change is that immediately
after G(p2) we tabulate the quantity

(10) { exp(hD2) G(v2) - G(p2) } /G(p2) ,

the column being headed merely* (10) for brevity. From
this we subtract the analogous quantity with subscripts
1, already computed in the second approximation; the
difference is the integrand in (8), and the column is
accordingly headed d( AS)^/dL. This function is now
integrated by a numerical quadrature to obtain ( AS)-j,
which is added to S(p2) to obtain SCp^).
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SECOND APPROXIMATION

L expChDx) G(Vl) G(v1)exp(hD1) G(Pl)
(ft; (l/sec) (1/sec) (1/sec)

0 1.00000 0.30271 0.30271 0.30271
1000 1.00008 0.28298 0.28300 0.28352
2000 1.00033 O.26I472 0.261*81 0.26592
1*000 1.00155 0.22261 0.22298 0.22653
6000 1.00125 0.15867 0.159314 0.1711*6
8000 1.00932 0.07228 0.07295 0.09907

10000 1.01786 0.01*212 0.01*287 0.05971*
12000 1.03093 0.03239 0.03339 0.01*530
ii*ooo 1.01*960 0.0271*6 0.02882 0.03820
16000 1.07196 0.021433 0.02608 0.03391
18000 1.10856 0.02216 0.021*57 0.03101
20000 1.15195 0.02071 0.02386 0.02885

L

(ft)
0

1000
2000
l*ooo
6000
8000

10000
12000
11*000
16000
18000
20000

Sec. 6

d( LS)2/dL

0.000
-0.002
-O.OOl*
-0.011*.
-0.062
-0.220

-0.226
-0.201
-0.180
-0.162
-0.139
-0.111

(A S)2

(ft)
0
-1
-h
-21
-87
-350

-822
-1251*
-1631*
-1976
-2278
-2528

S(P2)

(ft)
2681.71*
3669.61*
1*633.71*
61*87.19
8210.15
9657.78

10821.91
11951*. 31
13070.65
1U159.35
15225.78
16281*. 20

P2

(ft/sec)
2700.00
21*10.06
21145.71*
1687.10
1337. 9U
1128.16

1021.25
91*8.70
892.21*
81*5.35
801*. 51
767.5a
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SECOND APPROXIMATION

L 1/P& t2 loVpg2 dDg/dL

(ft) (sec/ft) (sec)

0 0.000370U 0.0000 U.U10U 0.000000
1000 o.oooUiU9 0.3921 5.531^7 0.001*91*6
2000 0. 0001*660 0.8335 6.9832 0. 011311*
Uooo 0.000^927 1.88U7 11.2960 0.029093
6000 0.0007U7U 3.2229 17.9612 0.058066
8000 0.000886U U.8639 25.2619 0. 101361

10000 0.0009792 6.7377 30.8279 0.157957
12000 o.ooioSU 8.7687 35.7232 0.221*226
lUooo 0.0011208 10.9b87 U0.3373 0.300696
16000 0.0011829 13. 21*39 U14.9920 0.385735
18000 0.OO12U30 15.6789 1*9.6758 0.1*80717
20000 0.0013029 18.2207 5U.5765 0.531*583

L D2 ■2 sec 9g *2

(ft) (ft) (ft/sec)
0 0.00 1.000000 1.1*11*21 2700.00

1000 2.38 0.993005 1.1*0928 21*01.66
2000 10. U6 0.931*000 1.1*0295 2128.66
Uooo U9.U3 0.958856 1.385U3 1652.77
6000 13U.37 0.917882 1.35739 1281.19
8000 291.36 0.85665U 1.31676 1050. 1*2

10000 51*8.82 0.776616 1.26615 91U.33
12000 929.37 0.632397 1.21093 812.33
11*000 1U52.7U 0.57U753 1.153UO 727.69
16000 2137.6U 0.1*5W*90 1.0981*1* 656.60
18000 3002.53 0.320165 1.05000 597.32
20000 1*066.20 0.173277 1.011*90 550.82
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. THIRD APPROXIMATION

L exp(hD2) G(v2) G(v2)exp(hD2) Q(p2)

(ft) (1/sec) (1/sec) (1/sec)

0 1.00000 0.30271 0.30271 0.30271
1000 1.00008 0.28296 0.28298 0.28350
2000 1.00033 0.261*79 0.261*88 0.26599
1*000 1.00156 0.22320 0.22355 0.22705
6000 1. 001*25 0.1621*1 0.16310 0.171*71
8000 1.00921* 0.081*08 0.081*86 0.11328

10000 1.0171*8 0.01*957 o.o5ol*l* 0.071*1*1*
12000 1.02979 0.03713 0.03821* 0.05587
lUooo 1.01*695 0.03097 0.0321*2 0.01*618
16000 1.06981* 0.02727 0.02917 0.01*036
18000 1.0991*7 0.021*75 0.02721 0.0361*1*
20000 1.13703 0.02298 0.02613 0.03356

L (10) d(AS)3/dL (AS)3 S(p3) P3

(ft) (ft) (ft) (ft/sec)
0

1000
2000
1*000
6000
8000

10000
12000
11*000
i6ooo
18000
20000

0.0000
-0.0018
-0.001*0
-0.011*1
-0.0581
-0.2098

-0.2579
-0.21*11*
-0.2180
-0.1939
-0.1691*
-O.H»l6

0.0000
0.0002
0.0000
-0.0001
0.0039
0.0102

-0.0319
-0.01*01*
-0.0380
-0.0319
-0.0301*
-0.0306

0.0
0.1
0.2
0.1
3.9
18.0

-3.7
-76.0
-151*.1*
-221*. 3
-286.6
-31*7.6

2681.7
3669.7
1*633.9
61*87.3
8211*. 1
9675.8

10818.2
11878.3
12916.3
13935.1
11*939.2
15936.6

2700.00
21*10.06
211*5.69
1687.07
1337.25
1126.U*

1012.52
952.98
899.1*5
85U.51
815.08
779.35
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THIRD APPROXIMATION

L l/p3 *3 io6g/p32 dD3/dL

(ft) (sec/ft) (sec)

0 0.00037014 0.0000 U.U10U 0.000000
1000 0.000UU9 0.3921 5.5355 0.00U9ii6
2000 O.OOOU660 0.8328 6.9835 0.011291
LiOOO 0.0005927 1.88U7 11.2965 0.02909U
6000 0.0007U78 3.2225 17.9798 0.058057
8000 0.0008880 U.8660 25.3523 0.1011j73

10000 0.0009789 6.7U17 30.8118 0.158192
12000 0.00101493 8.7679 35.U032 0.22Ulli2
HjOOO 0.0011118 10.9336 39.7U26 0.299637
16000 0.0011703 13.2125 U;.0323 0.333079
18000 0.0012269 15.6135 U8.3960 0.1*75817
20000 0.0012831 18.1198 52.9353 0.576781

L D3 m 3 sec 93 V3

(ft) (ft) (ft/sec)
0 0.00 1. ODOOOO

0.993005
0.9814032
0.958855
0.917895
0.856U96

1.U1U21
1.^0928
1.U0297
1.385U3
1.357UO
1.31666

2700.00
2U01.66
2128. 6k
1652. 7U
1283.53
10U8.U6

1000
2000

2.3s

Uooo
10.33
U9.28
13U.20
291.27

6000
8000

10000
12000

5U9.12
929.92
1U52.26
2133.51*
2990.99
I4OU2.07

0.776283
0.683016
0.576250
0.U582U6
0.327095
0.181311

1.2659U
1.21100
1.151418
1.10000
1.0521U
1.0168U

91U.U2
816.05
73U.07
66b. 66
606. U6
560.37

H4000
16000
18000
20000
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7. Interpolation between anti-aircraft trajectories .

When it becomes necessary to compute a family of
trajectories as an auxiliary in the preparation of a
firing tabla, it is usually desirable to organize the
work in such a way that the desired data can be ob
tained from the smallest number of trajectories. One
helpful precaution is to choose the parameters involved
in the family of trajectories in such a way that the
desired elements of the trajectory are nearly linear
in the parameters. For example, in the ballistic
tables used as a basis for bombing tables at Aberdeen
Proving Ground, the range, time of flight, etc., are
tabulated against reciprocal ballistic coefficient
Y instead of against C. The reason is that these quan
tities are much more nearly linear in y than in C, so
that linear interpolation is possible with fewer en
tries in the table.

If we are about to compute a family of anti-air
craft trajectories on which to base a firing table,
we know already from Section 3 that the oblique coordi
nates L and D might well be good ones to use. For in
the simple Siacci theory D appears as a function of
L, independent of the angle of departure. So we can
feel sure that in a more precise method, the depend
ence of D on angle of departure is not a sensitive
one , and this should help in interpolation between
computed trajectories. We shall now show, with the
help of the results of the preceding section, that the
angle of departure itself is not a particularly good
choice as parameter; it is better to regard D as a
function of L and sin GQ rather than as a function
of L and 60. Of course either point of view is equal
ly sound logically. But we shall show that for fix
ed L, the drop D is nearly linear as a function of
sin 90, and therefore not very nearly linear as a
function of 0O.

Suppose that for the given shell, with its given
initial velocity vQ, the trajectory with angle of
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departure 90 s 0 has been computed to a satisfactory-
degree of accuracy. This could be done by the method
of the preceding section or by any other method; this
point is of no importance. The functions D'(L) and
D(L) thus determined make a good first approximation)
which we shall use as a starting point to calculate
a second approximation, for a trajectory with the
same initial velocity but with angle of departure 80
different from 0.

Since in first approximation we have

y - L sin 90 - D(L),
the D(L) being that determined from the trajectory
already computed, our estimate of H will be

+ j) - exp {- h(Ym - D(L)) }
exp( - hL sin &Q) ,

and unless L is very large this can be expanded in a
rapidly convergent power- series, the term involving
sin 90 being quite small. By (6 2, k) we find
(1) v - p y 1 - 2D' sin 90 + D'2,
and, if the trajectory is fairly flat, D'2 will be much
less than 1. So by the binomial theorem we find that
v/p is nearly equal to one plus a small multiple of
sin 90. By the same argument as. was applied to H,
we see that a(Ym + y) differs from a(Ym) by a small
amount which is nearly proportional to sin 90. Hence
for each L, v/a(Ym + y) differs from p/a0 by an amount
nearly proportional to sin &0. Following through the
process of computing the second approximation, the
integral in the left member of (6.6) changes from
the first estimate by an amount nearly proportional
to sin 90, for each L; so does the corresponding
value of p, and by the binomial theorem so do l/p and
1/p2} and finally so do the second approximations to
t, D' and D.

This approximate proportionality to sin B0 is a
property of the trajectories, and has nothing to do
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with the particular method used to compute them. The
successive approximations method is one in which this
proportionality is easy to predict from the formulas
used; but in any other computation method yielding ac
curate results the approximate proportionality will
be evident in the final results. Thus, however we
choose to compute the trajectories, if we use the ob
lique (L, D)-axis system and prepare trajectories at
equal intervals of sin 90, a relatively small collec
tion of these trajectories will enable us to interpo
late to find the values of t, D1 and D corresponding
to a given L and to an angle of departure 80 between
those for which the trajectories were computed.

8. The method of Euler.

In every age since the invention of artillery there
has been some need for weapons delivering plunging
fire on an enemy who cannot be reached by flat fire
because of obstacles between gun and enemy. The weap
ons designed for such purposes are usually character
ized by low velocity and high angle of departure.
Trench mortars furnish an important example. Since
the velocity of the projectile is low, its trajectory
will not be very long, .and therefore cannot extend
through a great depth of atmosphere. Therefore it is
possible to assume constant atmospheric density in
computing the trajectories. However, the trajectories
are highly curved, and the Siacci method is therefore
inappropriate .

As long as the velocity of the projectile is well
below that of sound, the drag coefficient Kn is a
slowly varying function of the Mach number, and it is
a good approximation to take the drag to be propor
tional to the square of the velocity of the projectile.If as usual we define Y to be the reciprocal of the
ballistic coefficient C, and assume the relative air
density H to be constantly equal to its value H(Ym) at
the height of the muzzle, then by either (IV.1.10, 12)
or (IV. 1.16, 17) we find
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Cl) YaG(v/a) - (d2/m)p*KDv,
and by this and (IV.1.2U)

E -[H(Ym)d2p*KD/m]v

where ks is merely an abbreviation for the quantity
in the square bracket in the preceding line. If we
substitute this in equations (1.11), recalling that
v ■ vx sec 9, we find

dt/de - - vx sec26/g,
dx/de » - v 2 sec26/g,

(3 ) dy/de - - v 2 sec26 tan 6/g,

dvx/d6 - kgvx^ sec^e/g.

The last of these equations is separable, and its
solution is easily expressed in terras of the function

f 6 ,
£(e) - \ sec^e de

(U) ■ i { tan 9 sec 9

+ log tan (£e + \n) }

wherein angles are supposed to be expressed in radians
and the logarithm is a natural logarithm. From the
last of equations (3),
(5) v -3 dv - (k Jg) sec^e de,

whence, by integration from the initial point, where
vx and 9 have the values of vxo and 90 respectively,
to a later point, where they have the values vx and
9, we find
(6) vx"2 - vxo"2 - - (2kg/g) { K (9) - S(90) } •

This can be written
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(7) vx"2
" (2Vg) ( K -^(9) }'

where

(8) K - C(©0) + (g/2k8)vxo-2.
We assume as usual that t, x and y are all zero at
the beginning of the trajectory, where 9 has the value
0O. If we substitute (7) in the first three of equa
tions (3) and integrate, we find

(9) 2ksx - - sec2e { K - 1
~1

<*9,

It is interesting to note that the curves defined
by equations (9) tend to asymptotes in both directions.
Consider first the direction of increasing t, or de
creasing 9. If we temporarily denote the integrand
in the second of equations (9) by { r(9) } 2, we see by
(U) that r(9) tends to 2 as 9 approaches - ir/2. There
fore x approaches a finite limit as 9 tends* to -tr/2.
But the integrand in the first of equations (9) is
r(9) sec 9, and that in the last is { r(9) }

2 tan 9.
For 9 in the neighborhood of - t/2 these are respective
ly greater than (sec 9)/2 and less than - | tan 9

|
/2,

and therefore the integrals tend to + » and to - »
respectively, So x cannot increase beyond bounds,
and as t increases, x approaches a finite limit,
while y tends to - » and 9 tends to -ir/2. The
curve thus has a vertical asymptote in the direction
of increasing t.

As 9 approaches ic/2, the value of £(9) tends to
+ «°, and as 9 approaches - it/2, the value of £(6) tends

8
2kay sec29 tan 0 { K - C(e)} ~1 d6.
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to - oo. So there exists an angle 0a such that

As 6 approaches 9a > the denominators of all three
integrands in (9) tend to 0, while the numerators
of the first two tend to non-zero limits, as does the
numerator of the third integrand unless 9a happens to
be 0. Hence as 9 approaches 9a, both x and t approach- oo, while y approaches - oo if ea > 0 and approaches
+ oo if ea < o. In any case, the point Ix, y) re
cedes unboundedly from the origin as 9 tends to 9a and
t to - oo Consider now the point Q at which the
y-axis is intersected by the line which passes through
(x, y) and has inclination 9a. The ordinate of this
point is y - x tan 9a, which by (9) and 110) is equal
to

(11) (l/2kg) sec28{tan 9a - tan 9} {#9a) - ^(g)}"^.
J90

As 9 approaches 9a, both numerator and denominator of
the integrand tend to 0, and by de l'lospital's rule
the integrand approaches sec 9a. Therefore the in
tegral approaches a finite limit, and the point Q
approaches a limiting position Qa. The line with
inclination 9a is thus an asymptote of the trajectory
as t tends to - oo.

A table in form convenient for use could be pre
pared with the help of equations (9) as follows. Let
us first define

(12) X(9, K) - \ sec 29 {K -#9) }
-1 d9,

JO

T(9, K) - ( sec2e tan 9 {K -5(6)} -1 de.

(10) K - S(9a).
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By numerical quadrature, we can prepare a double-entry
table of values of these functions, corresponding to
some chosen collection of values of K and to equally
spaced values of 9 between ©a and - u/2. We next
select values of 0O, and for each of these values we
proceed to tabulate the relevant ballistic data. First
we must find the values of 9 corresponding to stand
ard ground impact, that is the value of 9 for which
y returns to zero. Each value of it furnishes a line
of the table. By (9) and (12), the value of 9 for
standard ground impact is that for which
(13) Y(9, K) - Y(90, K) - 0.
The negative of this 9 is tabulated as the angle of
impact, with the designation co . As soon as co is
determined, we can find and tabulate the quantities

2ksX - X(9Q, K) - X( - co , K),
/~2kp T - T(0O, K) - T( - co, K),

where X is the range and T the time of flight. Or in
stead of the latter we could tabulate

(15, 'f1-{T(90, K) - T( -co, K)}{X(90, K) - X( -co, K)}"3.
From (7) we find that

(16) 2kgv2/€ - sec29/{ K - £(9) } ,

and by setting first 9 - 90 and second 9 - - co we
find 2kgvQ2/g and 2kgvU)2/g, and also the ratio v^,
where vq is the striking velocity. The height ys
of the summit is found from the last of equations
(9) with 9-0. From this and (12),

(17) ys/X - Y(9Q, K)/{ X(9Q, K) - X( - co, K) } .

It is worth noticing that the quantities specified
above are all dimensionless, so that such tables are
equally useful with any system of units. A table of
the above quantities was prepared by J. C. F.,0tto,
and revised by Lardillon. Cranz presents a ttble in
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his Lehrbuch der Ballistik. Vol. I, Aussere Ballistik,
2nd ed. (Berlin: Julius Springer, 1925; photo-litho
print reproduction, Ann Arbor, Mich.: Edwards Brothers,
Inc., 19U3); but the 5° interval in 90 is not very-
convenient for use, and there are errors in the table.

9. Approximate formulas for dive-bombing .

In the Siacci method of approximation, as in Sec
tion 3 of this chapter, an approximation to a solution
was obtained under the assumptions that the trajectory
was flat (i.e., had small curvature) and the atmos
pheric density nearly constant along it. In the Euler
method, the simplifying approximations were that the
trajectory, though curved, lay in regions of nearly
constant atmospheric density, and that Kn is nearly
constant. The trajectories encountered in problems
of dive-bombing satisfy part of one of these sets of
conditions and part of the other, so that neither method
can be satisfactorily applied. For the trajectory,
being steep, has little curvature. In fact, the air
craft us^d in the Second World War had a very restrict
ed forward vision; in most of them it was impossible
for the pilot to see more than eight degrees belaw the
line of flight. Thus the whole trajectory would have
to lie in an angular sector between the line of flight
and a line eight degrees below it. Moreover, the
speed of the bomb is well below that of sound, so that
Kn can reasonably be taken to be approximately con
stant. But the assumption of nearly constant atmos
pheric density is a very inappropriate one to make,
since dive-bombing may take place from as much as ten
thousand feet. Thus if we wish to profit by the ap
proximate constancy of Kp and the flatness of the
trajectory, it behooves us to devise a new method of
approximation.

It will be convenient to use oblique coordinates in
the following computations. As in Section 3 of this
chapter, the L-axis is tangent to the trajectory at
its initial point, and the D-axis is vertical, with
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the positive direction downwards. The initial tan
gent to the trajectory, the line of flight of the
aircraft, makes an angle 60 with the horizontal. (90will be negative for the problem of dive-bombing.)
Using primes to denote differentiation with respect
to L, the equations (3.7) which use L as independent
variable can be written:f ' 1/vL,
(1) D" - g/vL2,

vL« - - E - - pd2vKD/m*,
where m* is the mass of the projectile. Referring toequations (3.1) or (7.1) we can express v in terms of
vL and D» as follows:

v2 - (dx/dt)2 + (dy/dt)2

(2) -
{ (x»)2 ♦ (y«)2} vL2

■ (1 - 2D1 sin 6^ + D,2)v 2
o tt

The resistance coefficient is defined to be

(3) ko
- p^Kj/m*,

where P0 is the density at sea-level. The resistance
coefficient at release is accordingly defined

kr " Prd2KD/m*,
where Pr is the density at the altitude of release,
the equations (l) can be written m terms of kj., assum
ing the usual exponential law for change of density
with altitude, in the following form:f - 1/vl,

• D" - g/vL2,

- - krVL(l - 2D- sin 90 * D'2)* .b(W-ta«o).
The initial conditions for the differential equations
are, when L - 0,

t - D - D' - 0, vL ■ v0.
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Vfe are going to expand t and D in a Taylor series in
L. For convenience, vt will first be eliminated from
the equations (U). The system (U) then becomes

D" - gt'2,
(5>t« - kpt'U - 2D- sin 60 ♦ D,2)l/2eh(D-Lsine0)>

with initial conditions
L « 0, D - D' « 0, t « 0, t« - l/v0.

Differentiating equations (5), the first equation
twice and the second once, gives:
D"i . 2gt't",
D'v - 2gt' »2 + 2gt»t« ,
tf " - krt"(v/vL)eh(D-Lsin9o)(6) - krfD- • sin g0(v/YLfV^-1*111^

♦ krt'D«D"(v/vLrV(D-Lsine°>
+ krt'h(D« - sin eo)(v/vL)eh(D-Lsineo) ,

where the ratio v/vl in the last equation is deter
mined in terms of vl, D' and 9Q by (2):

v/vL - (1 - 2D' sin 90 + D'2)1/2.
The equations (6) will be employed only in obtaining
initial values of the third- and fourth-order deriva
tives of D and T which are needed to form the corres
ponding Taylor-MacLaurin expansions in powers of L.
By using the initial conditions and then equations ( 5 )
and (6) successively, it is possible to evaluate the
successive derivatives of D and t at L ■ 0. Thus
writing in successive lines the computed values:
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at L - 0,
t - 0, D - 0,
t' - l/v0, D' - 0,

(7) t" - kr/v0, D" - g/v02,
t>" -

{
k - (g sin 60/v02) _ h sin 90}kr/v0,

D"« - 2gkr/v02,
D«
v - {2kr - (g sin 9o/v02) - h sin e0}2gkr/v02.

The Taylor -MacLaurin expansions can now be written ex
plicitly. We recall that for a function f of L the
expansion is
f(L) - f(0) ♦ Lf'(O) + L2f"(OV2! ♦ lPf"i(o;/3i +

Applying this formula to the functions D and t then
gives the following:

D - gL2/2v02 ♦ g*.J?/-iv02

(8) ♦ (gkrLVl2T02)(2kr - 8 8in 9o/vo2 - h sin eo) + •••»

t - L/v0 ♦ krL2/2TG
♦ (lcrL3/6v0)(kr - g sin e0/v02 - h sin 90) +

In each case* the expansion is carried out to the first
terms that include 9Q explicitly. As might be expected,
since the approximation for D is of fourth order, the

*If k is considered to be a function of v, the formula
for D is:

D - gL2/2vQ2 ♦ gkjJfaf
♦ (gkrlVl2v02) { 2kr - sin 90 (h ♦ g/vQ2) }

- (g2 LU/12v02) sin 90kr(dkr/dv) + ....
In this form the formula is a generalization of the
Piton-Bressant formula used by the Gavre commission
in preparation of a resistance coefficient.
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formula for D is useful over a much wider range thai
that for t. The fornula for t is essentially that
used in computation of drag coefficient from firings
in the spark range. The approximation f or D is ex
tremely useful for dive-bombing. For bombs of weight
between 100 and 1000 pounds an "average" value for the
complicated third term is (gkrLVl2v02)( 1.50-10-*O if
the units used are feet and seconds. This gives the
further approximation,

(9) D - (gL2/2vQ2)(l + 2^/3 ♦ k^/U'lcr1*).
In many cases it is actually adequate to simplify this
further to

(10 J D - (gL/2v02)(l + 2kr/3).
The following table gives an indication of the range
of validity of the formulas (9) and (10) for D.

Alt. Speed Dive
Angle

(ft) (mph) (deg)
1000 200 Uo
2000 200 Uo
2700 200 Uo
3000 200 Uo

Uooo 200 70
7000 200 70
10000 200 70

U000 U5o Uo
7000 L5o ho
10000 h$o ho

looo ISO 70
7000 U5o 70
10000 hSo 70

*A11 errors are short in
are over.

Bomb, 100 Lb. Bomb, 500 Lb.
Error Using Error Using
(9) (10) (9) (10)

(ft) (ft) (ft) (ft)
0 0
1 I*

3 9
3 2

1 6 1 1
3 18 l 1

2U 55 3 11

I4 U 1 2*
29 33 8*
112 122 11- 1U*

1 1 0 1*
5 7 1 2*
17 27 2 1*

range except » entries which
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The approximation (10), and its companion formulas
for t, t - (1 + krL/2)L/v0, have been used also in a
mathematical way. A large number of trajectories for
dive-bombing have been computed by numerical integra
tion for a range of dive angle, speed and kr. How
ever, the tabulation of these data in a useful form
was extremely difficult, because of the large number
of arguments and the rapid variation of B and t with
90, vQ and kr. On the other hand, the differences be
tween the actual values D and t and the approximations
given by these formulas varied much more slowly with
variation, in the arguments. Thus, these differences,
or errors in the formulas, proved to be convenient
functions for systematic tabulation.

10. Comparison of accuracy of methods .

The methods of approximate solution of the normal
equations described in Sections 3> 5 and 6 and the
two approximations to the drop given in Section k have
been applied to a trajectory based on the Qavre drag
function, for a projectile with ballistic coefficient
1 fired at initial velocity 2700 feet per second, and
angle of departure U5°* It is assumed that the rela
tive sound velocity is 1 at all altitudes. In order
to have a standard of comparison with a satisfactory
degree of accuracy, the same trajectory was calculated
by a modification of the method of Moulton, and also
by a numerical integration method to be explained in
the next chapter. Each of these methods is inherently
very accurate. The results indicated that a high de
gree of accuracy was in fact attained by both methods,
since for values of L up to 20,000 feet the altitudes
as computed by the two methods differed by at most
half a foot and the times of flight differed by at-
most .001 sec.

The quantities compared are the pseudo- velocity p,
the velocity v, the slope m, the time t and the drop
D. The last two are of course ballistically the most
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important, but the others are not without interest.
In the case of the drop D the approximations by the
methods of Section h are included; the corresponding
columns are of course missing from the other four ta
bles. The abbreviations at the heads of the columns
have the following meanings:

Mod. M Modification of F. R. Moulton's method.

Ch. VI Numerical integration method of Chapter VI.
Siacci Siacci method as in Section 3»

H.-X. Hitchcock-Kent method as in Section 5.

2nd Ap. Second approximation by method of Section 6.

3rd Ap. Third approximation by method of Section 6.

By ^ Drop as approximated by use of ^
^>
Section U.

By ^
. Drop as approximated by use of \ Section U.

316 Ch. V



P
(ft/sec)

L Mod. M. Ch. VI Siacci H.-K. 2nd Ap. 3rd Ap.
(ft)

0 2700.0 2700.0 2700.0 2700.0 2700.0 2700.0
1000 2U10.6 21*10.6 21*07.2 21*10. 3 21*10.1 21*10.1
2000 211*5.7 2115.7 2133.0 211*1*. 7 211*5.7 211*5.7
Uooo 1686.3 1636.8 161*3.1* 1682.3 1687.1 1637.1
6000 1336.7 1336.3 1259.8 1322.9 1337.9 1337.1*
8000 1127.1 1127.0 1031.9 1091.1 1123.2 1127.1*

10000 1021.9 1021.8 910.7 966.6 1021.3 1021.0
12000 953. U 953.1* 82U.8 885.9 91*3.7 952.9
lUooo 900.3 900.1* 75U.1* 323.9 892.2 899. 1*
16ooo 855.3 855.8 692.9 772.6 81*5.1* 851*.5
18000 816.7 816.7 637.6 728.3 301*. 5 815.0
20000 781.2 781.3 536.9 639.2 767.5 779.3

V
(ft/sec)

L Mod. M. Ch. VI Siacci H.-K. 2nd Ap. 3rd Ap.
(ft)

0 2700.0 2700.0 2700.0 2700.0 2700.0 2700.0
loou 21*02.1 21*02.2 2398.3 21*01.9 21*01.7 21*01.7
2000 2128.8 2128.8 2115.3 2127.7 2123.7 2123.7
Uooo 1652. 1* 1652. It 1609. 2 161*7.9 1652.3 1652.8
6000 1283.1 1283.2 1206.7 1269.1* 1231*. 2 1233.7
3000 101*9.2 10U9.2 953.7 1011*. 1 1050.1* 101*9.6

10000 915.0 911*. 9 802.7 861.0 911*. 3 911*. 1
12000 316.1* 316. U 687.0 750.1* 312.3 816.0
11*000 731*. 9 735.0 590.8 660.5 727.7 731*. 1
16000 665.7 665.3 511.3 536.7 656.6 661*. 6
13000 607.8 607.9 1*52.9 528.3 597.3 606.U
20000 561.9 562.0 1*19.5 1*87.9 550.3 560.3
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L
(ft)

0
1000
2000
l*ooo
6000
8000

10000
12000
11*000
16000
18000
20000

Mod. M. Ch. VI Siaccl H.-K. 2nd Ap. 3rd Ap.

1.0000
0.9930
0.931*2
0.9588
0.9180
0.8561*

0.7767
0.6830
0.5769
0.1587
0.3281;
0.1858

1.0000
0.9930
0.931*2
0.9588
0.9180
0.856U

0.7767
0.6831
0.5769
0.1*589
0.3286
0.1859

1.0000
0.9930
0.981*1
0.9580
0.913U
0.81*17

0.7UU0
0.6221*
0.1*759
0.3016
0.095U
-0.H79

1.0000
0.9930
0.981*2
0.9588
0.917U
0.3533

0.7658
0.6595
0.53U2
0.391U
0.2293
0.01*82

1.0000
0.9930
0.931*0
0.9589
0.9179
0.8566

0.7766
0.6829
0.57U8
0.1*515
0.3202
0.1733

1.0000
0.9930
0.931*0
0.9539
0.9179
0.8566

0.776U
0.6330
0.5761*
0.1*582
0.3272
0.181*3

(sec)
L Mod. M. Ch. VI Siacci H.-K. 2nd Ap. 3rd Ap.
(ft)

0 0.000 0.000 0.000 0.000 0.000 0.000
1000 0.392 0.392 0.397 0.392 0.392 0.392
2000 0.332 0.832 0.339 0.332 0.833 0.333
1*000 1.885 1.385 1.909 1.887 1.885 1.885
6000 3.223 3.223 3.305 3.2U5 3.223 3.223
8000 U. 367 U.867 5.076 U.910 U.S6U U.365

10000 6.738 6.739 7.U49 6.883 6.738 6.7UO
12000 8.768 8.768 9.U60 9.032 8.769 8.768
11*000 10.928 10.929 11.997 11.392 10.91*9 10.932
16000 13.208 13.208 11.765 13.88I4 13.21*9 13.212
18000 15.602 15.601 17.775 16.568 15.679 15.612
20000 18.106 18.106 21.01*6 19.376 13.221 18.120
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6*6*19£
TVILZ
6*2.961
9*62.tt
n*io6

1*062
o*nei
1*6*1
n*0T
rz
0*0

i'i9ll
2*0022
L'Zt$l
A**I96
5*09$

9*€62
vna
z'm
e*ot
vz
0*0

'S—H

I'TOIC
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Chapter VI

NUMERICAL INTEGRATION OF

DIFFERENTIAL EQUATIONS
1. Notation.

Although the normal equations of the trajectory in
volve the second derivatives of the coordinates, as
in (IV. 1.17), it is possible to rewrite them so that
only first derivatives appear. In fact, we have done
this in (V.1.3); and in general, equations involving
derivatives of order higher than the first can always
be replaced by systems of equations involving only
first-order derivatives, by the simple expedient of
introducing new symbols to stand for the first, sec
ond, derivatives, up to but not including the
derivative of highest order. Thus any system of or
dinary differential equations can be transformed into
a system of equations, each of which expresses the
first derivative of one of the dependent variables
as a function of the independent variable and all the
dependent variables. If we choose to represent the
independent variable by x and the dependent variables
by vi» yn> tne equations have the form

" fl^x' yl» yn*»

(1) ,

V " fn(x> yl> •••» yn^*

A set of functions y]_(x), yn(x), defined on
an interval xi 5 x 5x2, is a solution of these equa
tions if the functions y^(x) have derivatives for each
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x in the interval, and equations (1) are identically
satisfied if , . . . , y are replaced by the functions
y-^(x), yn(x) respectively, tie shall use the stand
ing assumption that the functions fi(x, y-j , . .., y_)
are continuous, although as a matter of fact it would
cause no trouble to admit the possibility of the ex
istence of a finite number of values of x at which the
functions f^ have simple jump discontinuities.

Both for theoretical investigation and for numer
ical computation, it is preferable to replace equations
(1) by their integrated form. Let £ be a number lying
in the interval xi < x < X2 on which the solution is
sought, and let n,^, n be n numbers. If the func
tions y^(x) are a solution of (1) and at x ■ ^ the func
tions y^(x) have the values t)^, then by integration of
both members of (1) we find

(2)

y]U) - Ti +

J
fiU, y^x), yn(x)) dx,

A glance at this equation will show that if we wish
to solve it by numerical methods, we must have avail
able formulas for computing the definite integral of
a function. The main purpose of this section and the
next two is to establish such formulas, together with
allied formulas for interpolation between tabulated
values of a function. For this it is desirable to
introduce a certain amount of symbolism.

All the tables most commonly used in ballistics are
of the type in which there is a constant difference
between successive values of the independent variable
(also called the argument). If a is one of these
values, and 0) is the constant difference between
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successive values of the argument^ the values against
which the function is tabulated lvill be

x_x
- a - co j xQ

- a; ^ - a + co , . . . ;

(3) - a + nto; ....
The functional value corresponding to xn will be de
noted by f(xn), or f(a + nCt)), or fn, interchangeably.

Given a tabular interval <o , to each function f
corresponds a new function, its first difference A f ,
defined by the equation

(U) Af(x) - f(x) - f(x - (0).
This notation is not quite the same as that in most
books on finite differences. Usually the quantity in
the right member of (h) is denoted by an inverted delta,
and the symbol we have used has a different meaning
attached to it (namely, f(x + (o ) - f(x)). But the
difference defined in (U) is sufficient for our needs
in ballistics; we do not need to distinguish between
two concepts, one of which we shall not use, and so we
prefer the simpler symbol for the one which will be
used.

The first difference of f is itself a function of
x, and so it has a first difference, which is called
the second difference of f ; and this in turn has a
first difference, which is the third difference of f ;
and so on. In symbols,

A 2f(x) - Af(x) - Af(x - to )

- f(x) - 2 f(x - co) + f(x - 2 to ),
A 3f(x) - A2f(x) - A2f(x - CO),

Anf(x) - A^fU) - An-1f(x - CO),
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This list of equations suggests introducing the alter
native symbols:

(6) A^x) - Af(x); A°f(x) - f(x),
which we shall use whenever convenient. With this
notation the last of equations (5) holds for all positive integers n.

The customary method of writing out these successive
differences is exemplified in the following table:

z fU) A1 A2

1 -6

2 -1 5

3 -2 -1 -6

h -3 -1 0 6

S 2 5 6 6

6 19 17 12 6

A simple but nevertheless important property of
these difference operators is expressed in the equa
tions :

(?) An[af(x)] - aAnf(x),
A"[f(x) + g(x)] - Anf(x) ♦ Ang(x),

where a is an arbitrary constant.

The proofs in the next section can be rendered more
compact by the use of a sequence of polynomials Qn(x),
which we now define:

(^(x) » x(x +cd)...(x + [k-^co)/*!)1^!, k - 1, 2, ... j
(8) Q0(x) - 1)

Qh(x)
- 0, h - - 1, - 2, ....
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These polynomials satisfy the identity
(9) AQn(x) - Qn.jU)
for all x and all integers n. For n > 1 this can be
seen as follows:

AQnU) - QnU) - Qn(x - <■>)

- {x(x ♦ co)...(x + [n-l]co)
- (x - co )x. ..(x ♦ [ n-2]co)}/tonnl

- (x + L n-ljco - (x - co ) }

•{x(x + co )...(x + [n-2]co ) } /co nnl

For n « 1 it is obvious, since Qi(x) ■ x; and for
n -0 both members of (9) are identically zero.

From (9) we obtain by an obvious induction
(11) Ak q^x) - Q^Cx), k - 0, 1, 2,
(The statement (11) for k ■ 0 is merely a tautology,
since both members are Qn(x).)

Any polynomial

(12) p(x) - aQxn + a^x""1 + ... + an
can be p;:pressed as a linear combination of the poly
nomials in (8),
(13) p(x) - c^U) + ... + cnQQ(x).
If n ■ 0 this merely states that every constant is a
multiple of 1. By induction, suppose it true for all
polynomials of degree less than n. Then

p(x) - con ni aQ (^(x)
is of degree less than n, and by hypothesis can be
expanded in a linear combination of the polynomials
Qn-1> •••» Qo» which completes the proof.
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From this it readily follows that for the poly
nomial p(x) defined by (12) the equations

(Hi)
A n na p(x) - co nl a0,
A kp(x) - 0, k > n

are satisfied. For by (11)

(15) Akp(x) - c0Qn_k(x) + ... + cnQ_k(x).

If k> n, all terms on the right vanish by (8). If
k - n, the right member reduces to c0, by (8)j and
we have already noticed that c 0 - co nla«. If we
wish, we can combine the pair of equations (llj) into

(16) Akp(x) . tonp(k)(x;j k > n>

For the n-th derivative of p(x) is nia0, and all
higher derivatives are zero.

2. Interpolation.

The only kind of interpolation to be considered
here is polynomial interpolation. Suppose that a
function is tabulated for certain values of an argu
ment, and we wish to estimate its value correspond
ing to some value x* of the argument not included
among those tabulated. We can form such an estimate
by selecting certain tabular arguments X]_,
lying on both sides of x*, finding the polynomial
which coincides with the tabulated function at the
points x-,, . .., xm, and then finding the value of this
polynomial corresponding to x*. (If all the points
x, , . .., x_ lie on the same side of x», the estimate
tnus formedis an extrapolation, not an interpolation.)
The simplest case is that familiar to every one who
has used logarithmic or trigonometric tables, the
polynomial then being of the first degree.
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There are thus two aspects of interpolation in which
the computer should be interested. One is the devel
oping of convenient formulas for evaluating the poly
nomials used in the interpolation process. The other
is finding means of estimating the amount by which the
interpolated value differs from the true value of the
function. A general expression for the polynomial of
degree m - 1 which coincides with f(x) at X]_, . .., 1^
was given by Lagrange; it is

m f(x^Cx-x^ • • •(x-xi_1)(x-xi+1) • • -Cx-x^
(1) L(x) - £

i-1 (Xi-Xl) • • -(Xi-XijXXi-X^. • • (x^)
At each xfc all but one of the m terms on the right
vanish, because of containing a factor x - x^ which
vanishes at x^. The remaining term, corresponding toi ■ k, takes the value f(x^), proving that L(x) coin
cides with f(x) at X]_, Xfc. The factors multi
plying the f(xjj in (1) are the "Lagrangean interpola
tion coefficients." For equally spaced arguments
x, , . . . , x_ these coefficients have been tabulated in
several different publications, the values of m ran
ging as high as 11 in at least one of them. IThen such
tables are available, the Lagrange formula (1) offers
a practical means of interpolation. Nevertheless, for
the purposes of trajectory computation it is less con
venient than some others which we shall derive shortly.

Concerning the remainder, or error, in interpolation
by polynomials we now prove a theorem.

(2) Theorem. Let f (x) be defined and possess deriv-
atives~of all orders up to and including the m-th on an
interval of values of x. Let x-^, X2, x_, x* be
distinct points lying in this interval , and let L(x)
be the polynomial of degree ra - 1 which coincides with
fTx) at X]_, X2> . . . , xm. Then there exists _a- number
£ between the least and the greatest of the numbers
x* , x^ , . . . , Xjjj such that

(3) f(x») - L(x*) - f(m>U)(x* - ^...(x* - x^/mi.
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Let us define

U) R(x) - f(x) - L(x).
By the definition of L(x), this "remainder" R(x) van
ishes for x ■ x^, . .., Xj,. Next we define another
function

R(x*)(x - xx)(x - x2)...(x - xj
(5) g(x) - R(x) -

(x* - xx)(x* - x2)...(x* - xaJ
Both terms on the right vanish at xj., . .., Xm, and they
cancel each other when x ■ x*. So g(x) vanishes at
m + 1 distinct points. By Rolle's theorem, between
each pair of consecutive points the first derivative
g'(x) must vanish. So g'(x) has m distinct zeros.
Again by Rolle's theorem, between each pair of consec
utive zeros of g'(x) the derivative gn(x) must vanish.
Continuing the process, we find eventually that the
■~th derivative g(m'(x) must vanish at some point?
between the least and the greatest of the numbers
x*, x^, Xjj, so that

(6) g("?«)-0.
Since L(x) is a polynomial of degree ra - 1, itfs

m-th derivative vanishes identically, and by (U) the
m-th derivative of R is identical with that of f(x).
In the second term in (5), the denominator and the
first factor of the numerator are constants, and the
remaining factors in the numerator represent a poly
nomial with leading term x*. Therefore,
(7) g(m)(x) - fC»)(x) - mlR(x*)/(x* - Xl)...(x* - xm).
If we substitute this in (6) and rearrange the terms,
we obtain (3) and the theorem is established.

If we know that the value of f(m^(x) does not
change greatly on the interval in which we are inter
ested, it is clearly to our advantage to make the
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coefficient of the m-th derivative in the right member
of (3) as small as possible, to keep the error R small.
If we do not know how the m-th derivative behaves, it
is still safest to keep this coefficient as small as
possible. This we do, after having chosen the number
m, by selecting the m points xi nearest to the x*.
For instance, in a table of a function tabulated
against integer values of x, to estimate f(2.5) with
the help of a third-degree polynomial (m ■ U) we
should select 1, 2, 3 and h for the x^; the coeff
icient of the m-th derivative is then 9/16. If we
had selected 2, 3, U and 5 instead, the coefficient
would have been 15/16; and if we had chosen to extra
polate, using the table for x "3, U, 5 and 6, the
coefficient would have been 105/16. It is clear from
this, or better from (3) itself, that extrapolation
even for short distances can lead to far greater er
rors than interpolation in the same table.

.Ve now turn to the interesting special case of
tables with equally spaced arguments, and begin by
showing that

(3) A Hf(x) - f o)ra,

where £ is in the interval between x - m co and x .
Let L(x) be the polynomial of degree m coinciding
with f(x) at x, x - co, ...,x - mco. Then f(x) - L(x)
vanishes at m + 1 points, and by the reasoning used
in establishing Theorem (2) its m-th derivative van
ishes at some point between the least and the greatest
of these zeros, that is between x - m co and x. From
this and (1.16),

(9) f(m)(£) - h(mHC ' co_inAmL(x).
But L(x) coincides with f(x) at all of the points
x, x - co , . .., x - mco used in computing the differ
ence AmL(x), so AmL(x) - Amf(x). This and (9)
establish (8).
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The point x* at which we wish to estimate the
function lies between two consecutive tabular values
of the argument. In order to simplify the notation
somewhat, we suppose that the smaller of these tabular
values of the argument is subtracted from all the
values of the argument, so that the point at which we
wish to interpolate lies between 0 and a>. It is also
convenient to introduce the concept of the "phase" n,
which is simply x/(o. Then integer values of n corr
espond to tabular values of the argument, and we are
interested in estimating the function for some non-
integral n lying between 0 and 1.

Vie can now establish a theorem which contains as
special cases all the interpolation formulas that we
shall need in trajectory computation.

(10) Theorem. Let c_g, c_i, c_, ... be a sequence
of integers such that each of the differences c^ - cQ,
c2 ~ cl» — ej-ttier 0 or 1. Let y0, y^, yg, ...
be arbitrary real numbers such that no two consecutive
y^ are different from zero. Let f(x) be a function
defined at the points

(11) cmci>, (cffl
- 1) cd, (cm

- m)(D.
Then if y^ - 0 the function

m

P(x) - £ [ QjU-Cj^co) + yjOj-i^-Cj.^
(12)

j=°
r 1 i+i
•UJf(C;ja>) - yJ+1 AJ f(cj+1a>)]

is the polynomial of degree m which coincides with
f(x) at the points (11).

The first step in the proof is to show that in
(12) each y^ either is zero or is multiplied by zero.
Suppose that, for some integer k the number y^ is not
zero; then by hypothesis y^+i is zero, and so is
y^ ^

unless k • 0. In this latter case y^ occurs only
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in the first terra of the sum, where it is multiplied
by Q_^, which is identically zero. Otherwise yk occurs
in two terms; first, in the term with j - k - 1, where
it has coefficient

- Qk-lU - ck_2w) Akf(cko>),
and second in the term with j » k, where it has co
efficient

* Qk-l(x " ck_2co ) Akf(ckca).
So in either case it is multiplied by zero. It there
fore makes no difference in (12) if we replace all
non-zero y* by 0, since this merely changes the number
by which 0 is multiplied. We therefore need only prove
the special case of (12) in which all the yj are 0.

Let G(x) stand for the polynomial which coincides
with f(x) at the points (11); our task is to show that

m

(13) G(x) - £ Q,(x - c. ,o>) AJf(c,o>).

The reasoning used to establish (1.13) can be repeated
to show that there are numbers bQ, b^ such that

m

(Hi) G(x) - £ bjQ, (x - cj^co).j-o
By taking the k-th difference and recalling (1.8,11)
we find

. m

(15) AT3(x) - £ bjQ^U - cj.xco).j-o
Again by (1.3), the terms with j < k vanish and the term
with j ■ k is equal to b^. In (15) we now set x ■ ckco.
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For each j > k, the argument of Qj_k is
ckco - cj_-|_a)

Cl6) ' ~ - cj-2) + (cj-2 " cj-3) +

+ (ck+1 - ck)] ,
and by the hypothesis concerning the numbers Cj_ the
quantity in square brackets is one of the numoers
O. 1, . . . , j - k - 1. But by (1.8), Qj_k vanishes
•when x has any of the values (16). So when we put
x * ckco all the terms in (1$) vanish except the one
with j ■ k, and that one is equal to bk. We have
therefore shown that

(17) bk - AkG(ck to).

The tabular arguments involved in computing the dif
ference Anj(ckco) are

and these are included in the set (11) at which f (x)
and G(x) coincide. Therefore,

(13) b*G(ckQ)) - Akf(ckco).
Equations (1U), (17) and (18) combine to yield (13),
and the theorem is proved.

As a first special case of this theorem, we take
all the yj equal to zero and choose cl * 3» If we
substitute these in (12), and also make "the change of
notation
(19) x - nco
in the right member, we obtain

P(x) - f(0) + n Alf( co)
(20) + [n(n-l)/2i] A2f(2<o) + ...

+ [n(n-l)...(n-k+l)/ki]A kf(ko> ) +

This is the Newton-Gregory "forward" formula.
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Next we select all » 0, c_2 ■ ■ c0 ■ 0, all
other cj ■ 1. With the same substitutions as before,
we obtain

(21)
P(x) - f(0) + nA^co) + [n(n-l)/2l]A2f( co) + '...

♦ [(n-l)n...(n+k-2)/kt]Akf(©) ♦ ....
This is the Newton-Gregory "backward" formula. Had
we chosen all cj ■ 0, we would have obtained another
formula, often called the Newton-Gregory "backward"
formula; but it would have been an extrapolation
formula for positive values of n.

If we select C2k ■ C2k+i = k for all integers k,
all yj again being set equal to 0, equation (12) takes
the form

P(x) » f(0) + n A^O) + [n(n+l)/2i]A 2f( co) + ...
+ [(n-k)...(n+k)/(2k+l)i]A2k+1 f(kco)

(22)
+ [(n-k)...(n-k+l)/(2k+2)l]A2k+2f([k+l]co)
■ • • • •

This is the Newton-Gauss "backward" formula.
Five more well-known interpolation formulas can

be derived from the choice

(23) c2k_! - c2k - k

for all integers k. If we substitute these in (12)
and use (19), (1.8) and (1.5), we find
(2U) The term of (12) corresponding to j - 2k is
[ l/( 2k ) 1 ] ( n-k+1 ) . . . ( n+k-1 ) ( n-k+ 2ky21t )

*t(l+y2k+l) A2kf(ko>) " y2k+l A2kf(Ol] »>L
(25) The term of (12) corresponding to j - 2k + 1 is
[ l/( 2k+l ) I ] (n-k ) . . . ( n+k-1 )[ n+k+ ( 2k+l )y2k+ x ]

•[(l-y2k+2) ^^([k+ljco) + v2k+2 A2k+1f(ka»].
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If we set all the equal to 0, (12) becomes

P(x) - f(0) + nAH( co) + [n(n-l)/2l] A2f( co) + ...
+ [(n-k)...(n+k-l)/(2k)i]A2kf(kco )

+ [(n-k)...(n+k)/(2k+l)l] A 2k+1f([k+l]co)

This is the Newton-Gauss "forward" formula.

With the same choice (23) for the Cj, let us choose
y2k 3 V2, y2k+l = 0 for ^ integers k. Then from (12)
we obtain

P(x) = f(0) + n[ A1f(0) + tk{ co)]/2 + ...
♦ [l/(2k)l][n2-(k-l)2]...[n2j42kf(k(o)
+ [(n-k)...(n+k)/2(2k+l)I ]

•[ A2k+1f ( k CD ) + A 2k+1f ([ k+l] co ) ] + ....
This is Stirling's formula.

Again with the same choice (23) for the c.., let
us choose

y2k - °> y2k+i - - 1/2
Tor all integers k. Equation (12) becomes*

P(x) » [f(0) + f( co)]/2 + [ n-|] A1f( cd) + ...
+ [(n-k)...(n+k-l)/(2k)l ]

•[A2kf(kco) + A2kf([k*l] co)]/2
(28) + [(n-k)...(n+k-l)(n-i)/(2k+l)l ]

•A2k+1f([k+l] co)

This is Bessel's formula.

*The first term in (28) is rather easier to derive
from (12) itself than from (2lf).
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Our next choice is

y2k " °» v2k+l
" " (n+k)/(2k+l)

for all integers k. 3y (25), the terms in (12) cor
responding to odd j all vanish. By (2U), the term
corresponding to j - 2k is

- [l/(2k+l)l](n-k-l)(n-k)...(n+k-l) A2kf(kco)
(29)

+ [l/(2k+l)i] (n-k)(n-k+l)...(n+k) A2kf([k+l] co).

This can be given a more symmetric appearance by de
fining

(30) E2k(n)
- (n-k)(n-k+l)...(n+k)/(2k+l)l.

The coefficient of the. second term in (29) is then
Epj.(n), while that of the first term is - E2k(n~l)«
But E2fc is an odd function of n, as its definition
shows, so

It is customary at this point to introduce a symbol,
say n, for 1-n,

Then the expression (29) becomes

E2k(n) A2kf(kco) + E2k(n) A2kf ([ k+l] co ) ,

and the entire expansion (12) takes the form

P(x) - nf(0) + nf( co) + ...

- E2k(n-1) - E2k(l-n).

(3D n ■ 1-n.

(32) + E2k(n) /TKf(k co)

+ E.Jn) A2kf([k+l] +

This is Everett's formula.
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Our final choice is

y0 ■ °> y2k+i - 0

for all integers k,

y2k - U-n)/2k
for all integers k | 0. By (2U), all terms corre
sponding to even positive values of j vanish, and (12)
becomes

P(x) - f(0) + [n(l-n)/2i] A^-fCoo )

+ [n(l+n)/21 ] ^(0) + ...
(33) + ri/2(k+l)(2k+l)i](n-k)...(n+k-l)

•[ (k+l+n) A2k+1f([k+l] cd)

+ (k+l-n) A2k+1f(kci> ) ] +

This is Steffensen's formula.

Each of the eight formulas derived above from
equation (12) can be written to as many terms as de
sired. In actual use they must be broken off some
where, and it is important to be able to tell whenit is safe to stop. Let us suppose that we have
selected a number e, for example half a unit of the
last significant figure tabulated in the table of
functional values, and that we wish to stop as soon
as we can be reasonably sure that the remainder does
not exceed e. If we stop the interpolation formula
at a value of m such that •

ym+i " °>

as required in Theorem (10), the first omitted term is

This alone could not be depended upon to furnish
a sufficiently trustworthy estimate of the error.
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However, in all eight formulas the quantity in square
brackets in (3U) is either the difference of order m + 1
formed from the functional values corresponding to the
values (11) extended one step forward or backward,
or else is a weighted mean of two such differences.
By (8), each such difference is the product of 0)in+^
and the value of the derivative f (m+lJ at some point 1;

between (cm + l)a> and (cm - m - 1) cd, provided that
the derivative in question exists; and the weighted
mean of .two such products also must have the same form,
since the weighted mean of the two values of the de
rivative lies between the two, and is itself a value
of the derivative at some intermediate point. Thus
for each of the eight formulas we know that there
exists between (cm + l)co and (cm - m - l)to a number

5^ such that

The first omitted term (3U) is then

(36) Q^U - cm<o ) a^lf(»+l)(^1).
3y Theorem (2), there is a number £ between (c - m)
and CjjjCd such that the remainder R(x), which is the
error in assuming that P(x) is equal to f(x), is
(37) R(x) - Qm+1(x - cmo))a)ra+1f(m+1J(C).
If £ were equal, to as in general it is not, we
would have the remainder equal to the first omitted
term. If we know nothing at all about the (ra + l)-th
derivative of f(x), we likewise know nothing at all
about the size of the remainder (37). But in most
ballistic problems we are not in complete ignorance
about f(x) and its derivatives. For example, if x
stands for the time and f(x) for the range at time
x, we may feel confident from the form of the equations
of motion that any given derivative of f(x) will change
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from increasing to decreasing at only a relatively
few points, so that the trajectory can be cut into a
few subarcs on each of which the given derivative is
either steadily rising or steadily falling. Moreover,
these arcs will ordinarily be considerably longer than
the interval of time used in computing the trajectory,
that is the interval between successive times at which
the range is listed. Consequently, if we know the
derivative of order m + 1 of f(x) at a number of points
to each side of a given point x*, we may feel confident
that at x*, the derivative in question lies somewhere
between its greatest and its least values at the points
where it is known.

Suppose then that we compute the term ('36), and
then re-compute it with each of the differences in
(3U) replaced by that on the line above; we would then
obtain an expression like (36) but with a different
number, say ^n place of We repeat this with
the differences two lines above those in (3U), and so
on until we reach m + 1 lines above those we started
with. We repeat the whole procedure, going this time
in the other direction. We thus obtain a collection
of values of expressions like (36), but with Kl re
placed by an aggregate of numbers extending to both
sides of the number £ in (37). The numerically largest
of the numbers thus found should exceed the quantity
(37) in absolute value.

Consequently, in interpolation we may be guided
with reasonable safety by the following rule. It is
safe to omit a given term (and of course all succeeding
terms) in an interpolation formula if it is not only
true that the value of this term is below the allowable
amount e, but also that if the differences used in com
puting this last term are replaced by those on nearby
higher or lower lines (as in computing f(x - CD ),
f(x + 0>) instead of computing f(x)), the value is
still less than e. By "nearby" we mean not more than
m + 1 lines up or down, where m + 1 is the order of
the difference involved in the term being tested.
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For example, if we wish to interpolate for f(l/2)
in the table

x

-1

0

1

2

3

by the Newton-Gauss "forward" formula, the coefficients
of the first, second and third differences are 1/2,- 1/8 and - 1/16 respectively. The second of these is
multiplied by 0, but this does not permit us to omit it
and all succeeding terms if we wish errors to remain
below 0.1; because only one line lower the second dif
ference is 6, whose product with the coefficient - 1/8
exceeds the allowance. Nor can we omit the third-
difference term. However, the fourth difference is zero
on all lines exhibited (and would be on any others with
the same law of formation f(x) - x3), so that the inter
polation formula may stop with third differences.

The preceding rule applies to Bessel's formula if
we are testing to see if we can stop with some dif
ference of odd order, but it does not apply at onceif we wish to see if we can stop with a difference of
even order, because of the hypothesis ym+i " 0 needed
in the foregoing discussion. However, this is a trivi
ality. If, for example, we find that we can stop with
the difference of order 5 by applying the rule, and
moreover the term involving the fifth difference con
tributes a negligible amount, we may omit it too.

The interpolation formulas based on differences
have the slight disadvantage as compared with the

f(x) A1 A;

-1

0 1

1 1 0

8 7 6

27 19 12

6

6
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Lagrange formula that the differences must be com
puted before the interpolation can be done. However,
they have several important advantages. The terms in
the formulas rapidly decrease, so that except for the
first two or three the numbers involved are small,
which helps to avoid errors. The rules just discussed
allow a ready determination of the order of differences
needed for a given degree of accuracy, while this is
much less easy to see when using the Lagrange formula.
And if at some stage it is decided that higher differ
ences are needed, these can be introduced without
changing any of the work already completed, whereas
increasing the degree of the polynomial in Lagrange
interpolation requires making a fresh start.

The discussion of the proper stopping place in
using an interpolation formula showed that accuracy
of the formula is essentially the same thing as rapid
ity of convergence of the coefficients to their limit
0. The Newton-Gregory formulas fail in this respect;
the coefficients decrease only slowly on the interval
0 < n < 1. The Newton-Gauss "forward" formula ending
with a difference of odd order m uses the functional
values at the nearest m + 1 tabular points if 0 < n < 1,
which by the remark after Theorem (2) ensures that the
remainder is as small as possible for the given order
of difference and a given bound on the (m + l)-th
derivative of f(x). Otherwise stated, the Newton-Gauss
"forward" coefficients decrease rapidly. The Newton-
Gauss "backward" coefficients are not as good in this
respect (they would be at their best if we were inter
polating for - 1 < n < 0 instead of for 0 < n < 1, so
that the "backward" formula would be a good one for
"backward" interpolation). The Bessel formula always
uses an even number of tabular points, and these are
always the nearest to x if 0 < n < 1. It has the ad
vantage over the Newton-Gauss "forward" formula that
the coefficients are slightly smaller, but the dis
advantage that an extra arithmetic operation of addi
tion is needed in each term involving differences of
even order. The Everett formula also uses an even
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number of points, the nearest ones to x, but it is
not generally regarded as being as convenient as the
Bessel or Newton-Gauss "forward" formulas. The Stirling
and Steffensen formulas always use an odd number of
points, the nearest to x if - 1/2 <n < 1/2, but are
inferior to the Bessel and Everett formulas respec
tively if we are interpolating for 0 < n < 1. So the
two formulas which pass the test most successfully are
the Newton-Gauss "forward" and the Bessel, and these
are in fact the two most commonly used in practice.

The Newton-Gregory "forward" and "backward" for
mulas possess the apparent advantage that they can be
used at the ends of a table, where the differences
needed to use the Newton-Gauss, Bessel or Stirling
formulas are not all available. But this advantage
is illusory. Suppose that we wish to interpolate
between the second-last and last lines of a table,
using the Newton-Gregory formula to m-th differences.
This would provide us with the value at the place x
of a polynomial of degree m coinciding with the tab
ulated function f(x) at the last m + 1 tabular values.
But if the last entry in the column of m-th differences
is copied on the next m lines, and with the definition
(1.5) the other differences and the functional values
are built up from the m-th differences on all these
lines, the functional values thus constructed will
all be those of one and the same polynomial of degree
m, since the difference of order m + 1 is identically
zero. Thus the polynomial of degree m passing through
the last m + 1 tabular entries is extended on for m
more lines. By any of our interpolation formulas
carried as far as m-th differences this polynomial will
be evaluated at the place x, so that the number found
will necessarily be identical with what the Newton-
Gregory formula would have given us. So the Newton-
Gauss or Bessel formulas work just as well as the
Newton-Gregory at the ends of the table, and do better
in the interior of the table; and therefore there is
no real need of ever using the Newton-Gregory formulas.
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3_
. Quadrature formulas

If a function f(x) is approximated by any one of
the polynomial formulas of the preceding section, the
error remaining less than some number e throughout an
interval x^ - x 5 X2, the integral of f(x) between the
limits xi and X2 can be estimated by integrating the
polynomial, and the error will be less than e(x2 - X]J.
As in the preceding section, we shall use the notation
x ■ nco, and we shall be interested in formulas for
the integral of f(x) between 0 and co , or between- co and co .

Suppose first that we have approximated f (x) by
means of Stirling's formula (2.27). On integrating
from - tt to <o , and replacing dx by co dn, we find

(c
o f(x) dx - co[2f(0) + (1/3) Azf(co)

- (1/90) AUf(2co) + ...].
Replacing the second difference by (1.5) changes this
into

[ ^fU) dx - (co/3)[f( - co) + Uf(0) + f( co)
(2) J-co

- (1/30) A^f(2co) + ...].
By discarding the terms involving differences of order
four and higher, we obtain Simpson's formula. The
term involving the fourth difference serves to furnish
some sort of estimate of the size of the error made
by using Simpson's rule.

Next we approximate f(x) by Everett's formula,
(2.32), wherein it is now convenient to replace 8

by 1 - n, which is the same thing by definition.
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On integrating from 0 to a> (the integration being
facilitated by the substitution n2 ■ v in the terms
containing E^Cn) and the substitution (1 - n)* ■ t
in the others ) we obtain

fee
I f(x) dx

(3) - co{(l/2)[f(0) + f( co) ]
- (1/2UM ^ 2f(C3) + A2f(2<0)]
+ (ll/lUU0)[^f(2CD) + A^f(3CD) ]+ ... J .

If we omit all the terms involving differences, this
simplifies to the "trapezoidal rule." If we retain the
second difference terms, we have a quadrature formula
comparable with Simpson's rule. On the whole, it is
less convenient than Simpson's rule; for one thing, it
involves values of the function lying outside of the
interval of integration. If the fourth difference is
nearly constant, the errors in (2) and (3) respectively
introduced by omitting fourth and higher differences are
of opposite sign, and the error in (3) is roughly 11/8
as great in absolute value as the error in (1) or (2).
Nevertheless it has one advantage. If a function is to
be tabulated by the process of quadrature of another
function, the use of Simpson's rule alone has the diffi
culty of segregating the even-numbered lines from the
odd-numbered lines . The accumulation of small errors ,
such as rounding errors, will cause the even-numbered
and the odd-numbered lines to wander independently from
the correct values, so that the first differences of the
integrated quantity are alternately too high and too
low. This does not happen with (3). Consider therefore
the situation, such as occurs in the computation of a
trajectory, in which a quadrature is an essential part
of a long computation scheme, the quadrature requiring
only a small part of the entire computing time. Both
for accuracy and for detection of errors in calculationit would be wise to compute each entry both by Simps on *-s
rule and by (3). If the fourth differences are under
UO the two results should not differ by more than 1, in
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units of the last figure carried. Rounding errors may
easily increase this discrepancy to 3, and occasionally
even to U. A larger discrepancy should call for a veri
fication of the computation. If the discrepancy is not
too large, the number entered should be the average of
the two results, throwing the .$ toward the result of
Simpson's rule if the discrepancy is odd.

Suppose next that F(x) is obtained from f(x) by
quadrature, and G(x) in turn obtained from F(x) by
quadrature, so that

U) F(x) - F(0) +

•x

(5) G(x) - G(0) ♦ | F(x) dx.
o

| f(x) dx,

Then

(6)

A^O) - f F(x) dx, thioi) - f F(x) dx,
J - 0) Jo

A%(co) -
|

F(x) dx +

| F(x) dx.

By integration by parts, using (U), this becomes

(C
D ( co - x) f(x) dx

+ 1 ( - co - x) f(x) dx,

and by substitution of variable of integration in the
last term (changing x to - x) we obtain

(3) A%( co) -

\

(co - x) [f(x) + f( - x) ] dx.J o
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Let us replace x by n co and approximate f(x) and f ( - x)
by means of Stirling's formula, (2.27). All differences
of odd order vanish from the integrand, since they are
multiplied by coefficients which are odd functions of
n. The remaining terms are even functions of n, so
that in these terms the contributions of f(x) and of
f( - x) are equal. Hence

A%(a>)

- 2a,2 f1 (1-n) (f(0) + (n2/2) A2f( co)
(9) JO

+ [n2(n2-l)/U[|A kf(2a> ) + ... } dn

- co2 {f(u) + (1/12) A2f(co)
- (l/2ii0) Akf(2a>) ♦ ...

}

By integration by parts, the second of equations (6)
becomes

(10) CO) - (x - |co.)F(x)
CO

(X - ico)f(x) dx.

In the second term on the right we replace x by nco
and approximate f(x) by means of Bessel's formula,
(2.28). If we make the substitution v ■ n - \ in the
coefficients of the differences of even order, these
are seen to be the integrals of odd functions of v
between limits - \ and f, and therefore the inte
grals are zero. The remaining terms are

^(co)
»o>[ F(co) + F(0)]/2

- O^f1/ (n4)2AXf( CO)

(ii) Jo1
+ [n(n-l)(n4)2/3t ]^3f(2co) + ...

}
dn

- co[F(0) + F(co)]/2
- (<o2/i2) { A*f( co) - (1/60) A3f(2co) +...}.
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If the terms involving differences of third and higher
orders are omitted, this simplifies to
(12) AtycD) = (co/2)[F(0) + F(cg) - (co/6) jfcC «>')],

a formula devised by C. B. Morrey in 19U3. (The authors
find no earlier reference to this formula. )

Formulas (9) and (12) are useful when an iterated
quadrature must be effected. This happens, for in
stance, in trajectory computation when y' and y are
to be deduced from y". If y1 is first found from
y" by a quadrature, using either or both of (2) and
(3), it would be possible to use the same formulas
to compute y from y' . But it is quite advantageous
to use (12) instead. If we apply (3) to several suc
cessive intervals between multiples of CD and take
differences, we see that the fourth difference of y'
is approximately co times a mean third difference of y" .
The error term in (12) is approximately (cd /720)
times a third difference of y". If the tabular inter
val were halved, the error in Simpson's rule would be
(co/90) times the new fourth difference of y' , which
is about (CO/II4I4O) times a fourth difference of y1
with the original interval, or about (co2/lUiO) times
a third difference of y". Thus Morrey' s formula (12)
has only about twice the error of Simpson's rule with
intervals half as long. Moreover, it does not develop
the oscillations which occur with Simpson's rule,
discussed after (3).

It is not so easy to compare (12) with (9). The
error in any one line is smaller when (9) is used.
But since (9) gives the second difference, an erro1-
on any one line enters the corresponding first dir-
ference and remains there permanently, being added
in in every later term. Thus the errors in using
(9) accumulate; an error on any line causes an error
m times as great in the value of y, m lines below.
After a number of trials of the two formulas y it was
decided that the most satisfactory procedure was to
rely on (12), retaining (9) as a check formula.
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One more important quadrature formula will be re
corded here without proof, although it will not be used
in the methods of this chapter. This is Weddle's rule,

(13) f(x) dx * £p[f(0) + 5f(co) + f(2co) + 6f(3co)

This is correct as far as fifth differences. For
details, the reader is referred to L. M. Milne-Thomson's
Calculus of Finite Differences (London: MacMillan and
Company, ltd., 1933T

Equation (9) can be used to obtain a variant form of
Everett's (or, alternatively, of Bessel's) interpolation
formula which has a certain advantage in connection with
trajectory computations, iflfhen a second-order differen
tial equation has been solved by numerical integration,
a set of values of the solution-function and of its
second derivative are obtained in the process of solu
tion, and the first, second and perhaps the third dif
ferences of the second derivatives are also tabulated.
Differences of the solution, of order higher than the
second, will not ordinarily be at hand. Hence there is
an advantage in having an interpolation formula which
uses only the differences automatically available. In
the notation of this section, G and f are tabulated for
values - co, 0, o>, 2co, ... of the independent variableIf we first replace f by G in' Everett's formula (2.32;
and then substitute (9) in the result, we find that the
polynomial approximation to G is

+ f(Uco) + 5f(5co ) + f(6co)].

P(x)
- nG(0) + nG( to)

(lb)

+ co2{E2(n)f(0) + E2(n)f(co)
i + [E^nJ+E^n)/^}*2^ co)

+ [Eli(n)+E2(n)/12]^2f(2co)
♦ [E6(n)+EU(n)/12-E2(n)/2l|U] l^f(2co )

+ [E6(n)+Eu(n)A2-E2(n)/2Uo]Alif(3co) * ...}.
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The intervals must be small enough to be usable
with the process of numerical integration, and this
will insure that the contribution of the fourth dif
ferences of f is negligible. For n between 0 and 1,
we find that E^(n) + E2(n)/12 and E^n) + E2(n)/12differ from each other by less than .OOOh. Thereforeif we denote their mean by M^", when we replace both
of them by we introduce an error less than .00020 2

times the third difference of f , which is about a five-
thousandth of the fifth difference of G. Hence we
have the approximate formula

G(x) - nG(o) + nG( co)

(15) + co2{E2(n) f(u) + E2(n) f( co)
+ Ml/'(n)[ a2f( co) + A2f(2co)]}.

In the following table the values of E2 are exact;
those of M[," are rounded to the fourth decimal place.

n n E2(n) E2(n) M^'tn) - M^Cn)
0.0 1.0 0.0000 0.0000 0.0000
.1 .9 - .0165 - .0285 .0020
.2 .8 - .0320 - .oUSo .0039

.3 .7 - .0155 - .0595 .0053

.U .6 - .0560 - .061*0 .0062
0.5 0.$ -0.0625 -0.0625 0.0065

n n E2(n) E2(n) Mj^Cn) - ^"(n)
This shows that we have gained an incidental advantage;
M^" is only about half as large as E^. Consequently the
term with M^" as factor in (15) may often be omitted,
simplifying the computations.

As an application, we perform an interpolation in a
column of the trajectory sheet which furnished the num
bers designated by "Ch. VI" in the tables in Section 10
of Chapter V. For G we take x, and for f we take x.
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Part of the computed results are as follows:

t X X

16 39U9.38 -3.13
18 1292.72 -2.88
20 162U.52 -2.65 -7
22 U9U5.69 -2.50 -8

To find x when t - 13.2, we use n - 0.1, and by (15)
and the table we obtain
x » (.9KU292.72) + (.1)(U62U.52)

+ (U) [( - .0285)( - 2.88) + ( - .0165)( - 2.65)
+ (.0020)( - .15)]

- U326.U2.
Since the second differences of x must be (by (9))

about four times - 3 with tabular interval 2 seconds,
when we cut down to tabular interval .2, the second
difference would be a hundredth as great, or about
.12. This is well within the limit (eight) permitting
linear interpolation, so for t between 13 and 18.2
we can interpolate linearly for x. In particular,
since the angle of departure of the trajectory was ii5°»
corresponding to slant range L ■ 20,000 feet we have
x - lUlli2.05 feet or h310.5l meters. By linear inter
polation this corresponds to time t • 18.106 seconds,
as was already listed in the comparison table in
Section 10 of Chapter V.

All our quadrature formulas so far have applied to
integrals J f dx. However, the Stieltjes integrals
J f(t) dg(t) studied in Chapter I also have to be esti
mated numerically, especially in the computations of
differential effects which are to be discussed in Chap
ter VIII. Suppose then that both f(t) and g(t) are
known for three values of t, say t^, t2, and t^, where
tl < t2 < t3» To condense the notation, we write
fit f2, f3 for f(t!), f(t2), f(t3) respectively,
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and likewise for g. We shall suppose that gj_< g2 < g?,
but the resulting formula will also be applicable if
g^< gp < g^. The equations x ■ g(t), y ■ f(t) are the
parametric equations of a curve in the (x, y)-plane
which passes through (g1? f^, (g2, f2) and (g3, fi).
Assuming that g is steadily increasing from t]_ to t3,this curve can also be written in the form y » Y(x;,
where to find Y(x) we first solve x ■ g(t) for t and
then substitute this value of t in f(t). The integral

I - f(t) dg(t)
Jt!

which we seek is the same as the integral of Y from g^
to gv As an approximation, we shall compute the inte
gral (from gi to g3) of the quadratic function of x
which agrees with T(x) r.t glt g2, and g3. If g(t) is
quadratic, having second derivative q" and assuming
values q(a), q(b) at a and b respectively, its equa
tion is
q(t) - (t - a)q(b)/(b - a; + (t - b)q(a)/(a - b;

+ (q"/2Kt - a)(t - b),
and so its integral is

q(t) dt » [q(b) + q(a;](b - a;/2 - (q"/12)(b - a.f .

Now the quadratic function q(x) which agrees with Y(x)
at g]_, g2 and g-j has slope (f? - f])/(g2 - gl) halfway
between g^ and g2, and has slope If-j - f2)/(g3 - g2)
halfway between g2 and g3, so the rate of change of
slope, q", is

f3 " f2 f2 " fl
2
g3
- g2 g2 - gj

. •

g3

- gx
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We substitute this in the preceding formula. If we
first integrate q(x) from gi to g2, and then integrateit from g2 to g3, and add the results, the sum is the
following approximation to I:
I ' (g2 - gl)Ul + f2)/2 + (g3 - g2)tt2 + f3)/2

1

_ (g2 - gl)3 ♦ (g3 - g2)3

|f3

- f2 _ f2 -
^

6(g3 - gx) (g3 - g2 g2 - gx
)

In the last term, we factor the sum of cubes and re
place the denominator by (g, - g£) + (g2 - g]_)« The
result can be written in the form

(fi ♦ f2 r - 1 + 1/r)I * (g2 . gl) |_2 . (f3 . f2)_

1

(16) (f, ♦ f2 r - 1 + 1/r)

♦ <g3
- g2) * U2 - fx)—

}
,

where r is the ratio of the smaller of g2 - g-^ and

^
3 ~ ^2 ^° ^ne ^-arger 0** them (or vice versal).

It is clear that if we discarded the terms with
the factor r - 1 + 1/r we would have the trapezoidal
formula. If g3 - go and g2 - gi are equal, then

r - 1 + 1/r = 1 and (16) becomes Simpson's rule. For
mula (16) is at its best when the intervals g2 - g]_ and
g3 - g2 are fairly nearly equal. In any case it may be
expected to be considerably more accurate than the
trapezoidal rule.

The auxiliary computaiion of r - 1 + l/r in (16) can
be advantageously done with a slide rule. If g2 - g^
on the C-scale is set against g3 - g2 on the D-scale,
the numbers on each of these scales opposite the Bln
of the other scale will be r and 1/r.
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b. The existence theorem.

In order to avoid irrelevant analytical complexities,
let us assume that the functions f^(x, ys, . .., yn)>
(i ■ 1, n) are continuous in all variables for x
in an interval a 5 x < b and for all y, and moreover
that these functions possess partial derivatives with
respect to the variables y^ for the same range of argu
ments, and that these partial derivatives remain less
in absolute value than a constant U on the entire range
of the variables x, y^ just mentioned. Let £ be a num
ber in the interval a 5x 5 b, and let n^, nn be
any n numbers . We shall prove* that there exists a
solution of the differential equations (1.1) which at
x ■ K has the values ( l^, 1n).

The central feature of the proof is the construction
of a sequence of successive approximations

(1) y1(x;j), yn(x;j), j - 0, 1, 2, ....
(The enumerating index j has been written inside the
parenthesis merely in order to avoid complicated sub
scripts.) The first approximation, consisting of the
n functions Vt(x;0), yn(x;0), consists of any n
functions defined and continuous on the interval
a 5 x 5 b and taking on the sequence of respective
values 1^, n nat x 3 £. The later approximations
are defined inductively, each in terms of the preceding
one, by the equation

y^x^+l)

(2) - \ *
j^f^x, yx(x;j), yn(x;j)) dx,

i ■ 1, . . . , n.

*The proof below is essentially the same as that in
G. A. Bliss' Lectures on the Calculus of Variations
(Chicago: The University of Chicago Press, 1936),
p. 27U.
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In order to discuss these functions, we first notice
that for any two sets of n numbers, y-^, yn and
Y]_, Tn, the theorem of mean value tells us that

fjU, Y1} Yn) - f^x, yx, yn)
(3) - (»fi/«y1)(T1 - 7\) * ... ♦ C&V^n^n " yn>»

the partial derivatives being evaluated at some point on
the line segment joining (y^, yQ) to (T]_, Yn).
But by hypothesis all these partial derivatives have
absolute values less than a constant M, so by (3)

I^Cx, Y-^ Yn) - f±(x, y^ yn) |

E |Yk-yk|.

If we add these n inequalities for i running from 1
to n, we obtain

n
E | fjU, Ilf Yn) - f^x, jl9 yn)|

(5) n
5 Mn Z | Yk - yk |.

1
■

From (2) and (5),

n I fx .
• Z I yiUiJ). ynUsJ)) - fiU, yiUiJ-1), yn(xjj-i))J'i I K

(6)
, „ „S
J
Z J |fi(x. yi(xiJ), .... yn(xiJ)) - fi(x, JiCxiJ-l), .... yn(xiJ-D)l

' U"
\ ? 1 yi(xiJ) _ yi(x,J_1) ' """I*
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Since both jAx',0) and y^(x;l) are continuous functions,
the inequality

n
(7) 2 | yi(xjl) - 7iU|0)| < K

is satisfied for some constant K, as x ranges from a
to b. We can now show that

(3) £ | yjUjJ+l) - 7±{xH) |
< K(Mn)J| x - K\

for all x in the interval from a to b and all non-
negative integers j. For j - 0 this follows at once
from (7). For other j we prove it by induction. If (8)
is true for a value k - 1 of j, then by (6) and (8) forj ■ k - 1 we have

£ | yi(x;k+l) - y^xjk) |

Mn
J K(Mn)k_1|x - S^k - 1)1 dx

- K(Mn)k|x -C|k/(kD,
so that (8) holds for j » k also. This completes the
induction.

As a consequence of (8),

(9) 2 I 7i(x;j+l) - yjUjJ) |
5 K(Mn)J(b - a)j/ji

for all x in the interval from a to b and for all non-
negative integers j . But the right member is the
general term of a convergent series of positive terms,
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so the left member of (9) is also the general term of
a convergent series. In particular, for each one i of
the integers 1, n the sum

oo

converges. It still converges if we remove the abso
lute value sign. Therefore

m

£ [y^xjj+l) - y±(x|Ji ]- y^xjm+l) - yi(x;0)j-o
has a limit as m increases without bound, and conse
quently y^Cxjm+l) tends to a limit as m tends to «.
Let yi(xf denote this limit. If e is a positive
number, we can select an m so large that the sum of
the right members of (9) from j ■ m to oo is less than
e/Mn. Then for every pair of numbers p and q > p both
greater than m we have

q-1
|yi(x;p) - yjCxjq)] < £ | yjUij+l) - y^x^jj

oo

(10) < £ K(Kn)j(b - a)J/jl
j*m

< e/Mn.

We now let q tend to oo, holding p fixed, and find
(11) } yjUjp) - y±(x)| < e/Mn.
From this and (U),

| fiUdrjUip), yn(x;p))
(12) - fi(x, yi(x), yn(x)) <e.
If we integrate this from £ to x, we find that the
values of the integrals from | to x of the func
tions inside the absolute value sign in (12) differ
by at most e| x - £| , which cannot exceed e(b - a).
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Therefore

P
(13)

lim [ f.(x, y-i(x;p), . .., y_(x;p)) dx

*)> •••» yn(x)) dx.

Now in ( 2 ) , as j tends to » the left member tends to
y^(x), while by (13) the right member tends to the
right member of (13). Therefore y^(x) equals the right
member of (13)* or in other words equations (1.2) are
satisfied. These are equivalent to the differential
equations (1.1), and the theorem is proved.

It can also be shown that the solution thus obtained
is unique. Suppose that there were two solutions of
(1.1), which we denote by y^(x) and Y^(x), both having
the values at x » We assume that there is a
point c in the interval from a to b at which they dif
fer, and arrive at a contradiction. To be specific,
we suppose c between a and Define

n
(Hi) r(x) - £ [YjU) - yi(x)]2.

This vanishes at K but not at c. Let d denote the point
between c and £ which is the closest point to c at which
r(x) vanishes. This may be K itself. Then r(x) is
positive for c < x < d and vanishes at x ■ d. Since
both y^ and satisfy the differential equations (1.1),
the derivative of r is

n
r'(x) - 2 E [Y±(x) - yi(x)][Yi'(x) - yi'(x) ]

n

(15) » ? E [Yi(x) - yjL(x)]
t_

•[fjU, Ylf Yn) - f^x, 7lf yn)].
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If we replace the second factor by mans of (3), we find
r'(x)

(16) n
- 2 £ (afi^yjjCYiU) - yi(x)] [Tj(xi - yj(x)] ,

the partial derivatives being evaluated at some point on
the line segment joining (y^, yn) to (T^, Yn).
The absolute values of the derivatives cannot exceed M,
by hypothesis, and each of the other factors is at most
equal to the square root of r, by (lit), so from (16) we
conclude that

(17) | r'(x)| < 2Mn2r(x).
Next, for all x between c and d (not including d) we
define

(18) v - log r(x).
Then by (17),
(19) |

V
|
< 2Mn2.

By the theorem of mean value, for each x between c and d

I v(x) - v(c) I - |(x - c)v'(x*) |

(20) < 2,5 2Mn^(x - c),
where x* is some point between c and x. As x ap
proaches d, we see by (20) that v(x) remains bounded.
But as x approaches d we know that r approaches 0,
so that v ■ log r cannot remain bounded. This is the
contradiction that establishes the theorem.

If we try to apply the existence theorem just estab
lished to the normal equations of the trajectory, we
find that the hypotheses are not satisfied. The right
members of the equations are defined only for v below a
certain number, the upper limit of the table of the drag
function; and moreover the partial derivatives are un
bounded because of the presence of the exponential H(y).
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However, this is not really a serious matter. IflTe can
redefine H(y) at all points where it exceeds, say, 3, in
such a way that it is bounded and has a bounded deriva
tive with respect to y. And we can extrapolate the drag
function beyond the upper limit of its experimentally
determined range in such a way that both it and its
derivative with respect to v remain bounded. The equa
tions then satisfy the hypotheses of the existence theo
rem, and therefore have a solution. This solution will
not, under anything like reasonable conditions, enter
the region in which H exceeds 3. If it enters the re
gion in which v is above the upper limit of the experi
mentally determined values, the solution has no physi
cally trustworthy meaning. But this is unavoidable; the
trouble lies not in the mathematics, but in the lack
of physical information about the drag. In any ordi
nary application of ballistic theory, the solution
lies within the region in which the drag function is
known to some degree of accuracy; if this were not so,
further experiments would be performed to increase
our knowledge of the drag.

The choice of the first approximation y^(x;0) was
quite arbitrary, except for the requirements that the
functions be continuous and take on the values ru at
x - £. If we wish to obtain this first approximation
by guessing the values of the functions f^ and inte
grating these guesses, it is our privilege to do so.

The procedure by which the existence theorem was
proved furnishes a logically sound, though not very
convenient, method of solving differential equations
of the type (1.1 J by numerical methods. Let us choose
a sequence of equally spaced values of x, including
among them the initial value K, the interval between
successive tabular x's being small enough so that the
integrations (2) can be performed by numerical quad
rature with no more error than we have decided to
allow. We could then make any sort of first estimate
for the functions y^(x) or for the right members f^,
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and begin the process of successive approximations
specified by equations (2). Eventually the columns
of values of y^(x) will begin to repeat themselves,
showing no change (to the number of decimal places
retained in the solution) from one approximation to
the next. At this stage we have obtained a solution
of the differential equations, accurate to within a
certain error dependent on the number of decimal places
retained in the process and the number of lines needed
in the computation.

Suppose, to make the notation specific, that the
initial value (of x is 0, and that the interval in
x is £»>. We wish to integrate the differential equa
tions from 0 to some point b. The procedure of the
preceding paragraph would call for an estimate of y^all the way from 0 to b, this estimate being then
replaced by a sequence of improvements converging to
the solution desired. An obvious but important im
provement in this procedure results rrom observing
that the successive approximations to the yj_ on each
line x ■ m co depend only on the earlier approximations
on the lines from x-Otox-mO) and do not involve
the values of the y^ on line x « (m + and suc
ceeding lines. This gives us the privilege of com
pleting the approximation on each line before starting
work on the next line. For instance, on lines x ■ 0
to x = (m - 1) cu we can calculate successive approxima
tions until we reach final values. Now by examining
the column of values of each y^, corresponding to the
values x ■ 0, to, (m - 1) co,we can extrapolate to
form a good first approximation to y* on the line
x a m co. Having a good first approximation, the later
approximations will rapidly approach the final values,
so that usually after one or two stages the final values
are reached. This, in essence, is the whole of numeri
cal integration of differential equations. There re
mains a certain amount of room for choice, in the manner
in which the extrapolations are made and in the selec
tion of quadrature formulas; but these are matters of
detail rather than of basic principle.
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5. Application to an example .

Although the methods of numerical integration that
form the subject of this chapter are being discussed
primarily because of their applications in ballistics,
it will be easier to see the processes involved if we
apply them to an example exhibiting the steps needed,
but not requiring long computations. We shall discuss
the equation

(1) y - - y,
the initial condition.*! being so chosen that we obtain
the solution

(2) y » sin x.

Thus we can check our results against a table of the
natural sine with argument in radians.

The formulas of the preceding sections involved
differences of order higher than the first, and these
are not available at the beginning of the computation.
$o starting a solution is a special problem in itself,
which we shall postpone for a while. Here we start
in medias res, supposing that somehow or other we have
managed to obtain several lines of the computation,
and we shall show how to proceed to obtain more lines.
The computations will be based on the four quadrature
formulas of Section 3.

Let us then suppose that the computation has pro
ceeded for a number of lines at interval CD ■ 0.1, the
last three lines being exhibited in the following table:

X y A* A2 y y" A1 A2 a3

.5 .U7913 9001 -339 .37758 -.U79U3 -9001 389 9h

.6 .56U6U 3521 -U8o .3253U -.56U6U -8521 U80 91

.7 .6UU22 7958 -563 .76U8U -.6UU22 -7958 563 83
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The value of y1 for x ■ .6 was obtained by Slops on' s
rule, and only after the line x • .7 is complete can we
check it by (3.3). According to this formula,
y'(.6) - .87758 ♦ (0.1) [( - .U79U3 - .56U6U)/2

(3) - (1/2UX.0OU8O ♦ .00563) ]
» .82533.

slightly "plus." This is an acceptable check. We
leave the entry .8253U unaltered.

Next we start the process of successive approxima
tions by making an extimate of y" for x - .8. This we
do by extrapolation of the third difference by guess
work. We shall guess that the third difference on line
x ■ .8 will be 73. (As is usual in entering differences
we omit the decimal point, expressing them in terms of
units of the last decimal place carried in the main
column, which in this case is y".) This leads to the
entries

(u)
7

-.717hU -7322 636 73

(Here we have wasted some energy, since all we need at
the moment is the last pair of entries, the third and
second differences.) Now by (3.1) we compute

y'(.8) - .8253U

(5) + (0.1)[2( - .6UU22) ♦ (l/3)(. 00636)]
- .69671

Now by (3.12) we find
aV(.S) - (0.05)[.76U8U + .69671

(6) - (l/60)( - .07322) ]
- .0731U

(Ordinarily the decimal point would be omitted from
before each five-figure entry in this equation.)
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From this first difference and the entries on the pre
ceding line we find that y(.8) is .71736, and its second
difference is - 6UU, in units of the fifth decimal
place. As a computational check we apply (3.9):

*2y(.8) - (0.01) [ - .6UU22 + (1/12) (.00636) ]
(7) - - .006UU,

agreeing to five decimal places with the other result.

The first phase of the process is now finished, and
we go on to the second approximation. We have just
obtained the approximation .71736 for y at x - .8, so
the corresponding value of y" is the negative of this
by (1), and we obtain the entries

. y« A1 A2 A3
(8)

-.71736 -731U Shh 81

Our guess at the value 73 for the third difference
was not a very good one, since this better approxima
tion gives the third difference the value 81. We now
repeat the whole sequence of operations, except for
the verification of the entry for y' on line x ■ .6.
The right member of (5) is amended this time by having
.006UU in place of .00636; but to five decimals the
value of y' is unchanged. The right member of (6) is
amended by having - .0731U in place of - .07322; but to
five decimal places this leaves y unaltered. So the
second approximation yields the same values for y1 and
y as the first approximation did, and the process is
complete. Line x - .8 now has its final values, and we
are ready to go on to the next line.

It will be noticed that the first approximation
did not look particularly accurate, since the extra
polation of y" was in error by eight units of the last
decimal place. Nevertheless, it turned out that this
was actually good enough. He-computation did not alter
the values of y1 and y, and therefore was unnecessary.
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But we had to go through the computation of the second
approximation in order to find this out. In other
words, the re-computation was unnecessary, but was
nevertheless necessary in order that we could be sure
that it was unnecessary'. This is a rather undesirable
state of affairs. Clearly it would be convenient to
have some sort of reasonably simple test by which we
could be sure that re-computation would not change the
values of the functions without having to go through
the whole process merely to verify that they do not
change. This will be discussed further in Section 7.

The general type of second-order differential equa
tion would have the form y" - f(x, y, y' ). The problem
we have been discussing belongs to the special sub
class in which the right member happens to be inde
pendent of y1 . We did not choose to exploit this
peculiarity in the preceding paragraphs, because we
wished to exhibit the processes that would be used
in solving a general second-order differential equa
tion. However, now ttiat that has been done, it is
useful to point out that second-order equations in
which the right member is independent of y' can be
treated especially expeditiously. Let us return to
the tabulation just before equation (3), and again
guess that the third difference of y" on line x - .8
will be 73. We again obtain (h) , except that as re
marked we have no need of the values of y* and its
first difference, so they need not be computed. By
(3.9) we compute A2y(.8)5 this is identical with (7).
With this we compute the entries

y A1 A2
(?)

.71736 7311* -6UU

This gives us (8) for the second approximation to
y", and as before we see that the second approxima
tion to y is the same as the first, so that the line
is finished. The amount of numerical work involved
is considerably less than in the general process.
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There is a disadvantage in that there is no check for-
mula. But this can be repaired in part by carrying an
extra column in which the running sum of the values of
yw is entered and using on each line the following
check, obtained from (3.9) by summing:

(10) - 0)2 j J) y«(jCD)
(j-0

+ (l/12)OV(nia>) - AV(0)]j.
For use in checking, this would be more convenient if
rearranged into the form

Aly(mci)) . [^(0) - (o)2A2) aV(0)]

+ o/l £ y"(jo>) ♦ (1A2) iVUd)) •

f J-0 )

The first term in the right member does not change
with m.

6. The start of the solution.

When beginning the numerical integration of a dif
ferential equation we lack the differences that played
an important role in the quadratures, and must use some
special device as a substitute. The simplest possible
device is to start with an interval co so small that
the trapezoidal rule is accurate enough for computing
the first derivative by quadrature of the second deriv
ative, assuming that we are still discussing second-
order equations. There is much less chance of any
trouble in obtaining the function itself from its deriv
atives, since if y' and y" are known with sufficient
accuracy on two consecutive lines, equation (3.12) can
be used to obtain an estimate of y whose error is a
small multiple of the third difference of y".
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The process can probably be more clearly under
stood from inspection of an example than from a dis
cussion in general terms. So let us suppose that we
are again trying to solve the differential equation
(5.1), but that now we are to start from the initial
conditions

(1) y - .U79U3 and y' - .87758 at x - .5.
We shall attempt to use CD ■ .05 as interval at the
start. By the differential equation (5.1) itself, we
have y" » - . Lt79U3 at x ■ .5. As a first approxima
tion, we suppose that yM is still equal to - .U79U3 at
x - .55. By the trapezoidal rule ((3.3) with all dif
ferences omitted) we find that y' is .55361 at x - .55.
By Morrey's rule (3.12), which since A ^y" • 0 is
merely the trapezoidal rule at this stage, we find
My - .01*328, so that y « .52271 at x - .55. New we
start the second approximation. By the differential
equation itself, we have the second approximation
y" ■ - .52271 at x ■ .55. Again we use the trapezoidal
rule to obtain the second estimate y1 ■ .85253 at
x - .55. Now formula (3.12), which is no longer the
trapezoidal rule because we have a first difference
of y" to use in it, gives us y * .52269. This dif
fers little from the preceding approximation .52271,
and we find, as we might expect, that the third approxi
mation starting with y" = - .52269 gives us y - .52269
back again, so that the process is closed, and we have
reached final values. Whether we have reached correct
values is quite another matter. We have used the
trapezoidal rule in computing y' from y" , and thereby
have disregarded the second-difference terms in (3.3).
We will not be able to learn if we were justified in
doing this until the computation has gone at least a
line or two further, so that some second differences
are available to furnish ah estimate of the error that
we have made.

The information so far attained is that in the
following table.
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12 1 9x y A A y' y" a A

.5 .U79U3 .87758 -.U79U3
.55 .52269 U326 .35253 -.52269 -U326

We can now abandon the trapezoidal rule. Lacking any
information about the second difference of y", we assume
as a first approximation that the first difference of y"
is still equal to - U326 on the line x ■ .60. Then by
(3.1), we findy1 • .82531, and by (3.12), y - .56U65.
We now proceed to the second approximation. By the
differential equation, y" » - .56U65 at x ■ .60, so that
the first difference of y" is - 1*196 and the second dif
ference is 130. Again using (3.1) we find y1 - .82533.
and by (3.12) we obtain y ■ .56U65 again. (The trigo
nometric table has .56U6U instead, but our value is
actually almost a half unit of the fifth decimal place
less than .561*65, so the agreement is good.)

From this point we may proceed in either of two ways.
We may go on at once to the line x » .7. To do this we
would extrapolate y" to the line x ■ .7, find y' by
Simpson's rule using the values of y" on lines x - .5,
.6 and .7, and then find y by (3.12), as first approxi
mation; then use this first approximation with the dif
ferential equation y ■ - y* to obtain a second approxi
mation to y", and so on. A difficulty with this pro
cedure is that we are rather likely to make a poor ex
trapolation, lacking the higher order differences to
guide us. Some help can be obtained from the second
difference formed from the values of y" on lines x ■ .5,
.55 and .6; we could assume as a first approximation
that the second difference is constant and thus extra
polate y" to line x ■ .7. Nevertheless, it is still
fairly likely that we would have to go through several
approximations before the final values of y", y' and y
are reached. As an alternative to this process, we
could be less valorous and more discreet, computing two
more lines at the shorter interval (that is, computing
lines x • .65 and x ■ .7), then extrapolating y" to
line x • .3 and proceeding from this point using only
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lines x - .5, .6, and .7, as in the preceding section.
This procedure would call for computing one line,
x ■ .65 > which is ignored after it serves its purpose
of guiding the extrapolation to x • .7. But in practice
it often turns out to be a net saving to do this; if one
re-computation of the line x - .7 is avoided, this extra
line has paid for itself.

We now investigate a second method of starting the
numerical integration which is quite advantageous when
ever it happens to be easy to compute the third deriv
ative y' ' ' . In fact the advantage of this method is
not at all bound up with the order of the equation;
it is equally useful with a system of first-order
equations like (1.1), provided that the derivatives
yi' 1 can be easily computed. By (2.8) we see that a
knowledge of the first derivative of a function at
x ■ 0 can furnish us with an estimate of the first
difference of the function at x ■ CO. But this is by-
no means all that can be done with the help of the know
ledge of f'(0). Let us imagine that f(x) has been
approximated by a polynomial P(x), for which we choose
to use formula (2.27), which is Stirling's formula.
Then we can obtain an estimate of f'(0) by differen
tiating the right member of (2.27), and setting x ■ 0.
Recalling that x ■ nco, so that dn/dx ■ l/co, we obtain

cof'(O) - 0^(0) + A1f(co)]/2

(2) - |>3f(co ) + A 3f(2co)]A2

+ U5f(2co) + A5f(3<o)]/60 +

the succeeding terms involving means of differences
of odd order greater than 5.

An immediate consequence of this equation is

(3) If differences of order 2 and higher are ignored,

A1f( co) - cof'(O).
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Next we replace A^O) by &t( co) - A2f(co), as we
may by definition of the second difference. Solving (2)for the second difference yields

(U) If differences of order 3 and higher are ignored,

A2f( co) - 2 [a^cd ) - cof'(O)].
If differences of order U and higher are to be ig
nored, we may consider that *3f( co) may be replaced
by A3f(2co) in (2). Moreover, the relation

A^O) - A^co) - A2f(2co) + A3f(2co)

is an identity, by (1.5). Making these substitutions
in (2) yields

(5) If differences of order b and higher are ignored,

A3f(2a>) . (3/2) { A2f(2co) - 2[A1f(<o) - cof'(O)]}.
By use of (5) and the identity

A3f(2co) - A2f(2co) - A2f(co)
we obtain

(6) If differences of order h and higher are ignored,

2[A1f(co) -cof'(O)]- (2/3)A2f(co) + (1/3) A2f(2co).

It will be observed that (3) and (u) are immediate
consequences of (6).

We shall now describe the application of these for
mulas to the start of the solution of a single second-
order differential equation. The application to sys
tems of second-order equations requires only the use of
the procedure for each of the variables; and the appli
cation to systems of first-order equations requires only
the omission of the steps needed to pass from y' to y.
As soon as the first line is filled out, the knowledge
of the value of y1 1 ' on this line enables us to estimate
the first difference of y1 1 on the next line by (3);
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hence we have a first approximation for y" on the second
line. Now by the trapezoidal rule we compute y* on the
second line, and by (3.12) we compute y on the second
line. This gives us the second approximation to yn on
the second line, and also furnishes us with a better
estimate of the first difference of y". So (U) gives us
a first estimate of the second difference of y" on the
second line. In order to compute the second approxi
mation to y' on the second line, we need no longer use
the trapezoidal rule. The estimate of the second dif
ference of y" will serve also as an approximation to the
second difference of yw on the third line. So we can
use (3.3) with these estimates for the second differ
ences, obtaining a more accurate value of y* on the
second line than the trapezoidal rule would furnish.
We re-compute y by (3.12), and repeat the process until
final values are reached.

Now we proceed to the third line. Since we have an
accurate first difference and a good estimate for a
second difference of yn, we may hope to make a better
extrapolation than if we knew the first difference
alone. We make the extrapolation and compute y* on the
third line by Simpson's rule, which for this purpose is
conveniently expressed in the form (3.1). We next com
pute y on the third line by (3.12), checking the second
difference by means of (3.9). This process is repeated
until final values are reached. We now have the value
of the second difference of y" on the third line. We
also still have the value of the estimate (U) of the
second difference of y" on the second line. We could
estimate the third difference of y" on the third line by
subtracting the latter of these from the former. But
(5) tells us that we should not enter the result of this
subtraction as the third difference of y*. Instead,
we should enter 3/2 of its value. Then for consistency
we must revise the estimate of the second difference
given by (U) and already used; it must be replaced by
the result of subtracting the third difference just
computed from the computed second difference of yn on
the third line.
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The most inaccurate step in this process is the
first approximation to y' by use of the trapezoidal
rule. But this is of no importance, since this esti
mate is later replaced by a more accurate one. Of
the steps left in the final computation, the one most
open to doubt is still the computation of y1 on the
second line by use of (3.3), in which the approxima
tion is used for the second difference on both
the second and third lines. In the notation of (U),
we have used the approximation

(CD
\ f(x) dx

(7) Jo
-

co
( [f(0) * f(co)]/2 - (1/6) [A1^©) - COf(O) ]}

as a substitute for (3.3). If fourth differences are
ignored, the difference between (7) and (3.3) can
easily be shown to be only
(8) (co /72) A3f(2 co).

If this amounts to less than half a unit of the last
significant figure, the formula error committed by using
(7) may be neglected. Otherwise we must carry out an
other improvement. After the third line is complete, we
have an accurate second difference of y" on the third
line and a good estimate on the second line. It is thus
possible to re-compute y' on the second line by means of
(3.3) without having to fall back on the approximate
form (7). If the third difference of y" is too large to
let us ignore the error (8), this revision should be
made, and all subsequent revisions which it may imply.

The application of this method of starting the solu
tion to the particular problem we have been using as an
example will be sufficiently clearly shown by means of
the following table. In this table the first, second
and third approximations to the quantities on the
second and third lines are all shown; in practice all
but the final values would commonly be suppressed. All
quantities other than the final values are underlined.
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The subscripts show the order in which the numbers are
computed. The quantities in square brackets in the last
three columns are those furnished by the formulas (3),
(U) and (5) respectively. The entry [508 ] in the final
approximation to line x ■ .6 is that furnished by (li)j
the entry USO below it is the result of correcting it
with the help of (5), which yields the entry 85 as the
third difference of y" at x - .?. Two of the entries
have two subscripts. The value of y1 for x ■ .6 was
computed at the eighteenth step by formula (7) and veri
fied at step U2 by (3.3). In fact, since the third dif
ference of y" is only 8U we see that the error (8) is
negligibly small. The second difference of y for x ■ .7
is computed at step 36 from the first difference given
by (3.12) and verified immediately by T3.9). The ini
tial conditions are those in (1), but we begin with
interval .1 instead of with the interval of .05 that
was used with the other method of starting.
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7. The tolerance.

It has already been remarked that there is a rather
considerable amount of waste effort in the procedures
outlined in preceding sections, because the last approx
imation merely duplicates the values found in the
approximation before it, and serves no other purpose
than to confirm that the preceding approximation had
already furnished the final values. Clearly there
would be an advantage in knowing at some stage that
although the approximation completed did not repeat the
values of the stage before it, another approximation
would repeat the values just found. This would allow us
to omit the last, merely confirmatory, approximation.

Let us return again to the example we have been
investigating. Suppose that the difference between the
values of y" furnished by two consecutive approximations
is e. There is then the same difference between the
first differences of y" furnished by the two approxima
tions, and likewise for the second differences. Then
in computing y' by (1.1) we find a difference of coe/3
between the values obtained in the two approximations.
The corresponding difference between the two values
of y, by (1.12), is

(w/2)[o)e/3 - (u>/6)e]« u)2e/12.
It would not seem that this could be applied to the
second line, since there we must use (6.7) if we adopt
the starting process based on the derivative of y";
but it happens that (6.7) leads us to the same result.
Thus we see that if the values of y" at approximations
n - 1 and n differ by e, the values of y will differ
by Ci)2e/i2, and so the values of y" at approximations
n and n + 1 will differ by - co2e/12.

No matter how small this quantity is, we can never
guarantee that it will not affect the last significant
figure of y" when rounded off to some preassigned number
of decimal places. For it may happen that the first
omitted figure in y" at stage n is very nearly a 5,
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so that a very small change would alter it from just
below to just above 5, and thereby change the digit in
the last exhibited decimal place by a unit. However,
as long as we are rounding off all our entries to a
certain nomber of decimal places (five, in the example)
we are signifying our willingness to accept errors of
half a unit of the last decimal place carried. Thus, it
is not unreasonable to augment by a little the size of
the error we are willing to accept, and agree that we
shall stop the process of successive approximations as
soon as we know that the next stage would not affect any
entry by more than half a unit of the last decimal place
carried. Then we are willing to stop the process as
soon as the error a> e/12 of the next step does not ex
ceed half a unit of the last decimal place carried. In
our example, the permissible error is

">2e/12 - .5 units of the fifth decimal place,
with cd - .1. Hence

e ■ 600 units of the last decimal place.

In the calculations exhibited in the preceding sec
tions, the discrepancy between first and second approxi
mations was never as great as 600 units of the fifth
decimal place. Hence in every instance the application
of this criterion would have marked the values obtained
in the second approximation as final, and we would never
have gone on to a third approximation; whereas in every
instance we did go on to a third approximation merely to
confirm the fact that the second approximation gave
final values. However, this is a slight overstatement.
In the tabulation at the end of the preceding section it
will be noticed that the first and second approximations
both on line x ■ .6 and on line x ■ .7 differed from
each other by less than the tolerance of 600 units just
suggested. Yet in each case the second and third ap
proximations to y" differed from each other by a unit of
the fifth decimal place. This is particularly striking
in the case of line x - .7, where the first and second
approximations to y" differed only by 57 units of the
fifth decimal place, much less than the permissible 600.
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It happens that on both the lines the phenomenon
mentioned in the preceding paragraph occurred. For
instance, on line x ■ .7 the first difference, whose
final value is recorded as 7958, is actually almost
exactly halfway between 7957 and 7958, and the small
change in y" from first to second approximation was
enough to throw it over the halfway-mark. It happens
that on both lines the final value of the first dif
ference of y is just about half a unit of the fifth
decimal place too large, so that in fact .6UU22 would
be a more accurate final value for y(.7) than the
final value recorded, .6IU423. (In fact, .6U*22 is
the value shown in the table of natural functions.)

However, this same example of the table at the con
clusion of Section 6 serves to show us that we are at
the edge of a deeper problem than the one we have been
investigating. Certainly there is an advantage, as we
have said, in knowing when to stop the process of suc
cessive approximations, without having to go on until
two successive approximations are duplicates. But, to
state it somewhat superficially, it is hardly enough to
know when the final values have been reached with error
not over half a unit of the last decimal place carried.If the entire solution is to have error nowhere greater
than some preassigned bound, we must also know at the
least how many decimal places should be carried.
Clearly it is not sufficient to carry five decimal
places on each line if the whole table is to be accu
rate to five decimal places. In the table at the end of
the preceding section, each of the first differences of
y is less than half a unit of the fifth decimal place in
error. Yet their sum is nearly a unit of the fifth
decimal place in error, because the errors of the two
first differences happen to be nearly half a unit each
and are of the same sign. Thus an error has already
occurred in y(.7) which will persist, unless by chance
an equal and opposite error occurs later; and this is no
more likely than that an equal error of the same sign
will occur later. So we have before us an example of
the effects of the accumulation of rounding errors.
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The simplest, but not the most useful, way of at
tacking the problem of setting a bound on the error
■would be to fix a tolerance on each line so stringent
that even if the greatest possible error occurred on
each line and all were in the same direction the total
effect would still be within the allowable amount.
But it is evident that in a computation extending
through a fairly large number of steps it is extremely
unlikely that all the errors would be of maximum amount
and of the same sign. Consequently we shall set our
selves the more difficult, but more realistic, problem
of finding the limitations that we must set on the
errors in each separate line in order that their cumu
lative effects shall remain under a preassigned bound,
not with absolute certainty, but with a probability of,
say, 99 per cent.

Let us suppose that an equation of the type

y" - F(t, y, yt)
has been solved by some selected process of numerical
integration, the solution being computed for certain
values t0, . . . , tn ■ T of the time t. On each line
there will be some error in y" , due to two causes.
First, the y" written will be given to only a certain
number of figures, being rounded off to a selected
number of decimal places. From the values of the
entries on preceding lines, by use of the formulas of
the integration process being used, there would follow
a value of y" on the line t ■

tj^ which would ordinarily
be an unending decimal. This is rounded off to the
nearest multiple of 10"^, where k is the number of
decimal places carried. The change introduced by this
rounding error will be called the rounding error in
y" on the line t • t^, and will be denoted by the
symbol r"(ti). Observe that this is not the differ
ence between the number entered on the i-th line and
the accurate value of y"(ti). It is the difference
between the number entered and the number which would
be accurately deduced from preceding entries, which
themselves are already in error because of rounding.
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The second kind of error in y"(ti) arises from the
fact that the process of computation involves making
a first approximation and improving it by successive
approximations. No matter how far this process is
carried, there will always remain some departure from
the true value, depending on the error in the original
extrapolation and on the number of stages of improve
ment. This remaining error will be called the extra
polation error. It is of course not the same as the
error in the first extrapolation, but is the (usually
much smaller) error in the final stage which is caused
by the original error in the first extrapolation. We
shall denote this extrapolation error in y" on the
line t - ti by e"^).

Each of these errors will produce some resulting
error in the last computed value of y, that is y(T).
The error in y(T) caused by, say, r"(ti) may be assumed
proportional to r"(t^), since the error is small and the
error in final value will be closely enough represented
by its differential, which is linear. The quantity of
prime interest to us is the sum of all these errors in
the last value of y. We shall study this with the help
of the Laplace-Liapounoff theorem (see Section 22 of
Chapter I). But this theorem presupposes that the
errors are independent. At first this might seem to be
meaningless in the present situation. One objection is
that it is meaningless to speak of the "probability"
that the error in a specific computation shall be less
than a certain amountj in one single computation, it is
or it is not greater than this, and no probability is
involved. This objection is superficial; if it really
had any weight, it would indicate that no life insurance
policy should be sold to any one man. However, it does
raise a reasonable question. Probabilities should be
discussed relative to some specified population. What
is the population with which we are concerned here? A
second objection is perhaps a bit deeper. Ignore for
the moment the extrapolation error. With given initial
conditions and function F, the rounding error on any
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one line is not necessarily forced upon us; we can
select a different number of decimal places. But when
this is done, the errors up to and including a given
line determine the values of y", y' and y on that line,
hence determine the values of y", y1 and y on the next
line which follow from these data, and thus finally
determine the rounding error on the next line. In
what sense can we then say that the rounding errors
on successive lines are independent?

Let us denote by y* and y'» the initial values
of y and y1 used in computing the trajectory which
we are studying. In this computation we may suppose
that F was found from a table in which F was listed
against closely spaced values of t, y and y . We
shall denote this tabulated function by F*(t, y, y' ).
Given a positive number £, we could consider the en
tire aggregate of solutions which could be obtained
by replacing y*, y'* and the tabulated values of F*
by other numbers differing from the originals by not
more than e. This would give us an aggregate of so
lutions depending on a very large number of parameters
(say N of them), each varying independently over an
interval of length 2e. Here we have a situation re
sembling that of the n roulette wheels discussed in
Section 17 of Chapter I.

There is a "cube" in the space of N dimensions
having each edge of length 2e. Each point in this
"cube" characterizes one solution of the differential
equations. The probability measure of an interval
lying in this cube will be taken to be the ratio of
its N-dimensional volume to that of the whole cube,
just as was done with the n roulette wheels. Now we
have a specific population and a probability measure
over it. To each individual member of the population-
corresponds a uniquely determined number which is the
total effect of all rounding errors on the value of
y(T). For each preassigned positive number e there will
be a certain subcollection of the population on which
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this total error does not exceed e. The probability
measure of this subcollection is the probability that
the total rounding error does not exceed e. As always
in probability theory, for any given solution we can
not be certain in advance that the rounding error is
less than e. But if we have found that the probability
is .99 that the total rounding error is less than e,
then we may feel reasonably confident that if we com
pute ten thousand such solutions, about 9,900 of them
will have errors less than e.

In order to discuss the independence of the individ
ual rounding errors r"(ti), we assume that enough
decimal places are carried so that as the parameters
vary over the "cube" in N-dimensional space, each error
r"(tj_) goes many times through its cycle of values.
Assuming that we are rounding to the nearest multiple of
a, this cycle of values consists of going from - a/2
to + a/2. We are thus assuming that the surfaces of
discontinuity of each r"(yjj in the "cube" are numerous.
It is safe to assume that the correct values of the
y"(t^) are linear functions of the parameters, since
they may be replaced by differentials with respect to
the parameters without serious error. For each i, we
can find a parameter which affects the value of y"(ti),
but does not affect y"(t.j) for j < i; for instance,
any parameter which changes F^,t, y, y ) at a vaxue
of t between t^_i and t^ produces this effect. So it
is possible to replace the original parameters by
new ones, linear combinations of the old ones, with
the property that changing the parameter changes
y"(ti) but does not change any y"(tj ) with j < i, fori - 0, n. There will also be N - (n + 1) other
parameters qn+i> <1n_i which may affect all the
y"(t^). These new parameters will vary over the image
of the original "cube" under the change of parameters.
This image will be a parallelopiped Q. Since volumes
are all multiplied by the same factor under a linear
mapping, the probability measure of a set is still equal
to the ratio of its volume to the volume of the whole
set over which the parameters range, namely, vol Q.
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If we write the N parameters in the order

W V qn-l» '••» V qn+l> qN-l'
the interior of this parallelopiped is defined by a
sequence of inequalities

(2) ak < qk < bk,

where each aK and bk are functions of all the para
meters which follow qk in the arrangement (1). If f(q)
is a function integrable over the parallelopiped, its
mathematical expectation is (1/vol Q) times its inte
gral, which can be evaluated by integrating first with
respect to qn between and bjj, all other variables
being fixed, then integrating the result of this with
respect to qn_i between a^-^ and bn_^, and so on.

Consider now a sequence of inequalities

(3) h±< r»(ti)< k± (i - 0, n),

where - a/2 5 h^ < 5 a/2 for each i. Let SjL be
the set of values of the parameters q on which the
i-th of the inequalities (3) is satisfied, and let
K^(q) be its characteristic function, that is, the
function which is equal to 1 at all points q in
and is equal to 0 elsewhere. For each i, the para
meters q* preceding q^ in the arrangement (1) have no
effect on the entries on lines t - t0, t^ of the
solution, and therefore have no effect on r"(t^).
Consequently %(q) is independent of the parameters
preceding q^ in the arrangement (1). Let S be the
set of parameters q at which all the inequalities (3)
are satisfied, and let K(q) be its characteristic
function. Then K(q) is equal to 1 if and only if all
inequalities (3) are satisfied, which is true if and
only if each K^(q) has the value 1. It follows that
K(q) is the product of the K^(q) for i ■ 0, n.
The probability measure of the set S is (1/vol Q)
times the integral of K(q) over the parallelopiped Q.
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Since K is the product of the Kj
_ and is independent

of the parameters preceding in (1), this probability
measure is

(U)

p(s) -

n
Kn(q) dqn. . .dqQdqn+1. . •dqN_1.

an
In the innermost integral, as the variable of integra
tion q varies from to the function y"(tn) varies
linearly between certain limits, and except for a small
set of values of the q^ with i 4 n this function will
run through a range considerably longer than a. Cor
respondingly the difference between y"(tn) and the
nearest multiple of a, which is r'Ktn), will run many
times through its full cycle of values. In each cycle,
the fraction of the total length of the cycle during
which (3) is satisfied is (kn - hn)/a. So if y"(tn)
ran through an integral multiple of a, Kn(q) would
have the value 1 on a subset of the interval

with total length (kn - hn)/<x times the length bn - an
of the interval. On the rest of the interval it has
value 0. In general, y"(tn) will not run through a
range whose length is an integral multiple of a, butif we ignore the fractional part left over we shall
not be greatly in error in our estimate of the ratio
of the part of the interval on which Kn ■ 1 to the
length of the whole interval. Thus with small error
we may replace Kn by 1 in (h) if we simultaneously
write a factor (k^ - hn)/<x in front of the integral.

This being done, we can rearrange the order of the
integrations in (U) so that the innermost integration is
with respect to qn_i« The same argument can be repeated
to show that there is small error if we replace by
1, at the same time writing a factor (kn_i - h^jj/a

»n < qn < b:
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in front of the integral. This process can be repeated
until all the have been replaced by 1. But then the
integral is the integral of 1 over the parallelopiped Q,
and its value is vol Q. Hence (U) reduces to

be arbitrary numbers satisfying - a/2 5 < 5 a /2
but for all other numbers j from 1 to n we choose
hj - - a/2 and kj ■ a/2, the set S* on which these
last inequalities hold is the whole population. So
the common part of the sets S^, Sn is simply
itself, and (5) reduces to

apart from the small error made by ignoring fractions
of cycles of rounding, and so the functions

may be regarded as independent.

The independence of the extrapolation errors e"(t^)is a rather different matter. Here we have no chance
of constructing a proof like that in the preceding
paragraphs, because the extrapolation error is the
residual effect of the computer's inability to guess
without error at the value of y" on the next line.
In some computation processes a formula is used to
guide the extrapolation from each completed line to
the next line. If this is done, the extrapolation
errors cannot be considered independent. There will,
for example, be long stretches of consecutive lines
on each of which the formula will give too large an
estimate. But experience indicates that a computer

(6) pCSi) - (1^
- h±)/a.

Comparison of (5) and (6) shows that

(7) P(s; - v(S1)...V{ST1),

. . . ,
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of any ability, faced with this situation, will show
sufficient independence of action to refuse to accept
the results of the formula, and will introduce an ad
hoc correction so as to make the extrapolated value
more nearly equal to the final value. As soon as the
computer introduces this element of guesswork, the
rigidly predictable nature of the extrapolation has
been done away with. In the process described in pre
ceding sections the computer is expected to make an
extrapolation according to his best judgment from the
values and differences available. In this case there
is no question of predictability of extrapolation on
one line from that on the preceding line. However,
it may still be argued that the extrapolation errors
are not independent, since a computer who has made an
error in excess on one line may be inclined to make an
error in defect on the next line in overcompensation.
This cannot be readily refuted. An examination of some
trajectory computation sheets does not seem to indicate
that there is such a tendency, but a long and careful
analysis would be needed to settle the point. However,it hardly seems to be worth the trouble to make such an
analysis. For it is very unlikely that the effect
of an erroneous guess would persist beyond the next
line, so that the sums of extrapolation errors on
consecutive triples of lines would presumably be in
dependent, or very nearly so. The possible interre
lation between consecutive lines might conceivably
affect the total error somewhat, but it is unlikely
that this effect would be large enough to disturb the
following discussion to any serious extent.

Having now decided that the errors r"(t^) and e"(ti)
may be treated as independent, we need to find the
error in y(T) produced by either of these errors on
line t • t^. Here the example we have been considering
is sorrewhat deceptive. In this example it happens to be
very easy to compute y" from y, since the equation is
y" « - y. Ordinarily, and in particular in trajectory
computations, this is the hardest part of the compu
tation; in order to find x" and y" from x1 , y and y'
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it is necessary to find v2 and use both the G-table
and the air density table. So it is usually the case
that the last part of the computation is not the find
ing of a value of x" or y" , but is rather the compu
tation of y' and y from the final values of the second
derivatives. We shall assume that this is the case
henceforth. We shall suppose, to be specific, that
the computation process is that presented in the
preceding sections of this chapter. A similar ana
lysis would apply to any other method, and in fact the
numerical results would be only slightly different
for any other method in use.

Let us suppose that the computation is first carried
out without error, and is then repeated, but the sec
ond time an error e is made in the value of y'Ht^).
This error affects the values of y1 and y on this and
subsequent lines, and thereby affects the values of
y" on the subsequent lines. However, in practice the
process of successive approximations must be rapidly
convergent if the computation is to be feasible, and
as a result a small error in y"(t^) can produce only
a very small error in y"(t^+l) and y"(ti+2)« Hence
we may suppose that on the two or three lines following
the line t *

t^ there is no appreciable error in y".
The application of the quadrature formulas to the
erroneous column of values of y" is straightforward.If we suppose that at each step the values of y* given
by the two formulas (3.2) and (3.3) are averaged, we
find that apart from a very small error, the values
of y' computed on line t ■ ti+2 and the next few lines
are in excess by coe, while the values of y on lines
t * ti+2> i " *i+3> etc., are in excess by approximately
co 2e, 2co2e, etc. Thus the effect of the 'error e in
y"(ti) is almost exactly the same as though the com
putation were started again at t ■ tj. with the same
value for y(t^) but with a new initial value for
y'(tj_) which is co e too great.

If we imagine the solution to be re-computed with
initial value t^ for the independent variable, the same
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initial value for y at time t^ as on the original solu
tion, but with various values of y' (t^), the value found
for y(T) will be a function of y'(ti). Let us denote
the derivative of this function y(T) with respect to
y'(ti) by the symbol

&y

(8) 6y'(ti)
t - T

which may be safely abbreviated to 6y(T)/6y' (t^ ) as
long as it is understood that the value of y at the
particular value t ■ T is being investigated as a func
tion of y'(ti). Then the effect of a small change toe
in y'(t^) will produce a change

(9) [*y(T)/by'(ti)](OE
in y(T), except for an error of the second order of
small quantities. Thus if the rounding error in y"
on line t ■ t± is r"(ti) and the extrapolation error
is e"(t^), the total effect on y(T) produced by all
these errors is

n
(10) Ay(T) - £ [&y(T)/6y'(ti)][r"(ti) + e»{t±)] co,

i-0
since we have already shown that the effect of the
error r"(ti) + e"(tjj is almost exactly the same as the
effect of a change fr^ti) + e»(ti)] co in y'(ti). This
formula remains valid even if CD is permitted to vary
during the computation, provided that r"(ti) + e"(ti)
is multiplied by the interval CD being used just after
the i-th line, that is, t^+i - t^; the truth of this
statement is evident from the discussion in the pre
ceding paragraph.

The quantities r"(ti) and e"(ti) are independent,
and so are their constant multiples appearing in (10).
As stated immediately after (1.21.10), the variance
of the sum of these independent functions is the sum

38U Ch. VI



of their variances, so that
v[Ay(T)]

- £ Oj2[6y(T)/6y(ti)]2{v[r»(ti)] ♦ vCe"^)] },i-0

where V [ ] denotes the variance of the expression in
the square bracket.

Let us suppose that a number ep has been selected
as a "permissible error," in the sense that we are
willing to accept a probability of not over .01 that
the error in y(T) will exceed £p. From the central
limiting theorem of probability theory (see Section 22
of Chapter I), if n is large we may assume that the
error Ay(T) ±s approximately normally distributed; its
variance as given by this theorem is the same as that
already computed by (11). In order that the probability of having error greater than Ep shall not exceed.01, it is necessary that t shall be at least 2.585
times the standard deviation of Ay(T); that is,

(12) v[Ay(T)] ^ (ep/2.585)2.

But in (11) the left member of (12) is expressed as the
sum of two sets of terms, one set involving the rounding
errors r"(t^) and the other involving the extrapolation
errors e"(ti ). If we ignore all other rounding errors
(this will be discussed later) we can insure that (12)
is satisfied by selecting two numbers c^ and C2, the sum
of whose squares is 1, and then requiring that

(13) E utlbyCV/byit^fvlr"^)] < (c,e _/2.585)2,
i-0 F

n
(HO £ co2[6y(T)/&y(ti)]2v[e"(ti)] <

(c2S/2.585)2.i-0
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The function V[r"(ti)] changes only slowly from
line to line, except at the places (relatively few in
any one computation) at which the number of decimal
places is changed. Similarly V[e"(ti)] changes only
slowly from line to line, except where the tolerance
set on the agreement of last and second-last lines is
suddenly changed. We may therefore regard vCr"(t[ )]
as the value at t - tj. of a function V[rn(t)] which
has a few discontinuities and is slowly changing
between them; and likewise for v[e"(tj_)]. Also, the
tabular interval (o is constant except at a few places
where the interval is changed, and therefore may be
regarded as a function co(t) which is constant except
at a few jumps. If in the left member of (13) one of
the factors co is replaced by its value t^+^ - t^ and
the other factor u> is replaced by &Kt), the left mem
ber of (13) takes the form of a sum such as is used in
defining a definite integral, by means of a passage to
the limit. Therefore we see that there will be little
error in replacing this sum by the integral of the
slowly varying function which forms the coefficients,
so that (13) is only slightly different from

IToa*&y(T)/6y-(t)]2V[r»(t)]
dt <

(^e/2.585)2.

This wiLl be satisfied if the variance of r" satisfies
the condition
(16) V[r»(t)] 5 (c1ep/2.585)2/JO)(t),
where for brevity

(17) J - fT[6y(T)/6y'(t)]2 dt.Jo
In the same way (lLi) is nearly equivalent to an ex
pression similar to (15), with r" replaced by e" in
the left member and c^ by 03 in the right member.
This is satisfied if
(18) V[e"(t)] < (c2ep/2.58$)2/Ja)(t).
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Since the standard deviation o[r"(t)] of r"(t) is the
square root of the variance v[r"(t)J, (16) is equiva
lent to

(19) o[r'»(t)] < c1ep/2.585*'Jco(t),

while (19) is equivalent to

(20) o[e"(t)] < c2ep/2.585yjco(t).

In order to make proper use of (19) we must observe
that the hitherto neglected rounding error in y'(t^) is
in fact replaceable by an equivalent rounding error in
vn(t4 ). For we have already shown that the effect of an
error of e in yn(t±) is essentially the same as the
effect of an error of co e in y'(t^). Hence a rounding
error of e' in y'Ct^) can be replaced by a rounding
error of e'/a> in y"(t^). Furthermore, no serious
trouble arises from the fact that the rounding errors in
y' are usually not uniformly distributed between their
least and greatest values. The use of Simpson's rule
with its denominator 3 will cause all rounding errors in
y' to belong to a finite set, which in the extreme case
will consist of three values, namely, 1/3, 0 and - 1/3
units of the last decimal place. (For instance, in
applying Simpson's rule to a column of figures each
written to the nearest unit and with tabular interval 1,
each entry in the column of the integral will end in
•0, .3333... or .6666..., and each rounding error will
be 0, 1/3 or - 1/3 after the integral is rounded to the
nearest unit.) But the variance of this distribution is
easily shown to be 2<x2/27 if figures are rounded to the
nearest multiple of o, as compared with the variance
o£/12 for the distribution in which all values between- ot/2 and a/2 are equally likely. So for the present
purpose we may safely treat the rounding error in y* as
though all values between the least and the greatest
were equally likely, and replace the error in y' by an
equivalent error in y". Thus if y" is rounded to the
nearest multiple of a" and y' is rounded to the nearest
multiple of a' , we may consider that y" is subjected to
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two independent rounding errors with the respective
variances a"2/12 and al2/12<02, so that the variance in
yM due to rounding may be taken to be

(21) Vtr'^ti)] - (a"2 + al2/ci)2)/12.

By this artifice we avoid having to make a special
allowance for the rounding error in y'.

As an example, suppose that we wish to construct a
table of the natural sine with argument in radians from
0 to 2n, the tabular interval being 0.1, and that we
wish to have no more than one chance in a hundred that
the error in the last entry will exceed one unit of the
fifth decimal place. In order to avoid having to con
sider extrapolation error, we suppose for the present
that each line is re-computed until no further change is
found, so that the extrapolation error may be supposed
to be zero. The solution of the equation y" ■ - y
with value y(ti) and derivative y'(ti) at t ■ tj, is
y(ti) cos (t - ti) + y'(ti) sin (t - tjj, so

6y(T)/6y'(ti) = sin (T - t±).
With T » 2H, (17) yields J = n. Since we have conducted
the computation in such a way that the extrapolation
error vanishes, we may take c^

■ 1 and C2
* 0. Now (21)

and (16) yield

(a"2 + 100a'2)/12 <
ep2/(2.585)2( .31U16) ,

or

a"2 + 100a'2 5 (5.72)10-10.

We can satisfy this by taking a" - 10"5 and a' - 10"6.
So we see that in solving this equation in Section 5,if we wished to have a probability of .99 that the
error would not exceed .00001 at t - 2", we should
have carried six decimal places rather than five in
the column of values of y1 .
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If in integrating this equation we had chosen to
exploit the absence of y* from the differential equa
tion, using the process described at the end of Sec
tion 5, there would have been no column of values of
y1 . But in this method the first differences of y are
in effect the integrals of y' between successive
tabular values of t, and thus are nearly the same as
<*>y' . Thus the requirement of six decimal places in
y1 would be replaced by the requirement of seven
decimal places in A^y»

The discussion of the requirement (18) or (20) re
quires a closer inspection of the peculiarities of the
equation or equations being integrated, and so it will
be postponed until we are ready to apply it to the
differential equations of the trajectory.

8. Application to the normal equations .

The method of numerical integration demonstrated
in the example in Section 5 could be applied with very
little change to the normal equations of motion of a
projectile. The formula for deducing x" and y" from .

y, x* and y' is more complicated, and there are two
variables x and y to solve for instead of one, but the
alterations of procedure needed to take care of these
changes are quite evident. However, the normal equa
tions have two individual features that permit us to
make other small amendments in the computation pro
cedure and thereby save some work. First, x" and y"
are independent of x, so it is possible to leave the
computation of x to the last, after the whole column
of values of x' is completed. Second, the dependence
of x" and y" on y is less sensitive than their depend
ence on x' and y» . An error in extrapolation of y"
will affect both y and v, and thereby affect both the
factor H(y) and the factor G(v) in the formulas for xM
and y". But ordinarily the per cent of change in H is
very much less than the per cent of change in G. As a
result, we can afford to permit the extrapolation errors
in y to accumulate lor two lines, verifying y(t^) only
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after x'(t^+^) and y'(t^+l) have already reached their
final values.

The equations to be integrated are

X - - E i
(1)

if the y-axis is positive upward, and are
5c - - E *,

(2)
y - - E y + g

if the y-axis is positive downward, as shown in equa
tions (IV.1.2U, 25) and (IV.2.7). For artillery tra
jectories it is usual to make use of (1), with

(3) E - H(y)a(y)G(v/a(y))/C - YH(y)a(y)G(v/a(y)).

(See (IV.1.2li)). For bomb trajectories it is usual,
for reasons explained in Section 2 of Chapter IV, to
choose the y-axis positive downward and to assume
constant temperature and exponential density, in which
case E is given in (IV.2.7):

U) E-YgehyG(v).
The columns of the computation are to be headed

t, x, M, a2, y, Al, A2f if ff H(y)/C, a, a2,
v2/100a2, G,E, x, A1, A2, A2x extrapolated, 0>xo,

y, A1, A2 f extrapolated, 03 y0, x tentative,

y tentative, tolerance,

provided that (1) and (3) are to be integrated. If
(2) and (U) are to be integrated, the columns a and
a2 are omitted, v2/100a2 is replaced by v2/100, and
H(y)/C is replaced by ys exp (hy).
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Suppose that lines t ■ t^_y ^±-2> *i-l are complete,
and that line t ■ t^ is also complete except for the
final values of x, y, and x and y. It is desired to
proceed to the computation of line t ■ t^+i» The
first stage is to extrapolate the second differences
of x and y to line i + 1. These estimated values are
entered in the columns headed A extrapolated and
A 2y extrapolated, respectively. Next we compute a
tentative value of A^yCt^+i) by means 0f (3.9;, which
in the present notation has the form

(5) A2y(t1+1j «
U>2lf{t±) ♦ (1/12) A^?(t.+1)].

A similar tentative value of A^y(t^) is already on
the line t ■ tj_, left there from the preceding stage
of the computation; and on line t ■ L 1 there are
verified values of y and A-^-y. So we can form an
estimate of y(t^+i) by using the equation

(6) ^ ^ i p p- y(ti-i) + 2a y(ti_i) + 2 Ay(ti) + a y(ti+i),
which is a simple consequence of the definitions of
the first and second differences. With this estimate
of y(t^+i) we can find H(y) or exp (hy) according as
we are integrating (1) or (2), and appropriately we
can enter H(yJ/C orYs exp (hy). Also, with this same
estimate of y(ti+i) we can find a and a2 if we are
integrating equations (1); this is unnecessary if we
are assuming constant temperature.

The extrapolated second differences of x and y are
also used to find the tentative values of x and y on
line t - The formula used is (3.1), which in
the present notation takes the form

(7) y(ti+1) - Htul) + co[2y(ti) ♦ (l/3)A^(ti+x)],
together with a similar equation for x. These tentative
values of the first derivatives are entered in the ap
propriately headed columns, and from them we compute
the value of

(8) v2/100 = (x/10)2 + (y/10)2.
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If we are integrating equations (2), this is used to
enter the G-table to find G(v). If we are integrating
(1), it is first divided by a2 and the quotient used to
enter the G-table. Now E is computed by (3) or (U).
This permits us to compute x and y by (1) or (2), which
ever is applicable; and we can then form the differ
ences Alx, a2x*, A^y and A ^y". >

At this stage we make use of the tolerance. We
compute very roughly the discrepancy between the sec
ond differences just found and the extrapolated values
with which the computation was begun; that is, we make
a rough estimate of the quantity

{[ (t1+1)- ( A2y (ti+1) extrap.)]2
(9)

+ [A25 (ti+1) . ( A2X (ti+l) extra?.)]2}*.
If this exceeds the' tolerance listed in the last col
umn, the line should be re-computed, using the values
of the second differences just computed as replacements
for the extrapolated values; and so on until computed
values of the second differences are reached which dif
fer from the preceding estimates by an amount which
does not exceed the tolerance. The question of finding
the tolerance has been discussed to some extent in the
preceding section, and will be further investigated
in Section 10.

Suppose now that the computation, or if necessary,
the re-computation, has proceeded as far as indicated,
so that the final values of x and y have been found.
With these final values of y and A^y on line t ■ t^+i
the value of y(t^) is computed by (3.3)» which in the
present notation has the form

(10) - ftt^) ♦ co {[yXt^) ♦

- U^V + A2y(ti+1)] /2U}.
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This value is not yet entered. Instead, as a check
the left member of (10) is also computed by (7) withi + 1 and i replaced by i and i - 1 respectively,
and of course with the final value of the second dif
ference instead of the extrapolated value. If the
results of these two computations of f{t±) differ by
more than four units of the last decimal place, it is
extremely likely that a computational error has been
made. Otherwise, as remarked in the discussion after
(3.3) » the average of the two computed values should
be entered as the final value of y(t^), the odd half
unit of the last decimal place being thrown toward
(7) if the results of (7) and (10) differ by one or
three units.

By a similar process we compute, verify and enter
the final value of x(t^).
Having the final value of f for t - t±, we can use

(3.12) to obtain the final value of y(t^). In the
present notation, this formula is

aVU.) - U/^tftt, -,) + y(t.)]
(11)

1

- (0)2/12) L*f (t±).
From this first difference we readily find y(tjj and
the second difference &2y(t^). This last is verified
by (5) with i and i + 1 replaced by i - 1 and i respec
tively.

Finally, after the last line has been reached, we
compute the values of x by the analogue of (11), with
x in place of y, verifying each entry by the analogue
of (5).

An example of a trajectory computation (integration
of equations (2)) by this process will be found at the
end of Section 10.
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9. The start of a trajectory.

In Section 6 we explained a method of beginning the
integration of a differential equation which is a
considerable time-saver when it happens to be easy to
compute the derivatives of order greater by 1 than
those involved in the differential equation. These
derivatives would be the third derivatives of x and y at
t * 0 in the case of the computation of a trajectory.
Accordingly, we shall now find the expressions for these
third derivatives. To be specific, we shall first con
sider the equations in the form (8.1).

If we differentiate the second of equations (8.1)
and then replace y by using (8.1) again, we find

y - - y( dE/dt) - Ey
(1) 9- Eg + y(E^ - dE/dt).
Similarly, from the first of equations (8.1) we obtain

(2) x - i(E2 - dE/dt).
In order to carry out the differentiations, it is con
venient to transform E from the form (8.3) to the form
involving B, by means of (IV.1.16). Since we are assum
ing that H(y) a e-hy, we have

(3) E =Ye"hyvB(v/a(y)).

Hence

(U) 3E/oy - - hE -Y[a(y)]-2 (da/dy)e-hyv2B' ( v/a(y) ) ,

{$) 3E/3v - Ye-hyB(v/a(y)) + Ye-hyvB' (v/a(y) ) .

From (IV.1.16) we readily deduce that

vG'(v)/G(v) = 1 + vB'/B.
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It is customary to add 1 to this common value and call
the result the "Mayevski n" for the given drag function.
The reason is that the drag vG(v) for standard tempera
ture was represented by Mayevski in an approximate form,
by splitting the interval of velocities into parts on
each of which the drag was assumed to have the form Avn.
This would give G - Avn-1, whence vG'/G ■ n - 1. So,
in accordance with tradition we shall define
(6) n(v) - 1 + vG«(v)/G(v) - 2 + vB'(v)/B(v).
In particular, for the argument v/a(y) this yields

"> n(T/sW, " 2 "* •

If we substitute this in (U) and (5), and write a'
for da/dy, we obtain

(8) 8E/8y - - E{h + [n(v/a(y)) - 2] a' (y)/a(y)} ,

(9) 9E/8v - [n(v/a(y)) - ]] E/v.
Also we have

(10) dv/dt - (f 8 ♦ f yVv - - E v - gy/v.
From this with (8) and (9),

dE/flt - (8E/By)(dy/dt) + (8E/8v)(dv/dt)

(11) - -
E|y[h

+ [n(v/a(y)) - 2]a« (y)/a(y) }

+ [n(v/a(y)) - l](E + gy/v2)) .

The function h + (n - l)g/v2 has been tabulated, at
least for the GSvre drag function, under the name f(v):
(12) f(v) - h + [n(v) - l]g/v2.
By substituting this in (11) and rearranging terms we
obtain

E2 - dE/dt
(13) - E ^En(v/a(y))

+ yfr(v/a(y)) + [n(v/a(y)) - 2]a'/a(y)}) .
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Henceforth we shall assume that
(111) a(y) - exp ( - a-jjr),
so that a1 /a ■ - a^. If this and (13 J are substituted
in (1) and (2), these reduce to

5? - - x^En(v/a(y))
♦ 7{f(v/a(y)) - aJnCv/aCy)) - 2]

}j ,

(15) y - E [g

+ y
^

En(v/a(y))
♦ 7f(v/a(y)J - ai[n(v/a(y)) - 2] })
J .

These apply only to the case (8.1) in which the y-axis
is positive upward. If the positive y-axis is down
ward, all the equations are altered by having - a^, - h

and - g in place of a^, h and g respectively.

It is debatable whether there is any gain in using
these formulas to start the trajectory computation.
Even if tables of n(v) and f(v) are available, the
effort of computing the quantities (15) may be greater
than the saving effected by their use in the method
of Section 6. However, there is one important case
in which equations (15) simplify considerably. If
the computation is started from the summit, so that

y = 0 at t « 0, equations (15) take the form

x • - nEx,
(16) y-Eg,
when the y-axis is positive upward; if it is positive
downward, these are replaced by

x ■ - nEx,
(17)

y - - Eg.
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If a table of the function n(v) is available, these
are quite easily computed, since E and x have to be
calculated in any case.

It has already been explained in Section 6 how these
derivatives can be utilized to obtain an estimate of
the first differences of x and y before the second line
is computed, an estimate of the second differences as
soon as the second line is complete, and an estimate
of the third differences as soon as the third line is
complete. The technique of Section 6 applies here with
no change, and the explanation need not be repeated.

10. The tolerance in trajectory computations .

In Section 7 it was pointed out that the final error
in the value of the solution was the combined effect
of the accumulated rounding errors and the accumulated
extrapolation errors. The effect of the accumulated
rounding errors was treated fairly completely in Section
7, and the results can be taken over and applied to tra
jectory computations with little change. If we denote
the rounding errors in x" and y" on the line correspond
ing to time t by the symbols rxM(t) and ry"(t) respec
tively, and denote the extrapolation errors in xM and y"
on the same lines by ex"(t) and 6y"(t) respectively, we
see readily that (7.11) is replaced by

vUx(T) ]

n

(1) " X>Z{(8x(T)/6x(ti))2(V[rx«(ti)]+V[ex»(ti)] )

♦ (6x(T)/6y(ti))2(v[ry»(ti)]+V[ey't(ti)])} ,

with an analogous expression for the variance v[a y(T)]
in the y-coordinate at time T. However, it is usually
true that the range at altitude Y, or y(T), is of
considerably more ballistic interest than the time
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at the same altitude. This is clearly true for gunfire
at stationary or slowly moving targets; and even in
anti-aircraft gunfire and bombing an investigation
will show that computation errors in time of flight
are less likely to be significant than those in range.If this point of view is taken, it follows that the
quantity of primary interest is the error L Xy-Y
the range at altitude T. This will be abbreviated to
A x(T ) . The rate of change of this quantity with re
spect to change of x(t) will be denoted by

(2)
bx

6i(t) y-Y
which may be abbreviated to
(3) 6x(Y)/6i(t).
Analogously, the rate of change of range x corresponding
to altitude Y with respect to change of velocity compon
ent f at time t will be abbreviated to 6x(Y)/6y(t), or
written in full by an expression analogous to (2), with
f in place of x. The equation (7.11) or equation (1)
above, will be replaced by

V[Ax(Y)]

(U) - Zco^CbxCYVixCtijAvCr/Ctia+vCe/Cti)])
i-0

♦ (i«x(Y)/6y(ti))2(v[ry''(ti)]+v[ey"(ti)] )}.

As in Section 7, we select a "permissible error"
Ep» "permissible" in the sense that we are willing
to accept a probability of not over .01 that the error
in x at altitude Y shall exceed £p. Then, as in
(7.12), we must require that the variance in the error
of range at altitude Y shall satisfy

(5) v[ax(Y)]< Up/2.585)2.
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We allocate part of the permissible error to rounding
error and part to extrapolation error, by selecting
two numbers C]_ and C2 the sum of whose squares is 1
and requiring that

(6) i»0

+ (&x(Y)/6y(ti))2v[ry«(ti)]}
<
(C]Lep/2.585)2,

£ <o2/(&(Y)/6x(ti))2v[e "(t.)]
(7) i»0 x 1

♦ (6x(T)/&y(ti))2v[y(ti)]}
< (c2y2.585)2.
In Section 7 we saw that the effect of rounding

errors in x and y can be accounted for by regarding them
as equivalent to certain errors in the second deriva
tives. If x and y are both rounded to the nearest mul
tiple of a", while x and y are both rounded to the
nearest multiple of a1, by (7.21) we see that the vari
ances in the rounding errors are to be taken as

(8) VCr/C^)] - VtyCV] - (a»2 + a»2/a>2)/12.

As in Section 7, the sum in (6) can be approximated by
an integral; if we define

f T
(9) J - I [(6x(Y)/6x(t))2 + (&x(Y)/6y(t))2] dt,

we see as in (7.16) that inequality (6) holds if
(10) (a"2 + a,2/co2)/12 <

(0-^2.585 )2/Ju .
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If the permissible error ep and the portion of it al
lotted to rounding error have been decided on, and some
estimate of the integral J is available, this inequality
furnishes an estimate of the number of decimal places
needed in the first and second derivatives.

Next we investigate the extrapolation error. The
sum in the left member of (7) is certainly not de
creased if we replace each of ( &x(Y)/6x(t) ) and
( 6x(Y)/o y(t) )2 by the greater of the two; this then
becomes a common factor, the other factor being the
sum of the variances. As before, the sum can be approx
imated by an integral. We find that in order to insure
that (7) be satisfied, it is sufficient to require that

(11) V[ex"(t)] ♦ V[ey»(t)] < (c2ep/2.58S)2/Jia),

(12) J-l - max [(6x(Y)/bx(t))2, (6x(Y)/6y(t))2] dt.

In order to make use of this we need estimates for the
left members of these inequalities. We shall suppose
that the process of successive approximations is con
tinued «ntil a stage is reached at which the sum of the
squares of the changes in x and jr from the values in
the preceding stage is less than some selected value R2;
this number R is the "tolerance." As a i'irst step in
estimating the left members of (11) and (12), we wish
to find a bound for the error remaining in this last
stage of the approximation.

Let us denote the errors in x(t) and y(t) at one
stage of the approximation by the letters q, r res
pectively, and their values at the next stage by q1 , r'
respectively. The computation of. this next stage begins
with an estimate of y(t) by (8.5), wherein i is replaced
by i - 1 as it will be in the other formulas we shall
refer to in this connection. The resulting error in
y(tj^) is ra>2/i2. This causes an error in the density

where
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ratio H whose amount is, to first-order terras,

e-h(y + rco2/l2) _ e-hy » e-hy( _ hro>2/12),

or the negative of this if the y-axis is positive
downward. Next the components of velocity are com
puted by (8.7) and its analogue for x. The resulting
errors in x and y are qco/3 and rco/3 respectively.
To terms of first order in q and r, the resulting
error in the velocity is

y(
x

+ qco/3)2 + if + roi/3)2 - ^ k2 + y2

» (l/v)(qx + ry)co/3.

Therefore the resulting error in G(v) is
[G'(v)/v](qx + ry)ci)/3.

If temperature changes are being ignored, the error q'

in the re-computed value of x is given by

» - C^e4^ (1 - hrci)2/12)
(13)

•[ G(v) + G'(v)(qx + ry)CD/3v](x + qco/3)

+ ^^(v) X,

wherein h is to be replaced by - h if the y-axis is
positive downward. We expand the product in the right
member of this equation and discard all terms of degree
higher than 1 in the small error terms. At the same
time we replace x and y by v cos 0 and v sin 9, where

8 is the angle made by the tangent to the trajectory
with the positive x-axis; and we also replace G' by
means of (9.6). The result is

q'

« C-V^GtvjCxhrco^ - qco/3
- (n - l)(q cos20 + r cos 9 sin 6)co/3].
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In* the same way, the error r' in the re-computed value
of y is

r'
- C-V^vjCyhrco2/^ - r<u/3

- (n - l)(q cos e sin 9 + r sin^0)Ci>/3 J.
As before, if the y-axis is positive downward we should
replace h by - h.
Equations (1U) and (15) assume simpler forms if we

resolve the vector (q) r) into its components (t, n)
respectively parallel and perpendicular to the line
tangent to the trajectory, and likewise resolve (q' , r')
into components ( t' , tt' ) . The equations of transforma
tion are

t ■ q cos 9 + r sin 0;
(16)

1 ■ - q sin 9 + r cos 9,

with similar equations for x ' and tt1 . With this nota
tion, (1U) and (15) yield

t« - ( - ncoE/3)T + (hci)2vE/12)r,
(17)

TT' - ( - CDE/3)tr»

where as usual E ■ c-le-hyG(v^ ^ h is to be replaced
by - h if the y-axis is positive downward.

However, instead of using (17) we shall replace t*
and n' by the still simpler approximations t* and n*
defined by

x* - - (no)E/3)T,
(18)

tt* - - ( <0E/3K
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In order to estimate the error caused by using the
estimates (18) in place of (17), it is convenient to
introduce a symbol for the length of a vector. If
(a, b) is any vector, we shall denote its length by
|
(a, b)|. Since the transformation (16) is a rotation
it leaves lengths unaltered, so that
(19) |(q, r)| « |(T)W)|,
and likewise for all the other vectors. The differ
ence between the vectors (t 1 , fr' ) and (x*, tt*) is
the vector (hr<i> 2vE/12, 0) by (17) and (18), so by the
triangle inequality the difference in the lengths of
these two vectors cannot be greater than the length
of their difference vector. Thus the error in using
|(t*, ir*)| in place of |(t',w')| is at most

| hr (D2vE/12 |

(20)
<hci>2VE|(q, r)|/12 = h 0)2vE|(t, ir)| /12.

Since the Mayevski n is always greater than 1, it is
clear from (18) that

|(t*, if*) I
> (coE/3)|(x, n)|.

Combining the two preceding inequalities, we see that
error/ |(t*, it*)| - haWU.

Since h - .0000316, this shows that for v < 3160
feet/second andci) - 8 seconds the ratio of the error
to the length

| ( x*> tt*)| is less than 0.2. Usually
the velocities and intervals are considerably smaller
than these values, so that it is safe to use t* and
n* as estimates for t1 and it' in studying the conver
gence of the successive approximations.

If we had been taking temperature changes into ac
count, there would have been another small term in the
analysis, but the effect of an error in altitude through
resulting error in temperature is smaller than the ef
fect produced through error in density, and this latter
we have just shown to be small enough to be ignored
safely, so the temperature effect can also be ignored.
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At any one stage of the computation the errors q, r,
etc., are not available; the quantities that we know are
the amounts by which the estimates of the second deriva
tives have changed from one approximation to the next.
Thus q, r, q1 and r1 are not known to us, but the change
in x can be seen by comparing the re-computed value with
the preceding estimate, and this change is the same as
q' - q. Likewise the value of r1 - r is easily obtained
being the amount by which the re-computed value of y"

differs from the value obtained at the preceding approx
imation. We therefore wish to find an upper bound for
the error |(q', r' )| in terms of the easily obtained
quantities q - q1 ana r - r' . From (18; we easily com
pute that

3 + ncoE kT T;'

* 00 E ( * in *
3 + coE Kxi ~ n}'

(21)

Since the Mayevski n is greater than 1, these equations
imply that

|(T*, < (nO)E/3)|(T» -T,TI* - TT ) |

(22) - CnuE/3) yU* - x)2 ♦ (ti* - u)2.
Returning to the original x- and y-axes , we find
from (22) that

(23) |(q", r')| < (ncoE/3) Y(q' - q)2 + (r« - r)2.
Let q0 and r0 be the errors in the original extra

polation of x and y respectively. After a certain
number of successive approximations (possibly at the
very start) it will be found that the re-computed
values differ from the preceding by less than the
tolerance R, and these are then the final values.
Their errors are, as above, q' and r1 respectively.
If many slightly differing trajectories are computed,
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the original errors (q0, rQ) will have a certain prob
ability distribution over the plane. Concerning this
probability density we assume only that along any
line through the origin, small errors are more prob
able than large ones. This can be symbolized as fol
lows. Let us introduce polar coordinates s and $ in
the (q, r)-plane, and let f0(s, $) be the probability
density of the original error (q0, rQ). We assume
that for fixed angle the function f0(s, <

f>
)

de
creases or remains constant as s increases. It can
be shown (but we omit the proof) that in any small
sector lying between angles $ and +

d^> and between
two values of s, and for any given value of the integral
of f0 over this sector, the greatest value of the
integral of s2fQ for all functions of the type de
scribed is assumed when fQ is constant.

We shall suppose that the errors at any stage are
deduced from those of the preceding stage by (18)
(which is slightly in error because of the ignoring
of the density effect) and that the line is re-computedif the error |(q, r)| exceeds R; this is slightly
pessimistic, since (21) shows that there is a small
chance that the line will be re-computed even though
the error is a little less than R. Consider the dis
tribution of the errors in a sector between i and

$ + d^). Those for which | (q0, r0) |

does not exceed

R are not re-computed; for xhese the final values
have an error | (q1 , r1 ) | which cannot exceed (n<oE/3)R.
The second moment of the distribution about the origin
cannot exceed that of a distribution with the same
total probability and with uniform distribution over

a sector reaching out to distance (nooE/3)R. This
in turn is less than the second moment of a uniform
distribution, with same total probability, in a sector
between two circles with radii (no>E/3)2R and (nci)E/3)RJ
Next, the part of the original distribution which needs
two stages of approximation is first mapped on a sector
reaching out as far as R from the origin, and then the
final errors lie in a sector between two circles whose
radii are at mast (n^E/3)^R and (n<03/3;R respectively.
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The second moment of this distribution cannot exceed
that of a uniform distribution in the same sector, with
the same total probability. Continuing the process,
we see that the second moment of the final distribution
of errors, taken about the origin, cannot exceed that
of a distribution lying between the circles of radii
(n<oE/3)2R and (no)E/3)R respectively and having den
sity independent of distance s from the origin, along
each radius. Thus the distribution of the final errors
(q1 , r1 ) is described by a probability density whose
second moment cannot exceed that of the following dis
tribution: the probability density is a function f(^)
of angle alone, when s lies between (ncoE/3) R and
(no>E/3^R, and is zero elsewhere. Since the integral
of the probability density must equal 1, we have

r(nO>E/3)R f2n
1 - I I f ( tos d<

j»

ds
J(nOJE/3)2R Jo

- \ | j2 f(4» d<|>j{R2(na>E/3)2
- R2(na>E/3)U}.

The second moment of the distribution of (q* , r1 ) about
the origin satisfies the inequality

(25) Second moment of (q* , r1 )

f(ncoE/3)R f2tr- I f(4>) s3 d$ ds
J(n(0E/3)2R Jo

- \ jj2 f(40 dc
fj {Rli(noDE/3)k - RkncoE/3)8}.

If f 1 is the probability density of the distribution
of (q1 , r')> the variance of q' is the integral of
(q« )2f i and that of r' is the integral of (r> )2f » .
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Their sum is the integral of s2f 1 , which is the second
moment of the distribution of (q1 , r1). By this, (2U)
and (25), we find
(26) V[q«] + V[r«] - R2(na> E/3)2[l + (ncoE/3)2] /2.
If the process of successive approximations is to work
at all successfully, the convergence factor n© E/3 must
be fairly small, say less than" 0.2. If this is the
case, we may omit the term (na>E/3) in comparison with
tne 1 in the square bracket. Furthermore, the final
extrapolation errors., here denoted by q' and r1 , are the
same quantities as were previously denoted by ex"(t) and
eyn(t) respectively. So (26) can be written in the form

(27) V[ex"(t)J + V[ey"(t)] < R2(no> E/3)2/2.
If we compare this with (11), we see that the latter
is surely satisfied if
(28) R2(ncoE/3)2/2 <

(c2ep/2.585)2/J1co ,

whence

(29) R 5 (1.6Ul)c2£p/nE yj^oT3.

To recapitulate the meanings of these symbols, Gp is
the permissible error, in the sense that we are willing
to accept a chance of not over 0.01 that the accumulated
error will exceed C2erj is the portion of this
error allotted to extrapolation errors; n is the May-
evski n, defined in (9.6); E is the function which
appears in the computation of the normal trajectory;
O) is the interval at which the computation is being
made; and is the quantity defined in (12).

The most serious difficulty in using (29) is the
estimation of the integral J^. If we have already
computed a number of trajectories without use of the
tolerance, it may be possible to use these to form a
crude estimate of J-i with little computation. Suppose,
for example, that it has been found that the use of
two decimal places in the first and second derivatives
is not quite adequate; we would like to have only half
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the probable error in the results that we obtained
with two decimal places. We shall suppose that through
most of the computations the interval co was 2. Since
the probable error due to rounding was about twice as
great as desired, the variance was four times as great
as desired, and instead of (10) we had, roughly,

[(.01)2 + (,01)2/U]/12 - U(ep/2. 585)2/Jcd.
Here we set C]_

a 1 and C2 ■ 0, since all the error was
rounding error. If we now decide to carry three decimal
places , the rounding error will diminish to a tenth
of what it was, or a fifth of what we can allow. Thus
in the new system we shall have c^ * 1/5, so that
c2 • - .98. The diffe rence between this and 1
is negligible. Since cannot exceed J, the right
member of (28) is at least (ep/2.$85) /Ji co, and by
the preceding inequality this is about .000002. We
therefore wish to have R2(n coE/3) /2 5 .000002, or

R 5 .006/ncoE.

If the accuracy of the collection of trajectories had
been just acceptable, instead of the error being twice
as great as desirable, we could have used twice this
tolerance, carrying three decimals. If the accuracy
had been quite satisfactory, we could have been satis
fied that the rounding error was well within the per
missible amount, and used the tolerance .012/ncoE
without increasing the number of decimal places. How
ever, this increase in the number of decimal places
is not nearly so troublesome as might be anticipated.
Ordinarily, an increase in the number of decimal places
from two to three would demand that on each line the
successive approximations be carried on until ten times
as great an accuracy is reached, since ordinarily the
successive approximations are continued until the last
line agrees with the second last to the number of
decimal places carried. But when a tolerance is used,
the successive approximations are continued only until
the agreement between consecutive approximations is
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within the tolerance. If the tolerance is, say, .071,
the agreement must be to within seven units of the
last decimal place if we are carrying two decimal
places, but to within seventy-one such units if we
are carrying three decimal places. So the additional
labor involved in carrying the extra decimal place
amounts to not much more than the trouble of pressing
an extra key on the computing machine and writing
one more digit on the computing sheet.

In general, it would seem that the use of the
tolerance is precluded by the fact that R cannot be
found without some estimate for J]_, and this in turn
requires some knowledge of the data of the trajectory.
However, if even a few trajectories have been com
pleted these can be used to find some values of J]_,
which in turn will furnish estimates for use in com
puting later trajectories. Suppose then that a tra
jectory has been computed; we wish to find, a pos
teriori, what J~i is for this trajectory. This can
be done with great accuracy by the methods of dif
ferential corrections, to be explained in the fol
lowing chapters. But great accuracy is not needed
in estimating J]_. The formula (29) for the tolerance
is a cautious one, and a fifty per cent error in
would probably be harmless; certainly an error in
excess could do no harm other than making the tol
erance somewhat smaller than necessary. So it is
profitable for us to consider simple ways of esti
mating J^. In the case of gunfire, for example, it
might well be profitable to use the Siacci approxima
tions in estimating J^, even when they are not nearly
good enough to use on the trajectory itself. The case
of bomb trajectories for level bombing we shall now
consider in some detail.

Consider a trajectory to have been completed. Along
this trajectory the coordinate x satisfies the differen
tial equation
(30) x = - Ex.
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Suppose that at some instant t* the x-component of ve
locity is increased by an amount e, the y-component of
velocity and the position being unaltered. Then at each
subsequent instant x will be increased by an amount £ (t)
and will satisfy a new differential equation

The initial value of £ is £(t*; - 0 and of its deriva
tive is £(t*) » e. It is easily seen that if e is
positive, £(t) will be positive for all t > t*. The
change AE arises from two causes. First, the x-com
ponent of velocity is increased, so v is increased, and
therefore G is increased. Second, this increase in G-

produces a small secondary effect, since the added re
sistance slows down the fall of the projectile and
thereby decreases the drop y at times t > t*, which in
turn causes a decrease in air density at time t. But
this latter effect is a small one, and we shall ignore
it. That is, we shall assume that the effect of a pos
itive change e in the x-component of velocity at time t*
is to increase E at all subsequent times. Then by (31)

(3D x + ? " - (E + AE)(x + I ).

iL + l< -E(x + £),
and so by (30)

(32)
Let us divide by £
we recall that £(t*

t* to t. If

(33)

Treating (30) similarly yields

(3U)

Hence

(35) C/e <x(t)/x(t»).
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Integration from t to the time of impact T yields

(36) 5(T)/e -[x(T) - x(t*)]/x(t*).
But the left member of this inequality is the ratio
of the change of range at height Y to the change in
x(t*) causing it, and its limit as e tends to zero
is by definition the quantity 6x(Y )/&*( t*) . So if
we let e approach 0 in (36) we obtain

(37) &x(Y)/6x(t*) < [x(T) - x(t*)]/x(t*).
The quantity in the right member of this inequality
is easily computed from the trajectory sheet. Inci
dentally, it will be seen in Chapter IX that this
same quantity is needed in order to compute the effects
of cross winds on the trajectory.

If we can be sure that 6x(Y)/&y(t ) does not ex
ceed the right member of (37), we can form a safe
estimate of J]_ by squaring and integrating the right
member of (37). After the trajectory has become steep,
some seconds after release, we may feel confident of
this, for when the angle of descent is considerable
a change in the y-component of velocity has little
effect on the point of impact, while a change in x-
component alters the direction of motion and thereby
causes a more noteworthy change in the range. So,
without making a really rigorous investigation, we
may feel satisfied that the right member of (37) is
an overestimate for ox(Y)/6y(t*) along the whole tra
jectory if it can be shown to be an overestimate at the
beginning. But at the beginning of the trajectory it is
easy to find the value of &x(Y)/&y(t*) . For at the be
ginning y has the value 0. If this is increased by an
amount e, since y ■ g the velocity is the same (to
first-order terms) as though release had occurred with
S?

■ 0 at time - e/g. To first-order terms, this leaves
the altitude of release unaltered, while the x-coordin-
ate of release is altered from 0 to - v0e/g, so that the
range is increased by this amount. To first-order
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terms, the ratio of the change of range to the change in
y(0) which causes it is - vQ/g, and by definition this
is £x(Y)/6y(0). Therefore perhaps we may proceed on the
assumption that 6x(Y)/6y(t*) is numerically less than
the right member of (37) whenever the inequality
(38) Vo/g < x(T)/i(0)
is satisfied. This can be written in the somewhat
more convenient form

(39) X>v02/g,
where as usual X denotes the total range, that is,
x(T). This condition is rather easily satisfied.
For bombs with y near zero, it holds as long as the
trajectory is long enough so that the angle of descent
exceeds U5>°. Even with Y as large as 2 and vQ as great
as 500 miles per hour, it is still satisfied if Y
exceeds 20,000 feet.

By (37) we can estimate Jj_, but we still need an
estimate for J, as defined in (9). For safety, we
wish to have an overestimate of J. But by comparing
(9) and (12), we see at once that J cannot exceed
2J-±. So, summarizing the results attained, we have
the following:

(hO) For trajectories with y(0) - 0 in which (39)
is satisfied, we may safely use the estimates

fT

J-L - \ {[X - x(t)]/x(t)}2 dt.
JO

J - 2JX.
From (liO) we can deduce an even simpler and even

more cautious estimate, which is close to (UO) for
projectiles with small Y • Since x(t) diminishes as

t increases, the horizontal distance X - x(t) travelled
between time t and time T cannot exceed the product
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of the time elapsed T - t by the horizontal component
of velocity x(t) at the beginning of the time interval.
Thus the integrand in the estimate (UO) for J]_ cannot
exceed (T - t) 2, and from (UO) we obtain the corollary:

(hi) For trajectories with y(0) » 0 in which (39)
is satisfied, we may safely use the estimates

Jl - T3/3,
J - 2T3/3.

Finally, we shall suggest an estimate less cautious
than (hi), and as yet almost untried in practice, which
nevertheless seems to be serviceable for bombs of low
ballistic coefficient. If the range X were known in
advance, we would know x-he ratio at time t ■ 0 of the
integrand in (UO) to that in the integral basic to (hl)jit is X^/vq^T^. These integrands will not have a con
stant ratio, but in the early part of the trajectory we
may presumably anticipate that the ratios of the inte
grands will not change very rapidly; and it is this
early part of the trajectory which contributes most
heavily to the integrals. So we may expect that a rough
estimate to the integral in (UO) will be found by multi
plying the estimate in (H) by the ratio X2/v02T2. Thusit is probably safe to use the following estimate:

(U2) For trajectories with y(0) - 0 in which (39) issatisfied, we may use the estimates

Jx - X2T/3vQ2,
J - 2JX,

where X and T are estimates (for safety's sake, over
estimates ) of the time of flight and range of the pro
jectile.

For bombs with small y , estimates (UO), (I4I) and
(Ij2) are nearly identical.
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If we combine estimates (U2) with (10) and {29),
we find that for trajectories with y(0) - 0 on which
(39) is satisfied the number of decimal places should
be selected according to the inequality

U3) /a"2 + a,2/a>2 - ( 1.65c]epv0/X-/T )/-/"£ ,

where a" is the value of a unit of the last decimal
place kept in x and y (for instance, a" = .01 if the
second derivatives are rounded to two decimal places )
and a' is the value of a unit of the last decimal place
in x and y. The tolerance R is furnished by the formula

Since the computer usually has more trouble in getting
an adequate extrapolation than in merely writing an
extra figure, it is reasonable to allot more of the
total error to extrapolation than to rounding. In
particular, the values c^

• .6 and 03 ■ .8 would seem
to be satisfactory all-round choices.

We now illustrate the use of the methods of this
and preceding sections by means of a numerical example.
We wish to compute the trajectory of a bomb dropped
horizontally from 30,000 feet at 2u0 miles per hour
( = 107.290 meters per second). The summital ballistic
coefficient of the bomb, with respect to the Gavre drag
function, is .39811. We shall suppose that because we
have already had some experience in such computations,
we feel confident that the time of flight will not ex
ceed 90 seconds, and that the range will not exceed
3000 meters. The permissiole error £p will be chosen td
be 2 meters, and as suggested above we shall choose
c^

= .6, C2 = .8. Then by (U3) we have

This is amply satisfied if we use three decimal placed! -•

in the first and second derivatives. The quantity*-

R - 2.85c2epv0/X-/T
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1 y A1 A2 A2y Wo z

( 9.300
(extrap. )

.1950
tentative

( 9.610 -190 10 105.193
] 9.1*28 -182 8 8 103.161*

-372 36 - .3900
J 9.031 -31*1* 28 32 99.290

-716 158 .7300
| 8.U35 -61*9 67 65 92.091
( 7.786 -61*9 0 0 35.331*
j 7.106 -630 -3i -30 78.971.

U 6.386 -720 -1*0 -ho 72.75°

li 5.6142 -7UU -21* -30 66.700
U U.835 -757 -13 -15 60.836
tf li.U*l -71*1* 13 2 55.171
K 3.1*25 -716 28 25 1*9.752
2( 2.757 -668 l|8 So U..625

21 2.11*2 -615 53 u* 39.307
21 1.589 -553 62 60 35.331
2t 1.103 -14 36 67 70 31.21]
2t .63i4 -hl9 67 75 27.1*39
3C .329 -355 6I1 70 21*. 027

35 .032 -297 58 60 20.91*5
31 -211 -2L3 ft 50 13.201*
31 -1*07 -196 1*7 1*5 15.71*7
31 -561 -I51i 1)2 ho 1*3.593

lit -.678 -117 37 38 11.687

1*
4

-.765 -87 30 32 10.027

Id
,

-.827 -62 25 25 8.567

U -.875 -I18 lb 16 7.312

1*
1

-.900 -25 23 15 6.211*

5C -.917 -17 8 10 5.271*

52 -.920 -3 lit 9 !*.l*62

51
*

-.917 3 6 -It 3.767

54 -.910 7 l* 9 3.173

51 -.393 12 5 6 2.665

6f
l

-.877 21 9 5 2.232

Si -.859 18 -3 0 1.369

6| -.839 20 2 5 1.557

61 -.821 18 -2 I* 1.296

61 -.798 23 5 2 1.078

70 -.775 23 0 3 .889

3 -755 20 -3 3 .738

3 -"5 20 0 3 .609

71 -.712 23 3 2 .500

7 -.695 17 -6 3 .hll

8« -.670 25 8 b .335

8 -.652 18 -7 -6 .277

n -.630 22 It -!
i

■111* -.621* 6 -16 -Z .182

y tolerance
"tentative

h.35l .68
9.611

18.367

36.379
52.608 .09
67.505
81.002

93.027
103.558
112.572 .07
120.137
126.311

131. 19h
13h.919
137.603
139.382
11*0.381*

11*0.733
11*0.51*5
139.913 .05
133.91*3
137.699

136.252
13U.65S
132.951*
131.169
129.358

127.513
125.675
123.355 .01*
122.01*3
120.263

113.536
116.830
115.178
113.550
111.981*

110.1*56
103.963
107.512 .01*
106.115
101*. 736

103.1*22
102 -Wk100.398





2.85c2€pVc/X-/T in {Idi) has the value .017, so that the
tolerance is

R = .Ol7/nE/a>3.

Now we use the starting process of Section 9 and the
computation method of Section 8 to obtain the results
here presented.

After the trajectory is completed, we can compute the
estimate (hO) to see if our tolerance was well chosen.
The integral in (UOJ can be computed easily by Simpson's
rule, using values every ten seconds. It turns out that
R is about 2.5 times as great as necessary, or, stated
in another way, there is less than a chance in a hundred
that the error is as great as .9 meters. Even this is
pessimistic, since the remaining errors are mostly much
less than the tolerance. Nevertheless, in this parti
cular computation little would have been gained by in
creasing the tolerance, since only one or two lines had
to be re-coraputed. The tolerance served its purpose ad
mirably, since without it many of the lines would have
had to be re-computed.

11. Morrey ' s method of integration of the normal
equations .

A method of trajectory computation has been devised
by C. B. Morrey which is capable of furnishing quick
solutions of the equations of motion for artillery
projectiles. The central feature of the method is
the use of the Siacci S-function to determine the
values of vx as a function of x, from which the slope
and altitude and time are obtainable by quadratures.

If in equation (V.1.13) we choose c - 1, equations
(V.1.15) furnish us with

On substituting the definition (IV.1.2U) of E and
rearranging factors, this becomes

(1) dx/dvx - - 1/E.

(2; Ya(y)H(y) dx - - dvx/G(v/a;.
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Let us define

(3) X(x) =

| a(y(xj;H(y(xmdx.

If at horizontal ranges x^ and X2 the horizontal com
ponent of velocity has the respective values v^ and
vx2» we ^ln° by integrating both members of (2) that

(I) K(x2) - X(xx)
Vx2 G(v/a)

As in the Siacci method, we wish to replace the argu
ment v/a in the denominator of the integrand by a;
"pseudo-velocity" u ■ cvx in such a way that the right
member of (h) is only slightly changed in value. Let
e denote the change in the value of the right member
caused by replacing v/a by cvx; then by definition

r vxi r i i •

(5) '
Jvx2

"

oevTiJ dVx*

Since cvx will remain near v/a along the arc from X]_
to x2, we can use Taylor's development to linear terms
to obtain

1 1 G'(cvx;[cvx - v/a ]
G(cvx) G(v/a; G(cvx;G(v/a)

^
[n(cvx) - l](cvx - v/a)

■ .

cv^v/a)
We substitute this in equation (5 J and change variable
of integration to time t, by means of the equation
dvx ■ - Evx dt; we thus obtain

ft2
e = - 1 (cvx - v/a;(l/c){rHa[n(cvx) - 1)]} dt,
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•where tj and t2 are the times corresponding to x^
and X2 respectively. If we replace v by vx sec 9,
where as usual 0 is the inclination of the tangent to
the trajectory, we find

(x
2 [c - (sec e)/a]Ha[n(cvx) - l] dx.

xl
In order to make this error vanish, we should choose c

so that

x2

J

(8)

i: [(sec 9)/a]Ha[n(cvx) - l] dx

x?
Ha[n(cvx) - l] dx

xl
This determines c in 'an exact, but useless, manner;
for in order to compute the integrals in (8) exactly
we would have to have the trajectory completed. What
we wish is a simple expression which will approximate
the quantity c given in (8). Since H, a and n - 1

are always positive, by the theorem of the mean for
integrals the value of c is between the greatest and
the least values of (sec 9)/a. Morrey selects the
arithmetic mean of these two values, so that
(9) c - l[(sec 91)/a(y1) + (sec 92)/a(y2) 1

Once c is chosen (by this formula or any other), equa
tion (U) is replaced by the approximate form

X(X2) - X(xx) - J

*x2 dvx

(10) J v^ G(cvx)

- (l/c)[s(u2) - S^)],
where u has been defined as

(11) u « cvx
and S(u) is the Siacci function defined in (V.2.3).
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Equation (10) will be used in the form

(12) S(u2) - SCu-l) + c AX.
The other ballistic formulas needed in the process are
obtained from (11 J and (V.1.3). They are

(13)
t' - c/u,
u - c/t',

(lit) m» - - gt»2,
(15) 7' - m,

where the prime denotes differentiation with respect
to x. The integration of X'(x) will be accomplished
by use of the quadrature formula

I
CO

f(x) dx
o

(16) - Jco[f(0) + f ( CD) - (1/6) A2f(cD)
- (l/12M3f(« ) - (l/19)^f(o>) + ...],

which is obtained from (3.3) by replacing A2f (2 cd)
by A2f(co) + A 3f(2co) and so on.

After several lines have been completed, the pro
cedure for obtaining a given line x ■ x^+i from the
preceding lines is as follows. Each line (or more
properly stage) of the computation occupies two ruled
lines of the computing sheet. The first of these we
shall call the "upper line"j it contains among other
things the extrapolated values, ffe first estimate the
slope m^+i corresponding to x^+i by extrapolating
the second difference of m' - - gt'2 and using (3.1).
(Morrey suggests the formula

(17) mi+i " Sm^i - Un^
+ 2comi_^« + Ucon^i,

which gives the same result as assuming the second
difference of m1 to be the same on line i + 1 as on
line i.) Next yi+i is computed by Simpson's rule,
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(3.2), and entered on the upper line. With the help
of the tables, this y determines H and a for x - x^+i*These are entered in the appropriate columns, as final
values on the lower line. From m^+i the values of
1 + and its square root are computed; the latter
is sec ©]_. These are also entered on the lower line.
From H and a the value of X^^' * Y H(y^+i )a(yi+i)
is computed and entered on the second line. Now the
right member of (16 J, with X1 in place of f, gives
A-^Xj^, which is entered on the upper line. By (9),
c is computed and entered on the upper line. By (13,),
u. is computed and entered on the upper line, and
likewise the corresponding value of S. Next S(ui+i)
is computed by (12 ) and entered on the lower line.
The corresponding u±+i is found from the tables and
entered on the lower line. Now t^+i' is computed by
(13; and entered on the lower line. From this m^i'is computed by (1U; and entered on the lower line; by
(16), m<+i is also computed and entered on the lower
line. Finally, y^+^ is computed by (3.12; and entered
on the lower line. The quadrature of t' can be left
until last, and effected by any good quadrature formula.

As usual in numerical integrations, the first step
requires special methods. It is of course possible to
use several steps at such short intervals that quadra
tures can be performed by the trapezoidal rule. How
ever, by differentiating the third of equations (V.1.8; -

we obtain

Thus the value of ra"(0) can be obtained at the cost

and X' has to be computed in any case and some 3-tables
also provide a column of values of 1/G. From (18)
we obtain the approximation

Now ra^ is computed by the trapezoidal rule, and y^ by

(18; - 2gEt'3.

(20) ml' ' mo' + <° mo"'

Sec. 11 U19



(3.12). Likewise, recalling that H and a are respec
tively the exponentials of - hy and - a^y, we obtain

(21) X0" - - (h ♦ ax) m0X0«.
This furnishes an estimate of X^', by (20) with X in
place of m, and by the trapezoidal rule we compute Xj..
From this point on the computation proceeds as already
described, with the minor exception that A ^2 is best
obtained by computing X2 with the help of Simpson's
rule.

12. A modification of Morrey's method.

We now develop a modified form of Morrey's integra
tion method which seems to have some advantages over
the original, presented in the preceding section. The
first modification concerns the choice of the constant
c. In order to keep the notation reasonably simple,
we shall denote the values of H, a, n, 0 corresponding
to a point x* by the symbols H*, a*, n*, 9* respec
tively. By the theorem of the mean for integrals,
there is a point x* between x^ and X2 such that

(1) fX
2 H(n - 1) dx - P H*(n* - 1) dx.

J x^ J x±
From this we deduce

>x2

I sec 0 H(n - 1) dx
xl

(2) - sec 0 H*(n* - 1) dxf
f*
2 (sec 0 - sec 0*)[H(n - 1) - H*(n* - 1) ]dx.

If either sec 0 or H(n - 1) were constant, the second
integral in the right member would vanish. We now show

U20 Ch. VI



that unless sec 9 and H(n - 1) both undergo considerable
changes, the second integral in the right member is
much smaller than the first. On an arc short enough
to use in numerical integration, we can form an ade
quate estimate of the second integral by approximating
sec 0 and H(n - 1) by linear functions. If we define

A sec 0 • sec 02 - sec 0].,

(3) A [H(n - 1) ] - lUy^Mcv^) - l]
- Hty-^CnCcv^) - l],

the approximations

sec 0 - sec 0 + (x - x*) A sec ©/(xg - x-^),
H(n - 1) - H*(n* - 1) + (x - x*) • A|H(n - lflAxg - xx)
will be accurate enough to give a rough value for the
last integral in (2). We thus find that this integral
is approximately equal to

(1/3) A sec 0

•A[H(n - D] [(x2 - x*)3 + (x* - Xl)3]/(x2 - xx)2.
But if H(n - 1) is roughly linear, x* will be roughly
halfway between x^ and x2, and the integral will be
roughly

(l/12)(x2 - xx) A sec 0 A[H(n - 1)].
The first integral in the right member of (2) is roughly
equal to

H*(n* - 1) sec 0* (x2 - x^,
so the ratio of the second integral to the first is
about
(1/12) ( A sec 0/sec 0*){ A [H(n - 1)]/H*(n* - 1)}.
So if we restrict ourselves to arcs along which sec 0
changes by less than ten per cent and H(n - 1) also
changes by less than ten per cent, the second integral
in the right member of (2) will be less than a thou
sandth of the first.
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A similar analysis can be carried through with a
in place of sec 9. Here the result is even more ex
treme, since the variation of a along an arc small
enough to use in numerical integration is unlikely to
be as much as one per cent. We thus find that to a
high order of accuracy

(h) |
2
aH(n - 1) dx - j x2 aH*(n* - 1) dx.

A further approximation is permissible here. Since
a is nearly constant, and even more nearly linear, we
may safely integrate the right member of (U) by the
trapezoidal rule, obtaining

(5)
f *2

aH(n - 1) dx - J(a2 + ax) H*(n* - 1) (xg - xx).J xi
Here too we may safely anticipate that the error will
be well under one part in a thousand.

According to (11.8) the value of c which we seek
is the ratio of the integral in (2) to that in (5).If in (2) we discard the last integral and replace
sec 9 by ds/dx, where s is arc length along the tra
jectory, we find that (11.8) becomes

c

(6) (length of arc from x-j_ to x2)

(a2 + a±)/2 Xo — X-i

This formula is very accurate. It would seem pos
sible to base an improved form of Siacci approximation
on it, using for example a parabolic approximation to
the trajectory to obtain estimates of the length of
arc and of the integral X(x). But we shall not inves
tigate this possibility. Instead, we replace (6) by a
somewhat less accurate but more convenient expression,
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substituting the length of the chord from (x^, yi) to
(x2» y 2) in place of the length of the arc. If the
arc curves not more than eight degrees, so that the
angle between tangent and chord does not exceed about
four degrees, this approximation is in error by less
than one part in a thousand. We thus obtain the esti
mate

(7) c -
(ax + a2)/2

The proposed modification of Morrey's method uses
two lines for each stage of the computation as his
does, and also uses the same column headings; however,
after the second line nothing is entered in the column
headed m. If the slope is desired for any reason, it
can be obtained by quadrature of m' after the end of
the trajectory is reached. If it is not desired it
can be simply omitted.

The start of the computation can be essentially the
same as in the preceding section. The quantities mQn
and X0" are computed by (11.18) and (11.21) respective
ly, and are used to estimate m ]] and X^1 respectively
by means of (11.20) and its analogue for X'. Mow m^is computed by the trapezoidal rule and entered on the
upper line, and y^ is computed by (3.12) and entered
on the upper line. This value of y^ is used to com
pute H and y, which are entered as final values on
the lower line. Also it is used to compute c by (7).
Having c and tQ' - sec 0o/vo, we find uQ by (11.13),
determine the corresponding S(uq) (these are entered
on the upper line), determine S(u^) by (11.12) and
look up the corresponding ui (these are entered on the
lower line), and by (11.13) we find ti' and enter it
on the lower line. With this we compute m^1 by (11. lU)
and enter it on the lower line.

At this point we depart somewhat from the procedure
of the preceding section. We now have an accurate value
for A m]/. We also had already found the estimate ©mo"
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for this same quantity. By (6.U), we can enter double
the difference A Inn.' - go nig" as an estimate for
This permits us to obtain nn. by (3.3) with A^n^1 taken
equal to the same estimated A^m^1 ; as we showed in
(6.8), the resulting integral is in error only by the
small amount a>A3m2,/72. The final value of y^ is now
computed by (3.12) and entered on the lower line.

The first step being completed, the third, fourth
and subsequent steps are obtained by the procedure now
to be described; so is the second step, except for two
minor features which will be pointed out at the proper
time. First, the second difference of m' is extrapo
lated to the new line x »

x^+]_ whose computation is just
beginning. From this the first estimate of A ^y*+±
is computed by (3.9), and A^-yi+i and yi+i are also
computed and entered on the upper line. As in the step
already described, these are used to compute the final
values of H, a, X1 and c; with this c and the value of
t^' we compute u^ by (11.13), find S(u^) and enter it
on the upper line, add cA X to find S(u^+]_) and enter
this and the corresponding u^+i on the lower line. Now
we compute t^+i' by (11.13) and m^+i1 by (II.II4), and
we difference m' . We now compute the final A yi.+l by
(3.12), using this time the computed second difference
of m1 instead of the extrapolated second difference.

The two distinctive features of the second step are,
first, that it is best to compute X2 by Simpson's rule
instead of by (11.16), since the differences are not
yet available to sufficiently high orders to use the
latter formula; and, second, as soon as 1112

1 is computed
the third difference A^2' can be estimated by (6.5).
As was previously pointed out, the easiest way to use
this last formula is to compute A^n^' as usual, sub
tract the estimate for Ath]_* which is already entered
on the preceding line, and write 3/2 the difference as
an estimate for A-*^'. The previous estimate for
A 2jn^i should be revised to be consistent with this
newly estimated third difference.

Ch. VI



Chapter VII

DIFFERENTIAL CORRECTIONS
TO TRAJECTORIES COMPUTED
BY THE METHOD OF SIACCI

1. Differential corrections.

The tiro preceding chapters have been concerned with
methods for integrating the normal equations of the
trajectory, and thus have dealt with trajectories
along which all conditions were assumed to be stand
ard. But this is only a part of what is needed. We
have already seen, in the beginning of Chapter IV,
that it is also essential to have methods by which the
effects of departures from standard conditions can be
found. For example, the main part of a firing ta
ble for a certain combination of gun and projectile
will consist of a table showing the range as a func
tion of the elevation under standard conditions. But
in the field the conditions will not be standard, and
the artillery officer must be provided with some means
by which he can make the necessary allowances for the
effects of the various departures from standard con
ditions. Moreover, unless the organization construct
ing the firing table has some rapid calculating de
vice permitting the rapid computation of trajectories
for various ballistic coefficients under the non-stand
ard conditions prevailing at the time of the experi
mental firings on which the table is based, it will
also be necessary to have some method of allowing for
the effects of those departures from standard condi
tions in order to find what the range and time of flight
would have been in the experimental firings had the
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conditions been standard. Thus some method of making
corrections for departures from standard conditions
may be needed in the preparation of the firing table.

The simplest deviations from standard conditions
are those which are capable of being expressed by a
single number, such as a change in initial velocity
or in ballistic coefficient, a constant percentage of
deviation from standard density or normal temperature,
or a range wind (following wind) which is the same
at all points of the trajectory. The more complicated
type of deviation from standard conditions requires
the specification of a function. For example, we may
need to find the effect of a departure from standard
density which is different at different altitudes, or
01 a wind whose strength varies with the altitude.
These more complicated departures will be studied in
Chapters VIII and IX. In vhis chapter we shall con
sider only the simpler type, which can be expressed
by a single number. Also, except in this section we
shall consider only trajectories which have been com
puted by the Hitchcock-Kent modification of the Siacci
method (Section 2 of Chapter V). Ifhen methods of
Siacci type have been used to compute the trajectory,
only the simpler departures from standard conditions
can be treated with any facility.

Suppose then that we have selected some independ
ent variable, for example t, and by using the appro
priate system of equations we have computed two tra
jectories. One of these is a normal trajectory, with
certain initial conditions and with standard density,
temperature and ballistic coefficient and with no
wind. The other trajectory is a "disturbed" trajec
tory, in which there is a constant wind with compo
nents wx, w , w , the ballistic coefficient is in
creased from Cs\o Cg + A Cs, the relative air den
sity is increased from H to (l + * )H, the relative
velocity of sound from a to (1 + a)a, the coordinates
at time 0 are increased by Ax(0), Ay(OJ and Az(0)
respectively, and the components of velocity at time
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0 are increased by ^vx(0), Av (0) and Avz(0) respectively. Then, for example, the x-coordinate at
time t on the disturbed trajectory -will depend on <

these disturbances, and thus will be a function
x(t, wx, wy, wz, Cg, k, a, Mo), Ay(o), ^(0),

AVx(0), AVy(O), Avz(0))
of all these variables. Along the normal trajectory
the x-coordinate will also be a function of time t,
and may be denoted by the same symbol as above with
the last twelve of the thirteen arguments set equal
to zero (denoting that there is no departure from
standard conditions). Similar functional symbols will
stand for the values of y, z, vx, etc.

An obvious question to ask is this: How much has
the value of x been changed because of the presence
of the disturbances wx, etc.? An obvious answer is
that it has been changed by the amount

(1) A* - x(t, wx, A vz(0)) - x(t, 0, 0).
But this is quite superficial. If we had used a dif
ferent independent variable, say vx, we would have
given a similar "obvious" answer, but it would not
have been the same number as in (l). So we must re
flect a bit. When we ask how much x has been changed,
we are asking for the difference between the x of some
point on the disturbed trajectory and the x of a cor
responding point on the normal trajectory. But this
is meaningless until we decide what the corresponding
points are. In giving the "obvious" answer (l), we
tacitly assumed that "corresponding" points on the
two trajectories are those which correspond to equal
values of t. Had we used vx as independent variable,
the "obvious" way of defining corresponding points
would be to say that they are points which correspond
to equal values of vx. In field artillery, neither
of these is an important as the correspondence set up
by saying that corresponding points are those with
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equal values of y. For the x corresponding to y - 0
is the range of the projectile, and what the artillery
officer wants to know is the effect on range produced
by the various disturbances.

Thus it is clear that the notation for the changes
in x, etc., produced by the disturbances should in
dicate the manner in which the correspondence between
points of disturbed and normal trajectories has been
set up. It should also indicate in same way the dis
turbances that have produced the effect. Accordingly
we introduce the symbol

Ax([w , Avz(0)]|t)
(2) - x(t, Wj, vz(0)) - x(t, 0, 0).

The first symbol in the parenthesis will designate the
departure from standard conditions. The letter after
the vertical bar will designate the variable used in
setting up the correspondence between the two tra
jectories. The left member of (2) could be read "the
change in x at points of equal time t produced by
disturbances wx, Avz(0)." Analogous symbols
will be used for the other variables and other methods
of setting up correspondence also. For example,
A 7x(wxly) will be the difference between the x-com-
ponents of velocity at the point of the disturbed
trajectory with y-coordinate y and the point of the
normal trajectory with the same y-coordinate, the
disturbance being a range wind wx.

If we are interested in some point of a normal
trajectory and the nearby points of a disturbed tra
jectory, we always have the privilege of using any one
of several different variables as independent vari
able on an arc containing the given point. Any one
of these same variables can also be used to set up
the correspondence between the two trajectories. For
by using it as independent variable we automatically
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set up such a correspondence. On the other hand, at
certain points some of the variables may not be per
missible choices as independent variable. For exam
ple, if the point in question is the summit of the
trajectory, we cannot use y as independent variable.
Such variables are also not capable of being used to
set up the correspondence between the trajectories.
For example, if near the summit we try to set points
of equal y in correspondence, we find that for each
number y between the maximum ordinates of the normal
and the disturbed trajectories there are two corres
ponding points on one trajectory and none at all on
the other.

In order to define the concept of a differential
effect, it is convenient to introduce some sort of
measure of the "amount" or "norm," of a disturbance.
This can be done in any one of many ways. For exam
ple, we might define it to be the sum of the absolute
values of wx, vz(0), or we might define it to
be the square root of the sum of their squares. In
any case, this "norm" is to have the following prop
erties. The norm of the zero disturbance is zero;
all other disturbances have positive norms. If a
disturbance is multiplied by a number k, its norm is
multiplied by |k|. The norm of the sum of two disturb
ances is not more than the sum of their norms. (Thus
the norm is a generalization of the length of a vec
tor. ) The norm of a disturbance [»» • • • » A vzo] will
be denoted by the symbol N[wx, Avzo]; or, in
case there is no danger of misunderstanding, we may
abbreviate this to N.

Each of the functions x(t, wx, A vzo), etc.,
is for fixed t a function of the disturbing variables
wx, Avzo. According to the definition standard
in the calculus, the function x(t, wx, Avzo)
has, for fixed t, a differential with respect to the
remaining variables at (0, 0) provided that there
is a linear function
(3) • • • + A.12 so
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which approximates the right member of (1) to within
an error which tends to zero more rapidly than first
order in N as the norm N tends to zero. That is, the
ratio

Ax([w , vzo]|t) - [A;jWx + ... + A12v ]
(U) R

approaches 0 when N approaches 0. Whenever this dif
ferential exists, we shall designate it by a symbol
analogous to the left member of (2), namely

dx([wx, A vZQ]| t).
Because of the assumptions we have made concern

ing the differentiability of G(v), H(y), etc., it
follows from standard theorems on differential equa
tions that x(t, w^, A vzo) has continuous partial
derivatives of first and second (and in fact higher)
orders with respect to all the variables. By the
theorem of mean value,

x(t, wx, ^vz(0)) - x(t, 0, 0)

- [8x/dwx ]wx + ... + [ax/d A vz(0)] Avz(0)

(5) + H[32*/owx2?Srx
+ [ a^x/awx3wy]^wxwy + ...
+ [a2x/aAvz(oj2]*(A vz(o))2},

wherein the first-order partial derivatives are eval
uated at (t, 0, 0), and the asterisk on the
second-order partial derivatives indicates that they
are to be evaluated at a point (t, wx*, Avz(0J*)
on the line segment joining the point (t, 0, 0) to
the point (t, wx, Avz(0)). But if we confine
our attention to any finite .part of the normal trajec
tory and to bounded ' disturbanc es , these second-order
partial derivatives all remain below some finite bound.
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Since the number of terms involving second-order par-
tials is also finite (there are 78 of them) and each
one also has two other factors each at most equal to
N, the sum of all the terms involving second-order
partial derivatives is at most equal to' some finite
multiple, KN2, of the square of N. This shows, first,
that the linear function constituting the first terms
in the right member of (5) approximates the left mem
ber with an error of second order in N, and is by-
definition the differential of x with respect to
(wx, ▼a(0))v Second, it gives us the specific
form of this differential;

dx([wx, Avz(0)]|t)
- [ ax/awx>x + ... + [ox/9 Avz(0)]A v2(0).

(Here, however, we insert a word of caution. Equation
(6) is valid only because t was used as independent
variable on the trajectories. If, for example, the
Siacci pseudo-velocity p were the independent varia
ble, the x-coordinate along the disturbed trajectory
would be a function x(p, w_, &vz(0)), and the
linear expression formed out of its partial deriva
tives with respect to the variables wx, etc., as in
the right member of (6), would be the differential
dx([wx, vztO)]| p;.) Third, from (5) and (6) we
see that

|dx([wx, Ys(0)]|t) - Ax([wx, vz(0)]|t)j
5 KN2.

This is stronger than the requirement that the ratio
(U) should tend to zero with N, as required in the
definition of a differential.

It would be ambiguous to denote the value of, say,
dx(wx|t) at t - 0 by the symbol dxCwjJ 0). We could
not distinguish this from the result of setting y • 0
in the differential dx(wxjy;, which is quite a dif
ferent thing. Hence the result of setting t ■ 0 in
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dx(wx|t) will be written more explicitly in the form
dx(wx|t - 0).
It is the accuracy of the approximation (7) that per

mits us to use the differential effect dx as a sub
stitute for. the actual effect Ax. For by (7), by
making N small enough we can make the difference be
tween dx and Ax less than any preassigned multiple
of N, however small. The virtue of the differential
effect, as compared with Ax itself, lies chiefly in
the fact that it is usually much easier to compute.
An additional virtue is that differential effects are
superposable. Thus, for instance, the differential
effect of a wind wx and a change of density A H act
ing simultaneously is the same as the sum of their
differential effects when acting separately, as is
evident from (6). This permits us to compute the
differential effects of the disturbances one by one
and then to find their accumulated differential ef
fect by simply adding the separate results.

Usually it will happen that the differential ef
fects are desired for equal values of sone variable,
for example, y, whereas it is much easier to use some
other variable as independent variable in computing
the trajectory. Therefore it is important to have
a method by which differential effects at equal val
ues of one variable can be deduced from differential
effects at equal values of some other variable. Here
we have a multitude of different quantities; there is
the variable used as independent variable in comput
ing the trajectories, which may be any one of several;
there is the variable at equal values of which we are
asked to find the differential effects; there are the
quantities whose changes are sought; and there are the
various disturbances causing the changes. Therefore
we shall introduce a sort of generic notation to cover
all these possibilities. Let P be a point of a normal
trajectory. Let A and B be any two variables which
can be used as independent variables on an arc of
trajectory including P. (Thus A and B may each be
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any one of the variables x, t, the Siacci pseudo-
velocity p, the slope m, the inclination 6, y unless
P is the summit, and v unless dv/dt is zero at P.)
Let C be any of the quantities determined along the
trajectory; it is not necessary that C should be ca
pable of use as independent variable. Let q be any
disturbance. Then, as we are about to prove, the dif
ferential effect on C at equal values of A and the
differential effect on C at equal values ol B are re
lated to each other by the equation

(8) dC(q|B - BQ) - dC(q|A - A0) - (dC/dB)dB(q |a = AQ),
where the derivative dC/dB is to be evaluated at the
point P of the normal trajectory.

We will now prove this statement. Let AQ, B0, C0
be the values of A, B, C respectively, at the point P
of the normal trajectory. Ii the norm N of the dis
turbance is sufficiently small, there is a point Q
of the disturbed trajectory at which A has this same
value A0. Then, according to the definition of the
A symbol introduced in (2), we have

A - A0,
(9) B - B0 ♦ AB(q|A - AQ),

C - CQ
+ A C(q|A - AQ),

at this point Q. Likewise, if N is small enough there
is a point R of the disturbed trajectory at which B
has the value BQ. At this point R we have

A - A0 + AA(q|B - B0),
(10) B « B0,

C - C0 + AC(q|B - B0).
If we consider B as the independent variable we ob
serve that on the disturbed trajectory, from beginning
to end of the arc QR, the value of B changes by

- AB(q|A = AQ),
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•while the value of C changes by

A C(q|B - BQ) - AC(q|A - AQ).
By the theorem of mean value, there is a point B be
tween B0 and B0 + AB(q|A * A0; such that

A C(q|B - B0) - A C(q |A - A0)
(11) " (dC/dB)*,- AB(q|A - A0)
the derivative in the right member being evaluated
at B * B*.

From (5) we readily see that as long as N remains
under a finite bound, A x will not exceed a finite
multiple of N. For the linear terms each consist of
a bounded expression times a factor at most N, and
the remaining terms do not exceed (KN)N, which is a
bounded multiple of N, if N remains bounded. This
applies equally well to A B and to A(dC/dB). In
particular, the values of dC/dB at the points of norm
al and disturbed trajectories with B ■ B differ by
at most a bounded multiple of N. But B differs from
B0 by at most a bounded multiple of N, so the values
of dC/dB at the points of the normal trajectory cor
responding to B ■ B* and to B - B0 also differ by at
most a bounded multiple of N. Hence

(12) (dC/dB)* - (dC/dB)0 + cxN,
where the subscript o indicates that dC/dB is evalu
ated on the normal trajectory at the point, P, and all
that we need to know about ci is that it stays under
some finite bound. From (11; and (12; it follows that

AC(q|B - BQ; - AC(q|A - AQ)
(13; - (dC/dB;oAB(q|A - AQ)

- ClNA B(q|A - Ao;.
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According to (7),
AC(qjA - A0) - dC(q|A - AQ; ♦ c^2 ,
AB(q|A - AQj - dB(q|A - Aq; + C3N2,

where C2 and c.3 remain under some finite bound. If
we substitute these expressions in (13), and recall
that &B(q|A ■ A0) itself remains under some finite
multiple of N, we see that (13 J yields

AC(q|B - B ) - dC(q |A
- A-)

- (dC/dB)0dB(qlA = A0) + c^N2,
where remains under some finite bound. But now
the first two terms in the right member of (15) are
linear in the disturbance q, and this linear function
approximates A C(q|B » BQ) to within an error which
is of second order in N. Hence by definition this
linear expression is the differential dC(q|B - B^).But this statement is exactly the equation (8 ) which
we were to prove, and the proof is complete.

2. Application to Siacci trajectories.

The methods discussed in the preceding section
will now be applied to trajectories computed by the
Hitchcock-Kent modification of the Siacci method. How
ever, we shall not consider exactly the disturbances
listed in the preceding section. For one thing, if
the x and y of the muzzle are changed, everything else
remaining fixed, the trajectory will merely be trans
lated by the same amount as the muzzle. So changes
in the initial values 01 x and y will be ignored, and
we shall always assume that x and y both are zero at
t ■ 0. For another, we shall postpone consideration
of effects of winds until Section ii, because by con
sidering wind effects separately we can arrange the
work so that much of it will be useful later, not
merely for Siacci trajectories . Finally, we shall
also consider the effects of change in the value of g.
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Equations (V.2.9, 10, H, 12) give the approximate
solutions of the equations of motion furnished by the
Hitchcock-Kent modification of the Siacci method. We
change the form of these equations slightly by replac
ing p0 by v0 (which is equal to it) and by substitut
ing (V.2.10) in (V.2.12);. the result is

t - t(p, Cs, v0, 60, a, g)
-
C8 [T(p/a) - TW^a^/a,

x ■ x(p, Cg, v0, 60, a, g)
- Cs cos 60 [S(p/a) - S(v0/a)],

(1) m - m(p, Cs, v0, 90, a, g)
- tan 90 - Cs sec 90[l(p/a) - I(v0/a)] /2a2,

y ■ y(p» cs» vo» Go» a» g)
- Cs[sin 60 + CsI(v0/aV2a2][S(p/a - S(v0/a)]
- Cg^ A(p/a) - A(vQ/a)]/2a2.

According to (1.6) and the remarks following it,
dx( [>CS, A vQ, 4 0o, A a, Ag]|p)

- [dx/3Cs]ACs + [3x/3v0]A v0
+ [3x/3e0 ]A0O + [ 3x/3a ] Aa

* +[3x/3g]Ag,
with similar equations for the differential effects
on t and y. In computing the last term it must be
recalled that g, although apparently absent from (1),
is actually present as a factor in I and A. -Ve can
now compute the fifteen partial derivatives which
appear in (2) and its analogues for t and y (differ
ential effects on m could be computed too, but are
not particularly importait), and simplify them by use
of (1); the results are the following, using (1), (2)
and (V.2.8).
(3) Differential effects of change ACS in ballisticcoefficient at muzzle:
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dt(ACs|p) - t(AC3/Cs),
dx(A Cg|p) - x(A Cs/Cs),
dy(A Cs|p) - (2y - x tan 90)(A C8/Cs).

(U) Differential effects of change A v0 in initial
velocity:
dtUvJp) - [Cs/v0aG(v0/a)]Av0,
dx(A v0|p) - [Cs cos 60/aG(v0/a) ]AvQ,
dy( A vQ|p)

■ [Cs/aG(v0/a) ][(gx sec 90/v02) + sin 90]Av0.
(5) Differential effects of change A 90 in angle of
departure:

dt(A 60|p) - 0,
dx(A 0o|p) - - (x tan 0O)A 60,
dy(A 60|p) - xA 90»

(6) Differential effects of change A a in relative
velocity of sound:

dt( A al p)
- t + Cs{[l/aG(p/a)] - [l/aGCvoAQjju a/a),

dx( Aa|p)
- {[p/aG(p/a)J - [vo/aGCvo/a)]) Cg cos 0o(ia/aj,

dy(A a| p)

- {2(x tan 60 - y)
+ Cs[(gx sec 60 - v02sin 90)/v0aG(v0/a)]
+ Cs[(p cos 60 tan 9)/aG(p/a)]) (A a/a).

(7) Differential effects of change A g in accelera
tion due to gravity:
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dtUg|p) - o,
dx(Ag|p) - 0,
dy(A g|p) - (7 - x tan e0) (A g/g).

Comparison of effects at equal values of p is of
course not very useful in itself. In field artillery
the effects should be for equal values of y, specific
ally for y ■ 0. In forward fire from airplanes the
natural independent variable is slant range, so that
the effects should be given at equal values of x. In
anti-aircraft fire it is possible that effects at equal
values of t might be desired. All of these can be de
duced from the effects (3 J to (,7) at equal values of
p with the help of (1.8). In this formula we take
A to be the pseudo-velocity p, B to be any one of the
variables x, y or t, and C to be any other of the vari
ables x, y or t. In each case dC/dB is one of the six
derivatives

dx/dt » p cos 9Q, dy/dt - p cos 90 tan 9,

(8) dx/dy - cot 0, dt/dy » cot 9 sec 90/p,

dt/dx • sec 90/p, dy/dx • tan 9.
Thus if q is any one of the disturbances whose effects
have been evaluated for equal values of p, we trans
form to equal values of t, x or y by the equations

(9)

dx(q|t) - dx(q|p) - p cos 9o dt(q|p),
dy(q|t) * dy(qlp) - p cos 90 tan 9 dt(q|p),
dx(q|y) - dx(q|p) - cot 9 dy(q|p),
dt(q|y) - dt(q|p) - (1/p) cot 9 sec 90 dy(q|p),
dt(q|x; - dt(q|p) - (1/p) sec 90 dx(q|p),
dy(q|x) » dy(q|p) - tan 9 dx(q|p).

All that remains is to replace q by A Cg , a v0 , a Qq ,
A a and A g successively and substitute for the differ
ential effects in the right members by means of equa
tion (3) to (6). The results are as follows.
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(10) Differential effects of change A Cs in ballistic
coefficient at muzzles

dx(ACglt) • (x - ptcos e0)(ACg/C8),
dar(AC,|tJ

- (2y - x tan 0O - pt cos 60 tan 0)(A Cg/Cs),
dx(A C8|y)

- [x(l + tan 90 cot 6) - 2y cot 0](ACg/Cg),
dt(A Cg|y)

• [t + (x tan 90 - 2y)cot 9 sec 60/p](^ Cs/Cs),
dt(A Cs|x) - [t - x sec «0/p]( A Cs/Cg),
dy(A Cs|x) - [2y - x(tan 6 + tan eQ)]( A Cs/Cs).

(11) Differential effects of change A v0 in initial
velocity:

dxUv0lt) - Cs[(vQ - p) cos 90/v0aG(v0/a)]A vc,
dy( A v0lt)

" csU(vo2 sin 60 - gx sec 0o)/vo2 aG(v0/a)]
-[p cos 8o tan 6/v0aG(v0/aj])i v0j

dx( A v0|y)
■ Csi[(cos 60 - cot 0 sin 0o)/aG(vo/a)]

2
♦ [gx sec 60 cot 6/v0 aG(v0/a) ]) a v0,

dtU v0|y)
- Ca^l/av^Cvo/a;]

- + [gx sec2G0 cot 0/avo2p G(v0/a)]
- [tan 90 cot 0/apG(vo/a)])A v0,

dt( Av0|x) - - Cs[(v0 - p)/av0p G(v0/a) ]av0,
dyU vQ|x)

- Csi[(sin 90 - tan 6 cos G0)/aG(v0/a)]
- [gx sec e0/v02aG(v0/a)])A v0.
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(12; Differential effects of change A9Q in angle of
departure:
dx(A e0| t; - - x tan 80 A 90,
dyU e0|t; - x A0O,
dx(A 90|y) - - x(tan eo + cot 6)L 90,
dt(A 90|y) - - (x/p) cot 9 sec G0 A 90»

dt(A90|x) - (x/p) tan 90 sec 90 A 90,
dy(A 80|x) - x(l + tan 9 tan 90)A90.

(13) Differential effects of change A g in accelera
tion due to gravity:
dx(Ag|t) - 0,
dy(A g|t) - (y - x tan 90)(Ag/g),
dx(^ g|y) - cot 9 (x tan 9o - y)(A g/g),
dt(A g|y) - (1/p) cot 9 sec 90 (x tan 90 - yj( Ag/g),
dt(A g|x) - 0,
dy(Ag|xJ - (y - x tan 9Q)( Ag/g).

The relative velocity of sound is not directly meas
ured, but is inferred from the temperature. If 9 de
notes the absolute temperature, it is assumed that a
is proportional to the square root of 9. Then

A a/a - A 9/2 9
except for an error of higher order than the first.
Consequently, the differential effects of a change A 0
in absolute temperature can be found from the differen
tial effects of a change A a by merely replacing A a/ a
by A 9/29. This we now do.

(Ill) Differential effects of a change A 9 in abso
lute temperature:

dx( A 0|t)
- cos 90 tpt + Cg[(p - v0)/aG(v0/a)]}A 9/2 9,

UUO Ch. VII



dy( a 6|t)
■ (pt cos 0O tan G + 2(x tan 90 - y)

+ Cs [ p cos 80 tan 0/aG(vo/a) ]
- Cs[ v0 sin 90/aG(v0/a) ]
♦ Cg [ gx sec eo/v0aQ(v0/a)]} (40/2 9),

dx( A9|y)
- {- 2(x tan 90 - y) cot Q

- C8[gx sec 90 cot 0/voaG(vo/a) ]
+ Cs[v0 sin 0O cot 0/aG(vo/a)]
- Cs[v0 cos So/aGCv^a^JCA 9/2 0),

dt( A e|y)
•

{
- (2/pKx tan 80 - y) sec 0O cot 9
- t + Cg[v0 tan 0O cot 0/apG(p/aJ ]
- Cs[gx sec^0o cot 0/avopG(p/a) ]
- Cs[l/aG(v0/aj]}( A 9/2 0),

dt( A9|x)
-

{
- t + Cs[(v0 - p)/apG(v0/a;]}( A 9./2 9),

dy( A 9 |X)
- {2(x tan 0O - y)

+ Cs[v0(tan 0 cos 0O - sin 0o)/aG(vo/a) ]
+ C8[gx sec 0o/voaG(vo/a)]}(A 9/2 9).

In order to apply these formulas to field artillery
■trajectories with standard ground impact, y * 0, it is
only necessary to set y ■ 0 in the formulas for dx(q|y)
and dt(q|y). However, one small notational change is
customary in this case. Since with standard ground
impact 8 is always negative at impact, it is usual to
define the striking angle cd to be the negative of the
value of 9 at impact. Moreover, the values of x and t
at impact are usually designated either by X and T
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respectively, or else by and t^. With a similar
convention for 6 we would have oj =• - 8 The result
ing changes in the foregoing formulas are quite obvi
ous.

3. Identical relationships between effects of cer
tain disturbances*

The five types of disturbances considered in the
preceding section do not produce independent effects.
In fact, there are three sets of identical relation
ships satisfied by them, so that from two properly
selected sets of effects we could have deduced the
other three, with the help of the identities. The
identities we shall establish are satisfied by any
system of exact solutions of the normal equations,
and do not depend on the Siacci equations. Thus in
a sense this is not the appropriate place to establish
them. However, they will be established here in order
that we may have them to check the results already ob
tained.

The first identical relationship is the following:

(1) Let "trajectory 1" be computed for a projectile

of ballistic coefficient C, with Initial position
x * x0 and y ■ y0 at t ■ 0, initial velocity v0 and

angle of departure 0O, gravity constant g, relative

sound velocity a(y) and relative air density H(y). Let

"trajectory 2" be computed for a projectile of the

same ballistic coefficient C, the same initial position
x ■ x0 and y • y0 at t ■ 0, the same angle of depart

ure 0O and the same relative air density H(y), but
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with initial velocity kv0, gravity constant k?g and

relative sound velocity ka(y), inhere k is a positive

constant. Then every point on trajectory 1 is_ on

trajectory 2, and vice versa, and at coincident points

the two trajectories have equal slopes « The time taken

"to reach a given point on trajectory 2 is_ (1/k) times

the time taken to reach the same point on trajectory

1, and the c omponents of velocity at this point are

k times as great on trajectory 2 as on trajectory 1.

It is convenient to use slope as independent vari
able in proving this statement. The equations of mo
tion are then (V.1.10). However, we shall use the
single letter r to designate the x-coaponent of velo
city, and we shall also write an alternative form of
the last equation, changing back to by (IV. 1.16).
Thus the equations are

dt/dra ■ - r/g, dx/dm ■ - r2/g> dy/dra - - mr2/g,
(2) dr/dm - a(y) H(y) G(rvC? / a(y))r2/gC

- ^(y)^(iviH?/u8(0)a(y))vCi?r3/gC].
Given any initial position x = x0, y ■ y0, any ballis
tic coefficient C, any initial velocity v0, any ini
tial time t ■ tD at m ■ m0, any gravity constant g,
any relative sound velocity law aly) and any relative
air density law H(y), we can find exactly one set of
solutions of these equations. These solutions we des
ignate by the symbols
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t =• t(m, C, x0, y0, vOJ t0, g, a( ), H( )),
x - x(m, C, xQ, y0, vQ, t0, g, a( ), H( )),^ y - y(m, C, x0, y0, v0, t0, g, a( ), H( )),
r - r(m, C, x0, y0, v0, t0, g, a( ), H( )).

The empty parentheses following the letters a and H
are intended to serve as reminders that at a given m,
the values of t, etc., do not depend merely on the val
ues of a and H at that specific point, but are depend
ent on the entire aggregate of values of the functions
a(y) and H(y) along all the preceding portion of the
trajectory. iVith this notation, "trajectory 1" is de
fined by the functions as written in (3), which we shall
also call by the simpler names

ti(m), xi(m), yi(m), r]_(mj.
"Trajectory 2" is defined by the functions
t • t2(m)
- t(C, xQ, y0, kv0, 0, k2g, ka( ), H( )), etc.

The statement (1) which we wish to prove takes the
form of the system of equations

(U)
t(m, C, Xq, y0, v0, 0, g, a( ), H( ))

- kt(m, C, x0, y0, kvQ, 0, k2g, ka( ), H ( j),
x(m, C, x0, y0, v0, 0, g, a( ), H( ))

- x(m, C, Xq, y0, kv0, 0, k2g, ka( ), H ( )),
y(m, C, x0, y0, vQ, 0, g, a( ), H ( ))

- y(m, C, Xq, yQ, kv0, 0, k2g, ka( ), H( )),
r(m, C, Xq, y0, v0, 0, g, a( ), H( ))

- (1/k) r(m, C, Xq, y0, kv0, 0, k2g, ka( ), H( )).
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These can be written in the briefer forms

(5)
t^m) s kt2(m), x1(m)

= x2(m),

yi(m) » y2(m), r^m) ■ r2(m)/k.

It is interesting to observe that for exact solu
tions of the normal equations, the identities (5) can
be established by a dimension-theoretic argument. On
trajectory 1, regarded as an existing physical entity,
let us change from the original unit of time to a new
unit k times as great. The trajectory is unchanged,
to each point on the trajectory correspond the same
x, y, m as before. But the new time t2 is (1/k) times
the old, the new velocity r2 is k times the old, and
the new gravitational acceleration is k2g. H, C, p* Kq
and its argument, having dimension 0 in time, are un
affected. Tncre is a slight, but not insuperable, dif
ficulty in extending this argument to trajectories com
puted by the Siacci method. Instead of modifying the
proof, we present another.

By the definition of "trajectory 2," the equations

dt2/dm - - r2/(k2g),
dx2/dm

- - r22/(k2g),
(6) dy2/dm - - mr22/(k2g),

dr2/dm - { P*H(y)KD(r2^Ta2/ us(0)ka(y)) }

are satisfied, with initial conditions

(7)
t2(mQ) - 0, x2(m0)

= x0,

y2(m0) - y0, r2(m0) - kvx
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It follows at once that

d(kt2)/dm - ~ (r2A)/g,
dx2/dm

- - (r2/k)2/g,
dy2/dm - - m(r2A)2/g>

(8) d(r2A)/dm - {p*H(y)KD([r2/k]vW/u8(0)«(y)}
{v^2(r2A)3/gC} ,

k2t2(m0) » 0, x2(m0) - x0,
y2(mQ)

- y0, (r2(ra0)A) - vxp.
But by definition of "trajectory 1,"

dt^dm - - r^/g,
dx1/dm

- - r-^/g,
dy^dm = - mr12/g,

(9) dri/dm - { Q^tyJKnCrw^/UgCOJaCy) }

*{/ 1+m2 r^/gC],
ti(m0) - 0, *i{m0) - xD,
yi(mo) = y0» ri(V " vxo-

By (3), the right members of equations (5) satisfy
certain differential equations and initial conditions.
By (9), the left members of (5) satisfy the same dif
ferential equations with the same initial conditions.
Therefore equations (5) are identities, and our state
ment is established.

It should be observed that (1) is a statement about
the exact solutions of the normal equations. But it
is also valid for the Siacci approximations. For the
basic Siacci approximation consists in the substitu
tion of vx sec do for v in the argument of G, which
is equivalent to replacing m by mo in the argument of
Kd in (2), hence in (6), (8), and (9) also. The rest
of the proof needs no change.
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In order to obtain a relation between differential
effects from statement (1), it is desirable to intro
duce a new symbol, which has the same relation to the
symbol say, dx(q|y), as a derivative has to a differ
ential. If a disturbance q is expressible by means of
a single number, we define [&x/bqly to be the ratio
dx(q|y)/q. As pointed out after (1.6), if y is the
independent variable this ratio is the same as 3x/3q.
But if y is not the independent variable this last
symbol will have some other meaning, whereas the sym
bol [bx/bq ]y will continue to have the same meaning
irrespective of the choice of independent variable.
More generally, if q is any disturbance that can be
expressed by a single number, and A is any variable
that could be used as independent variable along an
arc of the trajectory, and B is any other variable
along the trajectory, tnen

(10) [6B/6q]A - dB(q|A)/q.
In this terminology, for example, (1.6) would take
the form

(11) '••» A v»(°>3lt)
- [&x/&wx]twx + ... + [&x/6A vz(0) ]t AVz(0).

The distinction between this equation and (1.6) is that
the latter is valid only if" t is the independent vari
able, whereas (11) is valid whatever the independent
variable maybe.

From (1.8) we deduce that whenever the disturbance
is capable of being expressed by a single number q,
the relation
(12) [ & C/6q]B - [£>C/6q]A - (dC/dB)L&B/&q JA
is satisfied, subject to the requirements that A and
B are both capable of serving as independent variables
near the point at which the differential effect it
being computed. The proof of (12) is trivial; all
that is needed is to divide both members of (1.8) by
q. Of course it should be kep+ in mind that (12) is
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a less general formulation than (1.8); the latter ap
plies to any disturbance we have considered and in
fact will continue to apply to the more complicated
disturbances to be considered in the next two chap
ters, while (12) is valid only when the disturbance
can be expressed by a single number. In fact, it is
this sane restricted application that diminishes the
usefulness of the symbolism (10). Nevertheless, whenit can be applied it is frequently convenient.

In general, the methods we have been discussing
would not apply to equations (M, because in them a
function is being modified; the function a(y) is being
replaced by ka(y) , the change depending on y. We
could modify the preceding discussions so as to apply
to this case too, since in reality the disturbance is
expressed with the help of a single real number k.
But it hardly seems profitable to make any ad hoc mod
ification, since the general case will be treated in
the next chapter. For the purposes of this chapter,
the relative sound velocity function is assumed con
stant along the trajectory, and the relative air den
sity likewise. So we may at present regard a and H
as constants, as we did in the preceding section. Now
we can write such symbols as 8t/5a, as before.

In the first three of equations (u), let us differ
entiate with respect to k and then set k ■ 1. Since
m is the independent variable, these partial deriva
tives are the same as the symbols (10) with subscript m;
thus, for example, the partial derivative of the right
member of the first of equations (U) with respect to a
is the same as [&x/6a]m. The results may then be
written

0 - t + v0[6t/6v0]ni ♦ 2g[6t/6g]m + a[6t/6a]m,
(13) 0- v0[&x/6v0]m + 2g[6x/6g]m + a[6x/6a]m,

0 - VoLfcyyfcvo^ + 2g[6y/6g]m + afcy/ba^.
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■er, these are not really what we want. Differ-
A effects at equal values of m are not as interest-
.3 those at equal values of y, or of x, or of t.
-y (12) with A ■ m we can deduce these more in
king quantities from (13). Thus, for example, to
the identity connecting the differential effects
at equal values of y, we take C - x and B » y

12) and thus see that the desired identity follows
-ultiplying the last of equations (13) by

1 adding to the second of equations (13). We thus
ain six identities
- Yxt ♦ v0[sx/6v0]t + 2g[6x/8g]t + a[8x/6a]t - 0,
- vyt + v0[8y/6v0]t + 2g[6y/6g]t + a[8y/8a]t - 0,

t + v0[5t/8v0]x + 2g[8t/8g]x + a[8t/sa]x - 0,
v0[oy/&v0]x + 2g[6y/6g]x + a[6y/&a]x - 0,

t + Vofct/bvjy + 2g[6t/6g]y + a[6t/6a]y - 0,

i will be found that the differential effects listed
a the preceding section satisfy these equations.

In order to state our next set of identities it is
onvenient to introduce the symbols

where k is any positive number. We can then state
and prove the following identity.

(16) Let "trajectory 1" be c omputed for a projectile

of ballistic coefficient C, with initial position
x ■ 0 and y ■ 0 at time t • 0, initial velocity v0 and

angle of departure 0O, gravity constant g, relative

- dx/dy - - cot 0

15) ak(y) - a(ky), Hk(y) - H(ky),
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sound velocity function a(y) and relative air density*
H(y). Let "trajectory 2" be c omputed with the same

initial posit ion and velocity and the same angle of
departure, but with ballistic coefficient C/kj gravity

constant kg, relative sound velocity function ak(y)

and relative air density Hk(y), where k is any posi

tive number. Then at points of equal slope the coor

dinates and time of flight on trajectory 1 are k times

as great as on trajectory 2, velocity components being

unaltered.

We again use the slope as independent variable, and
designate the general solution by the symbols (3).
Trajectory 1 is defined by the functions (3) as written;
these can be abbreviated, as before

t^m), xx(m), y1(m), r-^m).
Trajectory 2 is defined by the functions

t2(m) - t(m, C/k, 0, 0, v0, 0,
(17)

kg, ak( ), Hk( )), etc.
Statement (16) will be established if we prove

(18)

■fc^(m)
■ kt2(m)
- kt2(m, C/k, 0, 0, v0, 0, kg, ak( ), Hk( )),

xx(m) - kx2(m)
- kx2(m, C/k, 0, 0, vQ, 0, kg, ak( ), Hk( )),

U5-0 Ch. VII



! restricted in their appli-
. position is xo " yo "0. How-
, this is no real restriction;
initial conditions into this

introducing "ballistic coeffi-
. litude," or "summital ballistic
.th this small change, they can

formulas of the preceding

of identities is one that has been
; years. It is obtained by the sira-
f ting the origin to a new point on
Te shall assume that both relative

nd relative air density are exponen-

H(y) - e-hy.
nient to use the time as the independ-
Let the solution of the equations of
itial position x ■ xo and y ■ y0 at time
. velocity v0, angle of departure 9o>
ficient C, gravity constant g, relative
r function a(y) and relative air density

ignated by the symbols

t| C, Xq, y0, v0, 90, g, a( ), H( )),
U, C, Xq, y0) v0, 90, g, a( ), H( )).
first trajectory we take the conditions as
xcept for the one specialization that at t ■ 0
jectile is at the origin, so thzt Xq « y0 » 0.
other trajectory (or rather our other way of

g the sanB trajectory) we let k be any number,
hange the origin of time from t - 0 to t * k.
is , we make the transformation

t* - t - k.
xk> yk> "k* % be the coordinates, the velocity
the inclination at the time t - k, which is the
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these equations, we obtain the differential equations
and initial conditions of trajectory 1. Thus

(21) kt2 " t^, kx2 - X]_, ky2 ■ y^, r2 - rj_
identically in m, and our statement is established.It could also have been established by a dimension-
theoretic argument, by changing length and time units
in the ratio l:k.

As before, the proof is unchanged if we replace m

by mo in the argument of Kp. This converts the exact
equations (2) into the Siacci approximations, so (16;
is valid for the Siacci approximations as well as for
the exact solutions of the normal equations.

In the Siacci method of the preceding section the
functions a(y) and H(y) were taken to be constants.
Hence ak and Hk are identical with a and H, and do
not depend on k. The left members of equations (19)
do not depend on k. We differentiate with respect
to k and set k equal to 1; the results are the fol
lowing:

0 - t - C[ 6t/6C ] m + g[ 6t/6g ] a,
(22) 0 - x - Cfcx/fcC ]B* g[ox/f>g]»

0 - y - C[&y/bc]m* gOy/fcgln,.
In the same way that we deduced equations (1U) from
(13), we transform (22) into the system of equations

x - vxt - C[bx/bC\ + g[6x/6g]t = 0,
y - vyt - c[6y/6C]t + g[6y/6g]t - 0,

,23)
y - x tan 9 - c[6y/6C]x + g[iy/6g]x - 0,
t - x/vx - C[6t/6Cjx + gl&t/bg^ - 0,
t - y/vy - C[6t/6C]y + g[6t/6g]y = 0,

x - y cot 6 - C[&x/6C]y + g[ox/6g]y " 0.
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These formulas seem to be restricted in their appli
cation, since the initial position is X3 ■ yo "0. How
ever, we already know that this is no real restriction;
we can always bring the initial conditions into this
form by the device of introducing "ballistic coeffi
cient corrected for altitude," or "summital ballistic
coefficient," Cs. With this small change, they can
be used as checks on the formulas of the preceding
section.

The final group of identities is one that has been
well known for some years. It is obtained by the sim
ple process of shifting the origin to a new point on
the trajectory. We shall assume that both relative
sound velocity and relative air density are exponen
tial functions,
(2U) a(y) - e-a17, H(y) -
It is now convenient to use the time as the independ
ent variable. Let the solution of the equations of
motion with initial position x * Xo and y ■ y0 at time
t ■ 0, initial velocity v0, angle of departure Go,
ballistic coefficient C, gravity constant g, relative
sound velocity function a(y) and relative air density
H(y) be designated by the symbols

x - x(t, C, Xq, y0, v0, 90, g, a( ), H( )),
(25)

y - y(t, C, Xq, y0, v0, e0, g, a( ), H( )).
For our first trajectory we take the conditions as
listed, except for the one specialization that at t ■ 0
the projectile is at the origin, so that Xq ■ y0 » 0.
For our other trajectory (or rather our other way of
writing the saire trajectory) we let k be any number,
and change the origin of time from t ■ 0 to t * k.
That is, we make the transformation

(26) t* - t - k.
Let Xfc, y^, y^, 9^ be the coordinates, the velocity
and the inclination at the time t ■ k, which is the
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same as the time t* m 0. We translate the axes by a
transformation

(27) x* - x - xk, y* - y - yk.
Now the differential equations satisfied by the par
ticle are

d2x*/dt*2
- - {H(y*;H(ykvc}

•{a(y*)a(yk)G(v/a(yk)a(y*))dx*/dt},

dV/dt*2
- - g - {H(y*)H(yk)/C}

•{a(y*)a(yk)G(v/a(yk)a(y*))dy*/dt*},
wherein we have used the fact that a and H are expon
ential functions, so that a(yk + y*) - a(yk)a(y*) and
similarly f or H. The initial conditions are x* ■ y* - 0
at time t* ■ 0, velocity ■ vk and inclination = 9k at
time t* ■ 0. But then by the definition of the sym
bols (25) the solutions of (28) are the functions

x*(t*) - x(t*t C/lKyic), 0, 0, vfc,

©k» 8> a(yk)a( ), H( )),
(29)

y*(t*) - y(t\ C/H(yk), 0, 0, vk,
ek> S> a(yk^a( >> H( ))'

The differential equations (28) are those satisfied by
the original trajectory, only the notation being al
tered, and the initial conditions on the new trajec
tory are the same as the coordinates and velocity com
ponents at the point t ■ k of the original trajectory.
So the solution (29) is the same as the original tra
jectory, only the notation being changed. If we write
the statement that the two trajectories are the same,
and change back from x*, y* to x, y by (27), we obtain
the identities
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x(t*, C/H (yk), 0, 0, vk, ek, g, a(yk)a( ), H( ))
+ 7k - y(t, C, 0, 0, v0, e0, g, a( ), H( )),

(30)
7(t*, C/H(yk), 0, 0, vk, 0^ g, a(yk)a( H( ))
' y(t, C, 0, 0, v0, e0, g, a( ), H( )),

where t and t* are related to each other by (26).

From this point on we shall assume that a(y) is ac
tually independent of y, which is equivalent to assum
ing temperature the same at all altitudes. Iffe shall
differentiate both members of (30) with respect to k
and then set k ■ 0. Since v^ ■ vx^ + vy^» with the
help of (V.l.l) with the disturbances set equal to
zero we find

dv/dt - (VXV1C + VyVy)/V
(31) ■ vx cos 8 + Vy sin 9

• - Ev - g sin 0.
From (2U) we find
(32) dH/dt » - hH(y)y,
while the time derivative of 0 can be found from
(V.l.ll). The result of the differentiation is then

- Vx + hv0 sin 0O C[6x/&c]t

- (Ev0 ♦ g sin G0) [6x/ov0]t

- (g cos 0o/voj[6 x/680]t

(33)
+ vo cos ©o " 0»

- vy t hv0 sin 90 cty/6C]t
- (EvQ + g sin 90)[6y/6v0 ]t
- (g cos 0o/vo)[6y/6©o]t

+ v0 sin 90 • 0.
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With the help of (12) this can be transformed into
the set

hv0 sin 60 C[6y/6C]X

- (Ev0 + g sin e0;[&y/*>v0]x

- (g cos e0/v0)[6y/&e0 ]x
+ v0(sin 0O - tan 0 cos QQ) • 0,

1 + hv0 sin G0 C[ 6 V&Ck
- (Ev0 + g sin 0O)[ 6 ty&vo ] x

- (g cos e0/v0;[&t/&e0]x

(3D - Cv0/vx; cos e0 - o,

1 + hv0 sin G0 C[6t/6C]y
- (Ev0 ♦ g sin G0)[6t/6v0] y
- (g cos eo/vo;[6t/6 0o] y
- (v0/vy; sin 60 - 0,

hvQ sin 0O C[6x/6C]y
- (EvG + g sin 0o;[6x/6vo]y
- (g cos B0/v0)[bx/b&0 ]y
+ v0(cos 0O - cot 0 sin 0O; - 0

By setting 80 ■ 0 we obtain a special case of the
last pair of equations which is frequently useful in
range bombing reductions. The standard trajectory has
®o " vyo " 0. Ordinarily there is a small error, and
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the initial Vy is not exactly zero. Since to first-
order tents, a 9Q - (l/v0)A Vy0, the last two of equa
tions (3U) simplify to

[6 t/6v ]y - (l/g)(l - Ev0[6t/6v0] ),
(35)

[6x/&vyo]y - (vQ/g)(l - EC&x/fcv^).
The right members can easily be estimated from the bal
listic tables. Usually it will be found that the term
involving E is considerably smaller than the other, so
that with sufficient accuracy the right members of these
equations can be simplified to 1/g and Vo/g respective
ly.

If the differential effects found in the preceding
section are substituted in equations (33) and (3U), it
will be found that these latter are not satisfied. The
reason is that (33) and (3U) were derived on the basis
that if the position and velocity of the projectile at
any point of a trajectory are taken as initial values,
the trajectory re-computed with these new initial values
will be identical with the original. This is true of
the exact solutions, but is is not true of the Siacci
approximations. In particular, the Siacci approxima
tions fail to satisfy (31). However, it is still pos
sible to apply (33) and (3U) to the Siacci method by
means of an indirect procedure. If 90 is 0, the
error in the Siacci method is a second-order infinites
imal near the beginning, and (31) holds, and the pro
cess of re-computing the trajectory by the Siacci method
starting with a point near (0, 0) as initial point will
produce an error of order higher than the first. So
(33) and (3h) snould apply to the Siacci trajectories in
case 60 ■ 0; and in fact they do, as we see by substi
tution. If we wished to derive the differential effects
of the preceding section by means of these identities,
we could apply them to the special case 0O » 0, trans
form to the (L, D)-system with 6o ■ 0, and make use of
the property of parallelogram rigidity to obtain the
differential effects for arbitrary values of 60.
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U. Differential effects of constant winds.

It has already .been remarked that it is difficult
to find the effects of a varying wind when the Siacci
method is used. However, even without the Siacci ap
proximations it is not hard to find the differential
effects of a constant wind, with the same speed and
direction at all altitudes, and the results can be
used in connection with the Siacci method if desired.
Since the differential effects of various disturbances
are superposable, it is permissible to consider range
winds and cross winds separately and finally to add
their effects. We shall consider range winds first.
It is convenient to use time as independent variable.

Suppose that the wind is in the direction of the
x-axis, having components (wx, 0, 0). The coordinates
at time t of a projectile of ballistic coefficient C,
having coordinates x^j y0 and velocity components
vxo» yyo &* time t ■ t0, will aepend on all these
quantities and also on the gravity constant g and the
relative sound velocity function a(y) and the relative
air density function K(y). However, the quantities
g> C, a(y), H(y), Xq, y0 will not be varied in this
discussion, so we may safely omit them from the no
tation, and write the coordinates of the projectile as

^

x * x(t, wx, vxo, VyQ) ,
y - yU, wx, vx0, vyo;.

Now let us construct a new coordinate system, de
noted by (x*, y*f z*), which at time t0 coincides with
the original axis system but is fixed relative to the
air mass. If at time t a point has coordinates (x, y, z)
with respect to the original axes, its coordinates in
the new system will be

x* - x - wx(t - t0),
(2) y* - y,

z ■ z.
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At time tcthe coordinates of the projectile are the
same in the new system as in the original, namp1v

(*o» yo)» The components of velocity are

(3) dx*/dt - dx/dt - wx, dy*/dt - dy/dt,
so the initial velocity has components vx0 - wx, VyQ.
With respect to the new axes the wind is zero, so the
solutions of the equations of motion are

x* - x(t, 0, vx0 - wx, vyo),
(U)

y* • y(t, o, vxo - wx, vy0).
From (1), (2) and (I) we have the identity

x(t, wx, vx0, vy0) - x(t, 0, vx0 - wx, vyo)
(5) ♦ wx(t - tQ),

y(t, wx, vxo, vyo) - y(t, 0, vxo - wx, vy0).
If we differentiate with respect to wx and then set
wx ■ 0, we obtain

[6x/6wx]t - -[6x/6vxo]t ♦ (t - t0),
(6)

Uy/fcwxlt " - fcyA^xolt'
With the help of (3.12), these can be transformed into

[fcy/ow^ - -[6y/6vxo]x - (t - t0) tan 9,

[6t/bwx]x - -Ot/bvxo]x - (t - t0)/vx,
(7)

[6t/6Wx]y - - [&V&VXO]y J
[bx/bwjy » -[6x/6vxo] y + t - t0«

In the notation of differential effects, the last two
can be written

»

dt(wx|y) - -[&t/6vxo] vwx,
(8) ^

dt(wx|y) - {t - tQ -[ 6x/6vxo]y}wx.
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If we differentiate both members of (5) with respect
to t, then differentiate with respect to wx and set
wx ■ 0, we obtain

[6V6*x]t--[6V^xo]t + 1.
(9)

[ &Vy/&Wx]t - -[6Vy/6Vxo]t.
From this and (3.12) we obtain

dvx(wx|y) = { - [6vx/6vxo]y + l}wx,
(10)

dvy(wx|y) - -[6vy/&vx0]ywx.
If the coordinates are regarded as functions of

initial velocity, angle of departure, time, etc., in
stead of functions of vxo, Vy0, time, etc., then in
place of (1) we would have

x - x(t, wx, v0, 90), y - y(t, wx, vOJ G0),
and in place of (5) we would have

x(t, wx, v0, 90)
- wx(t - t0) ♦ x(t, 0, /(vxo - wx)2 + Vy02,

arc cot {(vxo - wx)/vyo}),
(ID y(t, wx, v0, e0)

- y(t, o, /(vxo - wx)2 + vyo2,

arc cot {(vx0 - wx)/vy0}).
By differentiating with respect to wx and setting wx * 0
we obtain

[ 6*/6wx]t - t - t0 -[6x/ov0]t cos 0O

(12)
♦ [6x/6G0]t sin e0/v0,

[6y/6wx]t - -[&y/6v0]t cos 0O

+ lb y/660]t sin 90/v0.
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With the help of (3.12) these can be transformed into
[6x/6wx]y - t - t0 -[6x/6vJy cos 90

♦ (l/v0)[ox/&e0]y sin e0,
(13)

[bt/oWjJy ■ -[6t/6vQ]y COS 60
+ (l/v0)[6t/6e0]y sin e0.

Next we suppose that there is a constant cross wind
and no range wind, so that the components of wind are
(0, 0, wz). We introduce a new set of axes coinciding
with the original set at t • t0 but fixed with re
spect to the air mass. If a particle hab coordinates
(x, y, z) at time t in the original coordinate system,
its coordinates in the new system are

x* ■ x,
(11) y* - y,

z* - z - wz(t - t0).
Thus at t ■ t0 the components of velocity of the pro
jectile are vx0, Vy0, - wz. There is no wind with re
spect to the new axes, but conditions are still not
standard because of the non-zero component of velocity
along the z-axis. Therefore we rotate the axes about
the y-axis through an angle | , where
(15) k m arc tan wz/vx0.
There is no loss of generality in assuming that x0 and
zD are both 0. If we denote the new coordinates by
X, Y, Z, the transformation is given by

x* - X cos I + Z sin +,

(16) y* - Y,
z* ■ - X sin »|

> + Z cos

If we define '

(17) ■ ^vxo* + wz2»
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we find from (16) that at t ■ t0
(18) dX/dt - ujj, dY/dt - vyo, dZ/dt - 0.
Thus tnere is no wind and the Z-coraponent of velocity
is zero in this newest coorainate system, and so by
(1) the solution of the equations of motion is

X - x(t, 0, uh, vyo),
(19) Y - y(t, 0, un, vy0),

Z - 0.
We now transform back to the original system through
equations (16) and (15) obtaining

x " ^xo/V °» vyo)»
(20) y - y(t, 0, v^, vyo),

z - (t - t0)wz - (wz/uh) x(t, 0, Uh, Vy0).
At wz » 0 we see by (17) that
(21) Uh ■ vxo, 8uh/8wz - 0.
So by differentiation in (20) with respect to wz and
setting wz » 0 we obtain

[ 6x/6Wz]t - 0,
(22) [&y/&wJt-o,

[6z/6wz]t - t - t0 - x/vx0.
We can easily eliminate the assumption that x0 is 0
by simply making a translation of axes. Then, with
the help of (3.12) we find from the last of these
equations that

[6z/6wz]x -Oz/&wz]y - [bz/bwJt
(23)

• t - t0 - (x - Xo)/vxo,
the differential effects of wz on range and time of
flight being zero.
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$, Differential corrections for variable density.

There is one more non-standard (under the assump
tions of the Siacci nethod) condition for which a
differential correction can be computed. The method
we shall use differs in execution from that used
earlier in the chapter, and in fact offers a rather
simple illustration of the method we must use in the
following chapters.

We first recall the normal equations (V.1.9), in
which x is the independent variable.

dt/dx - l/vx,
dy/dx ■ m,

dm/dx - - g/vx ,

dvx/dx - - e-hvG(vx sec 9)/C3.

(10

Under the assumptions of the Siacci method, vx sec 9
can be replaced by vx sec 9Q and h is set equal to zero.
We now make the first assumption, and consider that
for the normal trajectory h is zero, but that for the
disturbed trajectory h is not zero. Thus the disturbed
trajectory satisfies the equations

dt/dx ■ sec 9o/p,

dy/dx ■ m,
(2)

dm/dx " - g sec280/p ,

dp/dx » - e^y sec 80 G(p)/Cs,

wherein we have replaced vx sec 80 by the symbol p.
The original trajectory satisfies these equations with
h replaced by 0. We now wish to find the differential
effect of the change in h when points on the two tra
jectories are matched by equal values of x. That is,
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we wish to find [H/6h]x, etc. But as remarked in
Section 3, if the solutions of (2) are denoted by
t(x, h), y(x, h), etc., these differential effects
are the same as at/dh, etc. We shall assume that
the initial conditions are the same on the two trajec
tories since we wish to find only the effect of the
change of density, and this does not alter the initial
conditions. Hence for the initial conditions on the
differential effects we have

at x » 0,
(3) [H/6h]x - [6y/6h]x

- [&m/6h]x -[ 6p/6h]x - 0.
The differential equations satisfied by the differ
ential effects are obtained by differentiating (2)
with respect to h, setting h equal to 0, and then
replacing 5t/dh by [6t/6h]x, and analogously for the
other effects. The result is

d[H/6h]x/dx - - (sec 90/p2)[6p/6h]x,
dky/fchlx/dx - [&m/6h]x,

d[6m/6h]x/dx - SgCsec^o/pSfo p/&h]x,

d[&p/6h]x/dx - (y sec 0O 0(p)/Cs)
- (dG(p)/dp)(sec 90/Cs)[&p/6h]x.

Herein, of course, p and y and G(p) can be regarded as
known functions of x, having been determined in the
process of computing the original trajectory. We
have thus reduced the problem to that of solving the
four equations (U) for the four differential effects,
subject to the initial conditions (3). This solution
can be accomplished by quadratures. For the last
of equations (U) is a linear first-order equation
in [&p/&h]x, and can be solved, by quadratures, and
tne solutibns of the other three equations can be
found at once from this, by quadratures. However,

U6U Ch. VII



it is somewhat more convenient to change to p instead
of x as independent variable. With the help of the
last of equations (2), wherein we set h ■ 0 because
we are computing disturbances about the original tra
jectory, we find

d[6t/6h]x/dp - (Cs/p2G(p))[6p/6h]x,
d[6y/6h]x/dp - - (Cs cos e^p) 1 6 m/6h]x,

d[&m/6h]x/dp - - (2gCg sec eo/pMv) )lb pMl x,
d[6p/6hjx/dp - - y ♦ (l/G(p))UG(p)/dp)[6p/<>h]x.

These .equations are easily solved— an integrating
factor for the last one is l/0(p). The solution,
for the initial conditions (3) , is:
(6)

[6p/bh]x - - 0(p) f
P
{y(u)/Q(u) } du,

IP { l/r3 }

v0

by/ h]lx - - 2gCs2 (P {l/G(s)} {Vr3}
Jv0
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The differential effects may now be obtained by the
formulas :

dt(h|x) - h[H/6h]x,
(7)

dy(h|x) - h[6y/6h]x.
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Chapter VIII
DIFFERENTIAL EFFECTS AND

WEIGHTING FACTORS
1. Functionals and their differentials .

If a projectile is launched at a time t0, its posi
tion at a later time T will depend on the initial
position, initial velocity, ballistic coefficient,
gravity constant, and also on the relative air density
and relative sound velocity functions. H(y) and a(y).
But the dependence of, say, x(T) on these last is dif
ferent from its dependence on, say, C; along with the
other data, in order to determine x(T) we need to
know the entire aggregac-e of functional values of H(y)
ana a(y) along the interval of values or y traversed
by the projectile. So x(T) is a function of the func
tions H(y) and a(y), not of any individual values of
these functions. A number whose value is determined
by a function in its entirety, not necessarily by the
value of that function at some specific spot, is called
a functional of that function. We have already ob
served this situation in Section 3 of Chapter VII, and
have introduced a notation in (VII.3.3). In accordance
with that notation scheme, a number, say y, determined
by the entire aggregate of the values of some function
g(t) will be denoted by a symbol such as y - f(g( )).
This contrasts with a symbol such as f(g{t))t which
would mean the value of a function f(x) of a real
variable in which the real variable x is replaced
by the numerical value g(t) of a function g at a spe
cific spot t. The empty parentheses are meant to
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indicate that f is dependent on the whole function g,
not on its value at a particular place t.

Many of the concepts associated with functions of
several real variables can be extended to apply to
functionals also. In order to extend the important
concept of continuity, we recall that in the case of
functions of several real variables, this definition
involved the distance between two points in the space,
or what amounts to the same thing, the length of a
vector in the space. So to define continuity for a
functional, we assume that to each function g which
is an argument for the functional f(g( )) there is
a "length," or "norm," N[g( )]. This will be assumed
to have the following properties. If g is identically
zero, then N[g( ) ] - 0; otherwise, N[g( ) ] is positive.If k is a real number, the norm of the function kg( )
which is everywhere equal to k times the function g
satisfies

N [kg( ) ] - | k IN [g( ) ].
And finally, for any two functions g and h the ine
quality

N [g( ) + h( ) ] < N [g( ) ] + N[h( ) ]

is satisfied. This last is called the "triangle ine
quality," being the generalization of the statement
that the sum of two sides of a triangle is at least
equal to the third side. Two particular examples of
a "norm" satisfying these requirements, and in fact
the only two that we have any need of, are:
(1) N [g( ) ] ■ maximum value of | g(t) | for all t;
(2) N [g( ) ] - the greater of the two numbers

{maximum value of I g(t) | for all t,
maximum value of I g' (t) I for all t}.

Having such a definition of "norm," the generaliza
tion of the definition of continuity is immediate.
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A functional f(g( )) will be said to be continuous at
a function g0( ) if to each positive e there corre
sponds a positive 6 such that

I f(g( )) - f(g0( )) | 5 e

whenever

N[g( ) - g0( )]<
Of course the meaning of this definition will changeif we change the meaning of the "norm" involved in it.

A functional f(g( )) is linear if it satisfies the
following two requirements.

(3) If g( ) and h( ) are functions in the domain of
arguments of the functional f , and a and b are real
numbers, then ag( ) + bh( ) is a function in the domain
of arguments of f, and

f(ag( ) ♦ bh( )) - a f(g( )) + b f(h( )).
(U) There is a constant K such that for every func
tion g( ) in the domain of arguments of f ,

|f(g( ))|<KN[g( )].
The second of these requirements is a simple conse
quence of the first in the case of functions of several
real variables with the usual definition of distance
of two points (or length of a vector); but- for func
tional in general, it does not follow from (3), and
must be stated as a separate hypothesis.

The standard definition of a differential, which
we have repeated in Section 1 oi Chapter VII (see
the sentences containing (VII. 1.3, U)) can be ex
tended almost verbatim to functionals. A functional
f(g( )) has a differential at the function g0^t)if there is a linear functional L(g( )) which approx
imates f(g( )) - f(g0( )) to within an error which
vanishes more rapidly than first order in N[g( )].
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That is, the ratio
f(g( )) - f(gQ( )) - L(g( ))

N[g( )]
approaches zero when N[g( ) ] approaches zero. When
ever this differential exists, we shall denote it by a
symbol similar to that introduced in Section 1 of
Chapter VII, namely df(g( ) - g0( )), or df(Ag( )).
Usually it would be necessary to amplify such a symbol
to indicate the particular go at which the differential
is being taken, but in ballistics we shall always start
with a specified normal trajectory in which the dis
turbances are zero, and the quantities investigated
will be regarded as functionals of the disturbances;
the only place at which we care to find the dif
ferential is at the particular argument "all disturb
ances ■ 0." So we may safely omit any indication of
the place at which the differential is to be taken;
the reader will remember that this is the zero func
tion, "all disturbances ■ 0."

In the simpler case of disturbances depending on
a single number, we found the use of differential
effects convenient; the closeness of the approximation
between differential and difference permitted the
substitution of the differential for the difference
with little error, provided the disturbance remained
within small enough bounds, and the linearity of the
differential effects made it easier to work with them
than with the actual differences. All of these remarks
apply to this more complicated case of functionals,
and in fact in an intensified form. It is still per
missible to replace the difference by the differential
effect with only a small error, if the disturbance
(or its norm) remains within small en ugh bounds; and
the gain in simplicity is even more marked, because
the differences are essentially more complicated,
being functionals, than they were in the simpler case
considered in the preceding chapter. Therefore it is
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important, first, to show that the differentials exist;
second, to investigate methods by which they can be
found and made available to the using services. The
existence of the differentials will be established in
the next section. The methods of the proof are due in
large part to Professor G. A. Bliss, who seems to have
been the first to realize the need of showing that the
differentials exist. The proof of the existence will
automatically furnish us with one feasible method of
computing the differential effects; more practical
methods will be exhibited in the next chapter. How
ever the differential effects may be computed, it is
clearly necessary that the bulk of the computational
work be done in some establishment behind the lines,
and that the results of the computations be furnished
the services in such a form that they can be applied
to the conditions prevailing at time of firing with
little additional work. The means of furnishing the
results of the computations to the using services in
convenient form is considered in the latter part of
this chapter.

2. Proof of the existence of differential effects.

Since the practical importance of being able to
compute differential effects has been established
beyond dispute, it is logically important to prove
that differential effects exist.

Let us choose the axes as usual; to be specific,
we shall choose the y-axis positive upward. Assume
that there is a horizontal wind with components wx, wz
which are functions of the altitude y. The ratio of
air density to standard sea-level air density will be
denoted as usual by H(y), and the ratio of sound
velocity to standard by a(y). It will be assumed
that there are small forces acting on the projectile,
other than standard gravity and drag, which produce
an acceleration with components ax, ay, az; these
may be functions of the coordinates and the components
of velocity. The components of velocity with respect
Sec. 2 U71



to the axes are vx, Vy, vz, and v is the length of
this vector. The components of velocity with respect
to the air are % " vx - wx, Uy ■ vv - Wy, vij ■ vz - wz,
and the length of this vector is the air speed u. The
equations of motion can be written in the form

(1)

dx/dt - vx»
dy/dt - V
dz/dt - vz>

dvx/dt - -Eux
dVy/dt - " Euy

dva/dt - - Euz
where

(2)
E - Ya(y)H(y)G(u/a(y))
- YH(y)uB(u/a(y));

or they may be written in any of a number of other ways
which have been exhibited in Section 1 of Chapter V.
The normal . equations resemble these, but have the
standard functions for H and a, and w^, wz , ax, ay,
and are all zero. Our task is to compare the so
lutions of (1) that have certain initial values with
the solutions of the normal equations that have the
same or slightly different initial values. Partly
for notational simplicity, and partly to have a for
mulation that will also cover the other possible ways
of writing the equations of motion, we shall now
change the notation. The variables x, y, z, vx, Vy, vzwill be given the new names y^, y2, y3» yj,, y$, yD
respectively; and whenever we wish? we shall use the
single letter y to denote the vector, or point of six-
dimensional space, (y^, y^). The right members
of the six equations (1) are functions of the six
variables y^, and will be denoted by the symbols
*l(t, y), F^(t, y) in order, from the top down.
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Thus all six equations (1) can be condensed into the
compact form

(3) dyj/dt - Fi(t, y) (i - 1, n),

where n happens to be 6. The normal equations are
similarly condensed into an analogous form, but the
right members are, of course, not the same functions of
the independent variables as the right members of (3),
which correspond to the perturbed equations, Se de
note the right members of the normal equations byfj(t, y), i ■ 1, 6, so that the normal equations
take the form

(U) dyj/dt - ^ (t, y) (i - 1, n).

Had we started with any of the other forms of the
equations of motion, say with slope as independent
variable, we could have introduced a change of nota
tion that would have brought the disturbed equations
and the normal equations into the respective forms
(3) and however, in this case the independent
variable t would not have the physical interpretation
of time, but would be whatever quantity we had se
lected as independent variable. This, in fact, is the
reason that we have left in t as an argument of F and
f; in the equations (1), the right members do not de
pend on the independent variable, but if slope or y
were independent variable this would no longer be true.

We can easily agree on bounds for th,e initial al
titude and velocity and an upper bound for wind speed,
from which simple physical considerations show that
each coordinate and each component of velocity will
remain between certain bounds. Within this region,
we assume that the standard functions f(t, y) have
continuous partial derivatives of first and second
order, and the perturbed functions F(t, y) have con
tinuous partials of first order. The functions to
be compared are on the one hand a solution y^ ■ y^(tj
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of the normal equations with certain initial values
(5) y (o), Wo),l n

and on the other hand a solution y^ » Y^(t) of the
disturbed equations (3) with initial values
(6) Y1(0), Yn(0).
Let us define

(7) Ay^t) - Y±(t) - y^t),
(S) A f±(t, y) - Fi(t, y) - f±(t, y).
The amount by which the equations have been changed
in replacing f^ by can reasonably be measured by
the greatest value of the length of the vector from
(fx(t, y), fn(t, y)) to (F^t, y), F (t, y))
as t and the yi each vary over the interval of values
between its least and its greatest value. The amount
by which the initial conditions have been changed can
be specified by stating the distance between the points
(5) and (6). The norm of the disturbance can be spe
cified as the greater of these two numbers, namely the
amount by which the equations were changed and the
amount by which the initial conditions were changed.
Therefore we define

N
-j^ - greater of y StAy^O)] ^d

(9) —
max y E[Afi(t, y)]2.

The proof of the possibility of good linear approxi
mations to effects of small disturbances depends on
the following lemma.

U7U Ch. VIII



(10) Lemma. Given any fixed number T, there is
constant A such that the inequality

1E [A 7i(t)]2 1 AN,
1

is satisfied for all t in the interval 0 < t <_ T.

For simplicity of notation we shall denote the left
member of the inequality in (10) by r(t). The functions
y^ and satisfy equations (U) and (3) respectively,
so that

dA y±/dt
- Ft(t, I) - f±(t, y)

(11) - Af^t, Y) + f±(t, Y) - ft(i, y)

- A fi(t, Y) + 2 [dfi(t, y)/&7j][Yj -

where y is some point on the line segment from y to Y.
Let us multiply both members of this equation by A y^
and sum for i - 1, n. The left member is then
half the derivative of r2 with respect to t, so that

n
r dr/dt - E Ayi(t)Afi(t, Y)i"l

(12)

i , j*l
The first term on the right is the inner product of
two vectors , the first of which has length r and the
second of which has length at most N-^, by definition
of N^. So the first term cannot exceed N^r. The
quadratic form

n
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has a finite upper bound, which we call M, as (t, y)
ranges over all values within the bounds we have per
mitted and k^, kjj vary over all values the sum
of whose squares is 1. So the last term in the right
member of (12) cannot exceed Mr^. This furnishes the
estimate

(13) dr/dt < Nx + Mr,

valid whenever r is not 0. Now let t» be any number
between 0 and T. If r vanishes for some t between
0 and t*, let t^ be the largest such t; otherwise let
t^ be 0. In either case (13) holds for t between t^
and t*. If we write (13) in the form

(dr)/(r + %/)!) 5 M dt
and integrate from t^ to t*, we find

^ M(t* - ti)
(1U) r(t*) ♦ Nj/ll Se IX^) + Hx/M].
Here t* - t^ cannot exceed T. Also, either t^ is 0,
in which case r(tj) is at most N]_ by definition of r
and N]_, or else t^ is a place at which r vanishes, in
which case it is still tru<s that r(t^) cannot exceed
N,. Hence (lli) implies

(15) r(t*) < e™[l + l/M]Nr
If we let A stand for the coefficient of In the right
member, this is inequality (10), and the lemma is es
tablished.

This lemma shows that if we have a solution of a
differential equation, and then change the functions
in the equation or the initial conditions by small
amounts, the solution will also be changed by a small
amount — not more than a preassigned multiple of the
amount by which functions or initial conditions were
changed. In particular, the value of the solution
varies in a continuous way as functions and initial
values are altered. To show that it varies in a dif
ferentiate way, we must also take the derivatives of
the functions Af^ into consideration. This we do by
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defining a new kind of estimate of the amount by which
the equations are disturbed; we define

■ greatest of the numbers

(16) N_, max V L [9f.(t, y)*yJS1
3-1

1 J

max
J-i

the maxima being taken over the entire range of per
missible valves of t, y_, yn#

We shall now show that if the functions y<(t) sat
isfy (li) with initial values ($) and the functions
TiCt), - y±(t) + Ayi(t) satisfy (3) with initial val
ues (6), then the differences Ay^(t) are approximated
by the solutions n^(t) of the equations

n
(17) dnj/dt - £ [S^/ByjlqjCt) ♦ AfjU, y(t)),

•with the initial values
(18) n±(0)

- Ay^O),
the partial derivatives in (17) being evaluated for
arguments (t, y(t)). Precisely, for each fixed value
T, there is a cons tant B such that

(19) y £ iLyAt) -i)4(t)]2 < BN22 (0<t<T).
i-1

Thus the functions r\± approximate the changes A y^ ac
curately to the first order in the error being
of the second order in
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The functions and A y^ satisfy equations (17)
and (11) respectively, and they have the same initial
values. We can apply (10) to estimate the difference
between the n^ and the Ayj.. But this will be easier
to do if we first make some changes in notation. First,
the right member Fj[(t, Y) - fj.(t, y) of equation (11)
will be expanded by the theorem of mean value. Equa
tion (11) then takes the form

n

dA7i/dt - AfjU, y(t)) + £ c^CtjAyj

n

(20) +

jC [8fi/fcyj> yj

n

where the partial derivative in the second sum on* the
right is evaluated at (t, y(t)), the coefficient
ci^(t) is the value of aA fi/dyj at some point (t, y*)
on the line segment joining (I, y(t)) to (t, Y(t)),
and the coefficient bijk is the value of thg partialderivative 3 ^f i/()yj <jyi at some point (t, y ) on the
same line segment. Let us define

*i(t, v1, vn)
n n

(21) - £ cijCt^j + £ [afi/ayJ v1j-1 J-1 J J
n

4 £ bijk(t) vjvk + AftCt, y(t)),

♦ vn)
(22) n

- £ [9fi/8yJ vi + Af.(t, y(t)).j-l J J
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Then A y and tj are respectively the solutions of the
equations

(23) dvj/dt =• *i(t, v),
(2U) dvj/dt - 4i(t, v)
with the initial values Ay1(0), Ayn(0). The
difference Afi(t, y) - Fj.lt, 7) - fi(t, y) is replaced
by the difference

n
♦,(t, v) - *.(t, v) - Z c (t) v

(25)
n

4 £ bijk(t) v, vk.j,k-l
Since the initial values of Ay^ are the same as those
of t\* , the formula (9) for the norm of the disturbance
yields the number

(26) v
1
- max V £ l*±(t, v) - ^(t, v)] T,i»l

where the maximum is to be taken over all the permis
sible values of t and v. The permissible values of
t are those in the interval 0 5 t < T, while by (10)
the permissible values of the v^ are those which form
vectors of length at most AN^. Let N be the upper
bound of the last term in (25) as the vector v varies
over all unit vectors and t varies from 0 to T; this
upper bound is finite, since we have assumed that the
second partial derivatives of the function f with
respect to the yi are continuous. Then the last term
in (25) cannot exceed N times the square of the length
of v, and therefore is at most N(AN^) . For each i,
the numbers (cji» • cin^ f°rm a vector of length
at most N^, by (K). Hence the first term in the right
member of (25) cannot exceed AN2N]_. Since N2 is at
least as great a3 N^, this shows that the left member
of (25) cannot exceed a constant multiple of N]^.
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If we square these quantities, add and take the square
root, we obtain a number which cannot exceed a constant
multiple of N1N2. Hence by (26),

(27) V! <_ CN^,
where C is a constant. Now by (10) we see that the
left member of (19) cannot exceed a constant multiple
of Vp therefore by (27) cannot exceed a constant mul
tiple of N^2. This is in fact a stronger statement
than the inequality (19) which we set out to prove,
since cannot be greater than N«.

It remains to show that for each fixed t, nthe so
lutions (ni(t), rjn(t)) of equations (17) are the
differentials of yi(t), yn(t) respectively. First
it must be shown that eachn^(t) is a linear functional
of the disturbances. If the disturbances were all
zero, so that A y^(0) ■ 0 and the A vanish identi
cally, the solution of (17) would be T)^(t) ■ 0. These
values we compare with the solutions of equations (17)
as written, with initial values (18). Since the first
set of *ii is 0, the difference 4*1^ is the same as l^.
By (10), this cannot exceed a constant multiple of Nt,
which in turn cannot exceed the same constant multiple
of N„. So (l.ii) is satisfied. Next, suppose that a
first set of disturbances consists of changes ^y^n(O)
in the initial conditions and changes A fo(t, y) in
the equations, and that the corresponding solutions
of (17) are n^(t); and that a second set of disturb
ances consists of changes A y^o(0) in the initial con
ditions and changes A f^t-, y) in the equations, the
corresponding solutions of (17) being n^t). If a
and b are any real numbers, it is easily verified by
substitution that corresponding to the disturbances
consisting of changes aAy^(O) + bAy.p(O) in the ini
tial conditions and changes aaf^(t, y; ♦ bAfjo(t, y)
in the equations, the solutions of equations (17) are

aiJii(t) + bnt2(t).
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Hence the n.^(t) have property (1.3), which completes
the proof that they are linear functionals of the
disturbances. The statement that the ratio (1.5)
approaches 0 with N2 is a" consequence of (19), and
so the Tj^(t) are the differentials of the y^(t), as
was to be proved.

Equations (17) need one minor change to make them
more readily applicable to the situation in ballistic
applications. In studying the effects of non-standard
conditions on the motion of the projectile, we have
to consider equations such as (1). Here each right
member is formed from a function which involves the
variables t and y^ and also certain other variables;
these latter are themselves replaced by certain func
tions of t and the y^, and the result is the function
Fi(t, y) of the foregoing pages. For example, if con
ditions are standard the right members of (l) are cer
tain functions of t, vx, z. If we denote the
departures of sound velocity and density from stand
ard by A a and A H and the wind components by w^ and
wz, the right member of each of equations (1) appears
as a function of the fourteen variables t, x, y, z,
vx, vy, vz, A a, AH, wx, wz, ax, ay, az. When the
last seven are set equal to zero, equations (1) are
the normal equations. When they are replaced by func
tions of the first seven variables, we have the equa
tions of motion under non-standard conditions, and the
right members of (1) are the functions Fj of equations
(3). To be specific, the right member of the last of
equations (1) is a function f^(t, a_) of the four
teen variables already listed; and the difference
A ^(t, y) ^s the same as

f6(t, x, v , A a, AH, a »J

(28)
6 1 1

- f$(t, x, vz, 0, 0),

wherein A a, etc., are to be regarded as specified as
functions of t, x, vz. The difference (28) and
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its five analogues with subscripts 1, 5 can be
approximated by means of a Taylor expansion to linear
terms. We thus find that to linear terms

(29)
00 *

+ ... + [df6/3az]az,

where the partial derivatives are to be evaluated for
the arguments (t, x, vz) belonging to the normal
trajectory. The magnitude of A f6 is n°t more than
a certain constant multiple of the greatest of the
numbers max j A H | , . . . , max | az j , and the first-order
partial derivatives of Af^ do not exceed some multi
ple of the greatest of these numbers and the numbers
max I 8 AH/foyl, et,c. Hence the latter of these may
be used to replace N~ in (19). The error in the ex
pansion (29) does not exceed some multiple of the
square of the greatest of IgAHl, etc., hence does not
exceed some multiple of . So, by (10), if we re
place A fg by the right member of (29) in equation (17),
and treat A f^, etc., similarly, the resulting error
does not exceed some multiple of '^2. Thus the use
of the approximation (29) does not injure the order
of accuracy with which the solutions of (17) approxi
mate the changes A y

^
, etc., in the solutions. 3ut

now the right members of (17) are linear in the dis
turbing functions A a, AH, etc. The solutions n^of (17) have already been seen to be linear as func
tions of the Afi, so now the ijj_(t) have been made to
depend linearly on the disturbances A a, etc.

The changes Ay^(t) are functionals of the disturb
ances wx(y), etc., and then^(t) are their differen
tials. According to the symbolism mentioned in the
preceding section, if the disturbance consists, say,
of a range wind wx alone, all other conditions being
standard, the resulting r)i(t) should be designated by
the symbols dyi(wx); if the disturbance were a depar
ture AH from standard density, then^(t) would be
designated by dy^(^H); and so on. But once again we
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observe that these differential effects would be dif
ferent if some other variable had been selected as
independent variable in the- computations . The differ
ential effects are those found by matching points of
equal values of t on the disturbed and undisturbed
trajectories. As before, we introduce a symbol to
indicate which variable is used in the matching of the
points of the two trajectories. Thus if the density
differs from normal by AH, the corresponding dif
ferential effect will be denoted by dy^A H|t). The
symbol after the vertical bar indicates the variable
used in establishing the correspondence between points
of the disturbed and the undisturbed trajectories.

An important consequence of the linearity of the
differential corrections is the "superposability of
differential corrections." Let p be one departure
from normal conditions (for example, a range wind,
variable with position) and q another such departure.
Then because of linearity

dx(p + q|t) - dx(p|t) + dx(q|t).

The differential effect of the two disturbances act
ing simultaneously is the sum of the differential
effects of the two disturbances acting separately.
This permits us to consider different types of dis
turbance one by one, and finally to find the differ
ential effect of the aggregate by simply adding the
results.

The equations with which we finished are the same
as we would have obtained had we simply expanded every
thing involved in the equations by Taylor's theorem,
stopping with linear terms. But this process would
have been logically inadequate. It would have left
us without information as to the magnitude of the
errors that might result. Such a difficulty can occur
even in the study of functions of two real variables,
which are much simpler than the functions of functions
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which ire have been investigating. For example, it
might be thought that if a function has a directional
derivative at the origin which is zero whatever the
direction, it must necessarily be closely approximated
by a constant on some region about the origin. But
this is false; functions with such directional deriva
tives can nevertheless be discontinuous at the origin.
Expansions of our equations to terms linear in, say
AH, are analogous to directional derivatives, and are
incapable of furnishing adequate information about
the behavior of the changes A y^.

A difficulty of a different kind is raised by the
presence of the partial derivatives in the definition
(16) of the norm If, for example, we use t as in
dependent variable and wish to find the differential
effects of winds, the differential involves the norm N2,
which in turn involves the rate of change of wind with
respect to y. This is undesirable both mathematically
and physically; the latter, because the measurement
of wind is performed by measuring the travel of a
balloon in various time intervals, and would not reveal
the presence of an extremely thin zone in which the
rate of change of wind with altitude is very large.If it is possible to use y as independent variable
this difficulty disappears, for in (16) the partial
derivatives with respect to the independent variable
do not occur, so by using y as independent variable
we avoid having to consider dwx/dy, etc., in the norm
Ng. If the trajectory has two branches this simple
device cannot be used. However, by means of a more
intricate analysis it can nevertheless be shown that
the partial derivatives with respect to y can be
disregarded in defining the norm N2 without destroying the conclusion of the existence of the differen
tial. We shall not attempt to reproduce this rather
difficult proof here; it can be found in Vol. 17
of the Duke Mathematical Journal (1950), pp. 115-13U
(E. J. McShane: "The Differentials of Certain Functions
in Exterior Ballistics").
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3. The equations of variations based on time.

In order that we can work with the equations (2.17)
which are the "equations of variation," we need to
know the specific expressions for the various partial
derivatives occurring in the right member. Since
the functions f^, . .., f£ are the right members of
equations (2.1) when time is used as independent vari
able, it is clear that
(1) ^l/^x " df2/dvy " 9Vav« " 1»

all the other partials of fj_, f2 and being zero.
The right members of the first three of equations
(2.1) will not be affected by any change in wind,
density, etc., so

A

t<
L - A f2 - A f3 - 0.

Thus the first three of equations (2.17) reduce to

(2) dT^/dt - tj^, dn2M - n^, dr^/dt -t)6.
We shall introduce the new notation

(3) ^

- t^, n - n2, C -
TJ^.

Then by (2) we have

(U) K

-
tj^, T - C - \.

It will be assumed that the standard density law is

-hy
(5) H(y) - e ,

and that the standard temperature (or sound velocity)
law is

(6)
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Along the normal trajectory we have ilx * vx, etc., and
by (VI.9.8) we find that
(7; 8E/8y - [ - h ♦ (n - 2)ai]E,
wherein E is to be evaluated along the normal tra
jectory and n is the Hayevski n (see (VI. 9.6)) evaluated
for the argument v/a(y). From the identity

v vx vy *
we obtain

5v/3vx ■ vx/v,
and from this and (VI. 9. 9)
(8) 5E/3vx = (n - l)(vx/v2)E,
with two analogous equations for the partial deriva
tives of E with respect to Vy and vz (the latter being
identically zero along a normal trajectory). We can
now compute the first-order partial derivatives of the
three functions f^, f£, f5 with respect to the seven
variables t, x, vz. The only ones which are not
identically zero are

9^/ay - [h - (n - 2)a1]Ex,
9%/ay - [h - (n - 2)a1]Ey,

9 V9vx » "[ 1 + (" " 3)(*2/v2)]E,
C9)

dft/Ovy - 3f5/6vx - - (n - l)(xy/v2)E,
af^vy - - [l + (n - l)(y2/v2)]E,
8f6/6vz - - E.

With the help of equations (9), the first terra in
the right member of (2.17) can be written explicitly.
As mentioned at the end of Section 1, instead of the
A f^ themselves we shall use the linear approxima
tions define^ as in (2.29). These we shall denote by
ej_, . .., ex respectively. Since the first three equa
tions (2.1) are not affected by any of the departures
f-om standard conditions, we have at once
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(10) el " e2 *
e3

* 0.

The equations of variation are now

or/dt - I,
dn/dt - fj,
dc/dt - e,

d£/dt - [h - (n - 2) a^xn
- [1 + (n - l)(i2/v2)]E$

(11) - (n - l)(xy/v2)Efj+ eu,

dtydt - [h - (n - 2) ajEyn
- (n - l)(xy/v2)E$
- [l + (n - l)(t2/v2)]Ef| + e^,

dC/dt - - EC +
e^.

The forms of the terms e^, e£, e£ will now be com
puted for a disturbance which includes all the types
of disturbance already mentioned and also allows for

a change in the drag function G and a change in the
reciprocal ballistic coefficient y • The last mentioned
is of rather secondary importance. But the change in
drag function could be of great utility if, for example,

a large ballistic table had been completed, and some
time after its completion it was found that new pro
jectiles had to be considered whose drag function dif
fered more than trivially from that used in the prep
aration of the tables. The method of differential
corrections would then permit us to prepare a small
table of amendments to the large table, at much less
cost in time and labor than would be required to pre
pare a complete new set of ballistic tables with the
new drag function.
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To fix the notation, we assume the following de
partures from standard conditions.

(12) The reciprocal ballistic coefficient for the
disturbed tra.1ect.orv exceeds by an amount Ay the
reciprocal ballistic coefficient y along the normal
trajectory.

(13) At each value of v, the drag function along the
disturbed trajectory exceeds by an amount AqG(v) the
.drag function G(v) used in computing the normal tra
jectory.

(Ill) At altitude y, the density is [ 1 + * (y)] times
the standard density at altitude y.

(15) At altitude y, the absolute temperature exceeds
by an amount A 0 the standard absolute temperature 9
by altitude y.

(16) At altitude y, there is a horizontal wind with
components wx(y) and wz(y) along the x- and z-axes
respectively.

(17) When ^he projectile has position (x, y, z) and
velocity components (vx, v„, vz), it is acted upon by
a force, other than drag and standard gravity, which
produces an acceleration (ax, ay, a^).

From (15), it follows that on the disturbed tra
jectory, at altitude y the velocity of sound is

«/l + ( A 0/0)
times the standard velocity, since the velocity of
sound in air is proportional to the square root of the
absolute temperature. To linear terms, therefore, the
new relative velocity of sound is [ 1 + (A 0/2 0)]
times the standard value, a(y).

The quantities eu, eij, e$ have been defined to be
the linear approximations to the A fj. defined by (2.29).
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These are obtained by computing the derivatives of the
right members of the fourth, fifth and sixth of equa
tions (2.1) with respect to f, G, H, a, wx, wz,a, az , multiplying these partial derivatives by
the respective changes ^ y , AQG, H*(y), ^aA 9/9,
wx» wz> "x* ay» *z ano- sumnd.ng. The results are

- - E*[AtA + AoG/G + "(y) + n A0/2 9 ]
* E[l ♦ (n - lK*2/*2)]^ + ax,

(18) - - Ey[ATA ♦ ^ 0G/G + »c(y) + n A 6/29 ]
+ E[(n - l)xy/v2]wx + ay,

e6 - Ewz + az.

Now we are in a position to compute the differential
effect of any of the departures from standard condi
tions listed in (12) to (17). For when the quantities
(18) are substituted in (11), the latter become a
sixth-order system with all terms known, and the solu
tions with the initial values

£(0) - Avx(O),f|(0) - Avy(0), 4(0) - 4 7,(0),
(19)

C(0) - Ax(0), n(0) - Ay(0), C(0) » 4«(0)
constitute the differential effects sought. For ex
ample, if a range wind wx is the departure from stan
dard conditions whose effect is being computed, then

(20) £(T) - dvx(wjT), C(T) = dz(wjT).
The process of solving the equations (11) is not a
■totally impracticable undertaking, although it is not
to be recommended in view of better techniques for
handling equations (11) which will be exhibited in
the next chapter. It is true that (11) is a sixth-
order system, but it need not be handled as such.
To begin with, the sixth is directly solvable by quad
rature and the third may next be solved, also by quad
rature. Next, the second, fourth and fifth equations
form a third-order system. After this is solved, the
solution of the first equation requires merely a quad
rature .
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Ordinarily we are much less interested in the dif
ferential effects of disturbances computed at points
of equal time than we are in the differential effects
at points of equal ordinate y. But this conversion is
simple. It can be made by means of equation (VTI.1.3),
which remains valid for the differential effects of
functionals. In fact, the proof of that equation was
so arranged that it applies to the present situation
with no change other than replacing the symbol N by

We are interested in the special case of (VII. 1.3)
in which B is y and A is t. Then for any disturbance
q and any variable C we have

(21) dC(q|y) - dC(ql t) - (dC/dy) dy(qlt).
If we let C be replaced successively by x, z, t, vx,
Vy, vz and substitute in (21) the appropriate deriv
atives of these quantities with respect to y, (21)
yields the six equations

dx(q|y) = dx(q|t) - cot 9 dy(q|t),
dz(q|y) * dz(q|t),
dt(q|y) - - (l/vy) dy(q|t),

(22)
dvx(q|y) - dvx(q|t) + E cot 9 dy(q|t),

dvy(q|y) - dvy(q|t) + E(l - g/vy) dy(q|t),
dvz(q|y) - dvz(q|t).

Since the only solutions of a set of homogeneous
linear differential equations having initial values
0 is the system of functions all identically zero, we
see readily that

(23) The differential effects on deflection z due. to
disturbances Ax(0), Ay(0), Avx(0), Avy(0), A ©,
AH, A0G, wx, a^ and ay are all zero.
(2U) The differential effects on range, time of flight,
and vx and Vy at impact due to the disturbances A z(0) ,
Avz(0), wz and az are all zero.
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Thus our problem may be split into two parts capa
ble of separate discussion. The simpler of these
problems is the computation of effects on z and vz
produced by disturbances A z(0), A v2(0), wz and az.
The more difficult problem is the evaluation of the
differential effects on range, time of flight, and
x- and y-components of striking velocity, caused by
the disturbances Ax(0), Ay(0), Av^O), A vy(0),
A 8, AH, A 0G, wx, ax and ay.

km The equations of variation based on slope.

The traditional treatment of differential variations
has long been that of the preceding section, in which
points are matched which correspond to equal values
of time. This is of course unnecessary; for example,
in connection with his proposal to use x as independent
variable in trajectory computations, Dr. L. S. Dederick
worked out the form of the equations of variation when
points on normal and disturbed trajectory were matched
when they had equal values of the x-coordinate. In
fact, along with each choice of independent variable
in the computation there enters the natural choice
of this same variable as matching variable. It will
now be shown that there is considerable computational
advantage in matching points of equal slope.

The equations for effects on z separate from the
other equations, and we could hardly hope to find
anything simpler than the third and sixth of equations
(3.11). So henceforth we put aside the equations
for effects on z, and restrict our attention to the
equations involving the other coordinates. In terms
of slope as independent variable, these are the first
four of equations (V.1.9). It is notationally conven
ient to introduce a new symbol r for the x-component
of velocity,
(1) r - vx,
and it is advantageous to write the four equations
in the reversed order:
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dr/dm ■ (Er - Ewx - a^r/Cg - + max + Eunrx),

dy/dm - - mr2/(g - a_ + ma*. + Emw_.),
(2) T -x x

dx/dm ■ - r2/(g - ay +
ma^.

+ Qnwx),

dt/dm - - r/(g - *y + max + Emwx).

Here

E - YHaG(u/a)
(3) /- YHaG( /(r - wx)2 + (mr)2/a).

The independent variable m takes the place of the
independent variable t of Section 2, and the right mem
bers of equations (2) constitute the four functionsfi, . .., f^ of the variables m, r, y, x, t when the
disturbances are all set equal to zero. In the right
members of equations (2.17) there occur the partial
derivatives of the four functions f^ with respect to
the four variables y^, which in the present notation
are r, y, x and t. Of these sixteen partial deriva
tives, eleven are identically zero; the others are

afj/ar - r(n + l)E/g,

oVay " £- h * (n " 2)a1]Er2/g,

(U) 9f2/8r ' * 2mr/g,
df3/8r - - 2r/g,
afj/dr - - 1/g.

These equations permit us to write out the first term in
the right member of (2.17) explicitly. As before, in
stead of the A fi the second term in the right member
will be replaced by the linear parts of the expansions
of the Af^ which will be denoted by i • 1, U.
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Thus equations (2.17) take the form

d^/dm
- [r(n + DE/g]^

+ [ - h + (a - 2)aiEr2/gK2 + e 1»

(5) di^/dm
" - (anr/g)^ + e2,

d^3/dm
- - (2r/g)5x + C3,

d^/dm
- - (1/g)^ + eU.

If we consider the same set of disturbances as were
already listed in (3.12 to 17) and expand the right
members of equations (2) to linear terms in these dis
turbances , for fixed values of m, r and y, we obtain

ex - (Er/g) [rAY/T + ric

- r A0(n - 2)/26 + rAoG/0]
- (Er/g) [ (n - DrVv2 + 1 + Erm/g] wx

(6) , o- (r/g)(l + Erm/g^ + (ErVg2)^,

eg
- (E m2r2/g2)wx + (m2r2/g2)ax - (mr2/g2)ay,

e3
- (Emr2/g2)wx + (mr2/g2)ar - (r2/g2)ay,
» (Emr/g2)wx ♦ (mr/g2)ax - (r/g2)«y.

If we let q stand for any disturbance, consisting
either of one of those listed in (3.12 to 17) or else
of a change in initial conditions, and find the cor
responding e± by (6) and then solve equations (5),
the solutions will represent the differential effects
of the disturbance q on the variables r ■ vx, y, x, t,
respectively, where corresponding points of the dis
turbed and undisturDed trajectories are understood
to be points of equal slope. Thus

^i(ra) - dvx(q|m), £2(m) " dy(<llm)>
(7) .

S-j(m) - dx(ojm), S^U)
- dt(q|m).
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However, the process of solving equations (5) is
seriously hampered by the fact that in them the slope
is the independent variable, while the trajectories
are ordinarily computed with time as independent vari
able. To extricate ourselves from this difficulty
we need only introduce t as independent variable in
the £^(ra), thus defining four new functions:

(The letters £ and r\ have been used in the preceding
section, but with entirely different meanings.) It
should be emphasized that this is a completely dif
ferent procedure from matching points at which times
are equal. By (7) and (8),

p (t) - dv_(q|m - m(t)), T)(t) - dy(cj m - ra(t)) ,

£(t) - dx(q|m - m(t)), T(t) - dt(q| m - m(t)).
In the coefficients in the right 'members of (5), the

functions are computed along the normal trajectory.
Hence, in particular, dt/dm • - r/g. It follows that

(10) (dp/dt) - (d^/dmHdm/dt) - - (g/rKdCj/dm),
with like equations for the derivatives of the other
functions defined in (8). Accordingly, from (5) and
(6) we deduce

dp/dt ■ - (n + l)Ep

(8)
p(t) =■^(m(t)), n(t) - 52(m(t)),

S(t) - 53(m(t)), x(t) - £u(m(t)).

+ [h - (n - 2) a^ Ein + elt
(11) dn/dt 2yp/x + e2,

2p + e3,-

(l/i)p + e^,

d£/dt

d Vdt
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where the e^ (different from those of the preceding
section) are defined by the equations

ex - - ExAy/y - E*k + Ei(n - 2) A 9/2 9

- ExAQG/G
♦ E[(n - l)*2/v2 ♦ 1 ♦ Ej/g]wx

(12) ♦ (1 + Ey/g)ax - Ex/g)ay,
e2 - - (Ey2/gx)wx - (y2/gx)ax + (y/g)^,

63
- - (Ey/g)wx - (y/g)^ + (x/g)ay,

% ' - (Ey/gi)wx - (y/gi)^ + (l,/g)ay.
There are two common ways of stating the initial

conditions for a trajectory. One is in terms of posi
tion and velocity components at time t ■ tQj the other
is in terms of position, initial velocity and angle
of departure. Corresponding to each of these systems
we shall derive the expression for the initial values
of the functions in (8).

(13) If at time t ■ t0 the position and velocity com
ponents of the projectile are xQ, y0, vx0, Vy0 on the
normal trajectory and Xq + A Xq, y0 + A y0, vx0 + A vx0,
vyo + A Vyo on the disturbed trajectory, the correspond
ing initial values of the differential effects (8) are

p (t0) - A vxo - (E/g)(vxo Avyo - vyoA vxo),
n (tc) - Ay0 + (vyo/gvxo)(vxoA vyo - vyoAvxo),
< (t0) - A Xq + (l/g)(vX0A vyo - vyoA vx0),
t (tQ) - (l/gvxo)(vXQA vyQ

- vyoA vXQ).
To prove this we observe that if q denotes the dis
turbance consisting of the changes

(A x0, A yQ, A vxo, A vyo),
it is obvious that
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dx(q|t - tQ) - A xQ,
dy(q|t - t0) - Ay0,
dvx(q|t - t0) - A vxo,

while from the equation

A o -
vxo + * v:

70 ^vyo
r vxo xo

we deduce

In this we successively let C be r ( ■ vx), y, x and t;
we thus find that the quantities

are the same as the right members of the equations in
(13). But by (9) they are also the same as the left
members of these equations, and (13) is proved.

The corresponding initial values, for the case in
which the initial position (x0, y0), initial velocity
vQ and angle of departure 0O are given, can be deduced
without trouble from (13). All that is needed is to
make the substitutions of A v0cos 90 - A9qV0 sin 9Qfor avxo and v„2i90 for (vX0Avy0 - vyoiTxo) in (13).

Equations (9) do not make any explicit mention of Vy,
but the differential correction to vy is easily deduced
from (9). Since vy ■ mvx, and the matching of points on
the two trajectories is by equal values of m, the dif
ference of values of vy at matched points is m times the
difference of values of vx at the same points. Hence

(lii) dvy(q|m) « m dvx(q|m) ■ mp(t).

dr(q|ra • m0), dy(q|m • m0),

dx(q|m - m0), dt(q|m-» m0)
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The important application of the formulas is to
the computation of differential effects at equal values
of y. From (VII.1.8), if t is the time and m the
slope at the point whose ordinate is y,
(15) dC(q|y) - dC(q|m) - (dC/dy) dy(q|m).
In this we replace C by x, t, vx, Vy successively.
With the help of (9) and (1U), we obtain

dx(q|y) - £(t) - (cot 0) n(t),
dt(q|y) = x(t) - (1/y) rit),

(16)
dvx(q|y) - p(t) * (E cot 9) n(t),

dvy(q|y) - (tan G) p(t) + (S + g/y) n(t).
In the preceding section, in which time was used

as the basis for matching points on the two trajec
tories, the fourth-order system consisting of the first,
second, fourth and fifth of equations (3.11) was seen
to subdivide into a third-order system, consisting of
the second, fourth and fifth of the equations, fol
lowed by a quadrature to obtain the remaining function,
£(t). When slope is used to match points, as in this
section, the splitting up of the problem is even more
marked. The first and second of equations (11) can
be solved together, as a second-order system, and
afterwards the two remaining functions £ -and t can
be obtained by quadratures. Even the quadratures are
easier than might be anticipated, since the right
members of the last two of equations (11) are obtained
without difficulty after the first pair have been
solved. For in solving the first two we necessarily
compute the right member of the second of equations
(11), namely 2yp/x + e2. By (11) and (12), if we
multiply this by i/y we obtain the right member of
the third of equations (11); while the right member
of the last of (11) is the sum of (l/2y) times the
first term in the right member of the second equation
and (1/y) times the second term.
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5. Weighting factors

It is evidently true that the two methods of treat
ing differential effects already discussed are much
too complex for use in the field, and that the prob
lem is sufficiently difficult to leave us no hope
that any method of solution of the equations can be
found simple enough for use under the conditions of
service. Therefore some method must be devised by
which the bulk of the computations of differential
effects can be carried out in some organization remote
from the front, and the results of the computations
recorded in such a way that the application to the
conditions at any particular moment requires nothing
but very elementary calculations.

To be specific, we shall suppose first that we
are interested in the differential effects of range
wind wx on the range of a bomb having a certain re
ciprocal ballistic coefficient y , launched horizon
tally with velocity v0 from an altitude Y. For the
time being we omit the subscript x from the w, leavingit for the reader to remember that we are considering
a range wind. Let t be any time between time of
release t0 and time of impact T. We first imagine a
wind which at all times before t* (which is the same
as saying at all levels above y(t*)) is zero, and at
all times after t* (or at all levels below y(t*)) is
+ 1. Either by one of the methods already explained
or by one of the more convenient methods to be ex
plained in the next chapter we compute the differen
tial effect of this wind on the range j for the moment
we denote it by the letter g. Now we plot the point
whose ordinate is k ■ y(t*)/Y and whose abscissa is
g. This process we repeat for a collection of dif
ferent values of t*. For each value of k ■ y(t*)/Y
we obtain a value of g, and thus are able to draw the
graph of the function g(k) for k ranging from 0 to 1.
This gives us a curve such as is shown in Figure 1.
We have followed the usual ballistic custom of plotting
the values of the independent variable k as ordinates
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rather than as abscissas. This is meant as a reminder
that k is a multiple of the altitude y. For the
particular projectile we are considering, dropped
from height Y at speed vQ, this graph contains all
the information we need to compute the differential
effect on range of any range wind w(y) which varies
continuously with the altitude y. We shall show this
in four steps. Suppose first that w(y) is 1 at all
levels between y^ ■ k]Y and y2 * k2Y (we suppose the
latter to be the greater) and that w(y) is zero at all
other levels. TiTe can think of w(y) as W2(y) - w^(y),
where W2(y) is 0 above y2 and is + 1 below it, and
w^(y) is 0 above y]_ and + 1 below it. Then the dif
ferential effect of w(y) is
dx(w|y) = dx(w2|y) - dx(w]J y) - g(k2) - g(kj_),

by the definition of g(k). Suppose next that w(y)
is equal to iff between jrj. and y2 and is zero elsewhere.
This is W times the function first considered, so its
differential effect is W times as great, namely,
W[g(k2) - g(ki)]. Suppose next that the region of
the atmosphere between levels 0 and Y can be split
into a first zone, between levels 0 and y^ ■ k^Y,
in which w(y) is constantly equal to w^, a second
zone between levels yi and y2 ■ k2Y in which w(y)
is constantly equal to W2, and so on, up to an upper
most zone between levels yn_i ■ kn-^Y and yn ■ Y in
which w(y) is constantly equal to wn. This function
w(y) can be regarded as the sum of. n functions each
of which has one of the values w^, etc., in the ap
propriate zone and is zero elsewhere. So the dif
ferential effect of this w(y) on the range is the sum
of the effects of these individual functions , namely

dx(w|y) - w^gt^) - g(0)]
^

+ ... + wn[g(l) - gCkjj^) ].

Finally, by (2.10) we know that there is a constant A

such that

I dx(w|y)| < A max | w(y)| .
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Now let w(y) be any continuous function and e any
positive number. We can subdivide the atmosphere
into zones between levels

0, y1 - kjY, yn_! - VlY» yn ' Y
so thin that in each zone the values of w(y) vary by
less than e. Let wi be the average of w(y) at top
and bottom of the i-th zone

*i " l>(yi) + *(yi_l)]/2.
The function w (y) which in each zone is constant,
having the value wi in the i-th zone, cannot differ
from w(y) by as much as e at any point. Therefore
(2) |dx(w|y) - dx(w*|y) I - |dx(w-w*|y)| <Ae.
That is, the differential effect dx(w|y) is approxi
mated by the sum (l) with an error less than Ac, which
is as small as we choose. Our statement is now estab
lished; we can use the graph of the function g(k) to
find the differential effect on range produced by any
range wind w(y) which is a continuous function of the
altitude y.

We have shown that if w(y) is continuous, the dif
ferential effect dx(w|y) is the limit of sums of the
type of the right member of (1), as the intervals

1 5'k 5 all approach zero in length. But the
limit of such a sum is well known in analysis; it is
the Stieltjes integral, which we have already met in
(1.16.7, 8). In the notation of the Stieltjes integral,
the results of the preceding paragraph can be sum
marized in the equation

(3) dx(w|y) - f1 w(kY) dg(k).JO
But if the reader prefers to avoid the idea of the
Stieltjes integral, he need only remember that (3) is
merely a condensed form of the statement that dx(w|y)
can be approximated as closely as desired by sums like
■the right member of (1).
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Since we shall wish to refer to the graphs of g(k)
and its analogues for the differential effects of other
disturbances, we shall give these curves the name of
"effect curves." This is not a standard name. In
fact, there is no standard nomenclature, because the
functions g(k) ordinarily appear only as intermediate
stages in the computation of the "weighting factor
curves" which we shall shortly define.

Computing the effect curves for artillery pro
jectiles is complicated slightly by the fact that to
each altitude y between that of the summit and that
of muzzle and target there are two values of t, one
on the ascending branch and one on the descending
branch of the trajectory. We shall repeat the process
described in the second paragraph of this section;
for each t* between t 0 and T we compute the differen
tial effect of a wind which is 0 up to time t* and is
+ 1 thereafter. Temporarily we use the symbol h(t*)
to denote this differential effect; and we use Y to
stand for the altitude of the summit of the trajec
tory. Now we plot the point whose abscissa is h(t*)
and whose ordinate is y(t*)/Y. This process is re
peated for a collection of values of t* between to
and T. The collection of plotted points enables us
to draw the graph of a function, such as is shown in
Figure 2. This is the "two-branched effect curve."
Now suppose that we wish to find the differential
effect g(k) of a wind which is equal to 0 at all levels
above kY and is + 1 at all levels below kY. The pro
jectile will first reach height kY at a certain time t'
and will again pass through this same height on the de
scending branch at a time t". So w will be + 1 between
times 0 and t' and between times t" and T, and will be
zero at other times. Thus w can be thought of as the
superposition of three range winds, the first being + 1
between 0 and T, the second being - 1 between times t'
and T and zero at other times, and the third being + 1
at times between t" and T and zero at other times. It
follows that its differential effect g(.k) is

h(0) - h(t« ) + h(t").
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This is the same as [abscissa of C - abscissa of B +

abscissa of A ] in Figure 2j it is also the same as
OC - AB. The function g(k) being thus determined, its
graph can be plotted. The result is a curve similar in
shape to that in Figure 1. A similar process can be
applied to the "two-branched curve" for the effects of
any disturbance, yielding an effect curve from which in
turn the differential effects of any continuous disturb
ance can be computed.

However, along with their advantages the effect
curves have a disadvantage which amounts to a serious
inconvenience to the ballistician and is even more
serious from the point of view of the artillery officer.
The disadvantage is that under change of altitude,
initial velocity or ballistic coefficient, the effect
curves change greatly. For example, for large bombs
dropped at a given speed from a given altitude the
effect of density on range will be roughly proportional
to Y« From the ballistician' s point of view, this
makes it hard to interpolate between given curves in
order to find the effect curve for some bomb whose
ballistic coefficient or altitude of release or initial
velocity happens to differ from those for which effect
curves have been tabulated. Fortunately, however, it
is true that over fairly wide intervals of values of
Y> vQ and Y the effect curves of any one type (such
as curves for effect of density on range) differ chiefly
in scale, so that for any two effect curves g(k) and
g^(k) it will be true that a properly chosen constant
multiple of g(k) will be a good approximation to g^(k).
We thus have the following empirical statement, whose
truth can not readily be seen by inspection of the equa
tions of variation, but is apparent from an inspection
of a collection of the effect curves once they have been
computed: given a collection of effect curves all of
the same type (such as effect of wind on range), corre
sponding to various values of -f, vQ and height of summit
Y, we can divide each g(k) by a properly chosen number,
depending on y, v0 and Y, so that the quotient is a
slowly varying function of Y, vQ and Y.
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The number referred to in the preceding sentence
depends on Y, v0 and 90, and also depends on the type
of disturbance q and on the quantity (x, t, vv or vx)
whose differential change is being computed. So it
properly should be denoted by some symbol such as
N[q, x, Y, vQ, 9Q], the first symbol in the brackets
showing the nature of the disturbance and the second
the quantity whose change is being computed. However,
this may safely be abbreviated to N[q, x] or even to
N, leaving it to the reader to remember the variables
on which it depends.
Before we discuss the choice of the numbers N,

we digress to show the usefulness of the empirical
property just stated, first in the ballistic laboratory,
and second in the field. The ballistician who needs
to compute differential effects, say for the reduction
of range firing experiments , will prepare tables of

Y, v0 and Y or 90. Also, for several values of these
same variables he will prepare the effect curves; but
these are now merely intermediaries to be used in com
puting the functions

These will also depend on Y, vQ and 0O or Y, as well as
on the nature of the Disturbance and the quantity whose
change is being found. But if the N[q, x] and N[q, t]
have been well chosen, the p(k) will vary only slowly
with change in Y> v0 and 90 or Y. Hence if the projec
tile which is being range-fired has its Y» v0 and 9Q
different from those tabulated, the corresponding p(k)
can easily be found by interpolation. To be specific,
let us suppose that we are investigating the differen
tial effect of wind on range. The region of the atmos
phere between 0 and Y is cut into zones in each of which
the wind departs only slightly from its average value in
the zone. Let the zone boundaries be 0, k]Y, k2Y,
kjj^Y, Y, the average wind in the i-th zone being w^.

assortment of values of

U) p(k) - g(k)/N.
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We form the sum

wxCpCki) - p(0)] + w2[p(k2) - p(ki)]
(5)

+ ... + wnLp(l) - pCkjj^) J.
By (h) , this is 1/N times the right member of (1),
and therefore is a close approximation to dx(w|y)/N.
Therefore all that remains is to look in the tables
for the N that corresponds to the y, v0 and 90 (or Y)
of the projectile and multiply this N by the quantity
(5); the product will be the differential effect
dx(w|y) sought.

In the field the importance of the empirical prop
erty is much more marked. Within a single division
there will be a great assortment of artillery pieces,
firing at targets at various ranges. It would be too
much of an undertaking to attempt to compute (5) for
each piece separately. Obviously the sum (5) must be
computed for several altitudes Y, since the wind varies
greatly with altitude. It is no loss to use with each
Y a curve p(k) proper for that Y. But already this
means several computations. If in addition it were
necessary to use several different p(k) for each
altitude the time of computation might be prohibitive.
The ideal situation, from the point of view of the
service whose duty is to compute the sums (5)» (in
the U. S. Army, this is the Signal Corps) would be to
have a single p(k) for each altitude Y, independent
of Y and v0, independent too of the fact that the
different projectiles have different drag functions
G(v). This is a bit too much to ask. Nevertheless,it has been found practicable to use a total of three
curves p(k) for each altitude. The artillery pieces
are classified into three large classes; the artillery
officer in charge of a piece notes only the meteoro
logical message giving the sum (5) for the class of
pieces to which his belongs. This message will give
the sum (5) at a series of different summital altitudes
Y. Now if the piece is to fire at a given target,
from the firing table the artillery officer finds
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the summital altitude Y, and from the meteorological
message he reads the particular sum (5) for that Y.
Next he has to find N. For the ballistician, this N is
a function of T, v0 and 90. But for the artillery-
officer two of these variables are fixed; the piece
will have a certain specified muzzle velocity ( or a
specified set for different zones of fire if it is a
mortar) and the Y is determined by the projectile
being fired. So N is a function of 0o alone, which
has been tabulated and printed in the firing table.
The artillery officer multiplies this N from his firing
table by the sum (5) from the meteorological message,
and the product is the differential effect of the range
wind. (This is an intentional oversimplification; the
Signal Corps has to treat the w^ in (5) as vectors and
report the direction as well as the magnitude of the
sum, and the artillery officer has to find the com
ponent of this vector sum along his direction of fire,
and also across the line of fire in order to make the
correction for cross wind. But this does not alter
the essentials of the situation.) Thus the fact that
for a given Y the functions p(k) are not sensitive to
changes in v0 and Y has the operationally important
consequence that three meteorological messages convey
the essential information about winds at all altitudes,
for all pieces, instead of there having to be a sepa
rate message for each type of. piece.

To return now to the method of choosing the mul
tipliers N: it is essential that they be chosen so that
the resulting functions p(k) lie close together; it
is desirable that they should have some rational type
of definition in terms of the "effect curves" g(k).
Each type of disturbance is expressed in terms of a
unit consistent with the units of length, etc.; for
example, the natural unit for Wj is one unit of length
per unit of time, the natural unit for departure from
standard density A H/H or * is the pure number 1, and
likewise for departure from standard absolute tempera
ture A 0 / 0. These may not be the most convenient
in practice, and we may wish to change them later,
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but they are appropriate for the present discussion.
We suppose that these natural unit disturbances were
used in computing the effect curves, as in fact was
specifically mentioned in the example of the range
wind. Then, by the definition of the effect curves,if the amount of a disturbance is one unit at all
levels, the differential effect of the disturbance is
g(l). -This is given the self-suggesting name of "unit
effect." It is customary in ballistics to choose this
unit effect as the number N of our previous discussion,
so that the function p(k) of equation (U) is

The graph of this function p(k) is called the "wedghting
factor curve" for the differential effect of the dis
turbance on the quantity x, t, vx or vv as the case
may be. It is obvious that

These definitions clearly have the quality spoken of
as desirable; they are rationally and simply defined
in terms of the effect curves. It cannot be seen
without examination of a collection of weighting factor
curves, but is nevertheless true, that for the impor
tant instances of differential effects of range wind
and density on range and on time of flight, and of
cross wind on deflection, they also satisfy the essen
tial requirement that the weighting factor curves lie
close together. By (7) we see that each weighting
factor curve reaches from (0, 0) to (1, 1), so they
all have two points in common. Moreover, the specific
instances mentioned all have monotonic increasing
weighting functions p(k), increasing steadily from the
value 0 at k ■ 0 to the value 1 at k • 1, except for
the differential effect of density on time of flight;
for bombs of low ballistic coefficient this has a
perceptible reversal near k - 1, p(k) being a little
greater than 1 for k slightly below 1. This would
lead to the expectation, verified by investigation,
that the weighting factor curves for a given type of
disturbance at a given Y resemble each other closely.

(6) p(k) - g(k)/g(l).

(7) p(0) =■ 0, p(l) - 1. .
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Suppose again that we are interested in the dif
ferential effect of a range wind on the range. Let
w(y) he the range wind at altitude y. By definition,
the "ballistic wind" (which more properly should be
called the ballistic mean wind, or range-mean range
wind, but is not so named) is that constant wind w
which has the same differential effect on range as
the actual wind w(y) has. By (3) and (U), the dif
ferential effect of w(y) is

(8) dx(w(y) = N [ w(kY) dp(k),J 0
while the differential effect of w is

(9) dx(w|y) - N f1 w dp(k).
J 0

This last integral is computed as the limit of sums
such as (5) with all w^ equal to w. But by (7) these
sums are always equal to w, however we choose the
points k^, so

(10) dx(*|y) - Nw.
By definition of w the left members of (8) and (10)
are equal, so

(11) w * f w(kY) dp(k).
J 0

In other words, the quantity whose approximate value (5)
is computed by the Signal Corps for artillery use is the
same as what we have just named the ballistic wind.

In a similar manner we define a quantity which we
shall call the ballistic density-excess, but which pro
perly should have some more descriptive name, such as
range-mean excess density ratio. This is the constant
value of the ratio A H/ft which would have the same dif
ferential effect on range as the actual ratio AH/H,
which depends on y. A discussion like the preceding
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applies in this case too. The ballistic density-excess
is given by the formula

where now the p(k) is the weighting function for the
differential effect of density on range. The integral
in the right member of this equation is in practice
replaced by its approximate value computed by a formula
like (5), with A H/h in place of w and the p(k) being
the weighting function for effect of density on range.

However, when we try to apply a similar procedure
to the differential effects of departure from standard
temperature, and also to several other differential
effects of less importance, we encounter a serious
difficulty. The effect curves for differential effect
of temperature on range, to select the most important
example, are not the graphs of monotonic functions.
As k rises from 0 to 1, g(k) may increase up to a
certain value of k and then decrease; or it may in
crease a while, then decrease for a while, and finally
increase again. This is so marked a phenomenon that
even the sign of g(l) may be different for different
values of Y or Y or v0. In particular, when g(l)
happens to be near 0 the function p(k) defined by (6)
may have exceedingly large values for some values of k.
So choosing N ■ g(l) fails in the primary purpose; the
resulting curves p(k) do not lie close together, but
instead are spread farther apart. The corrections for
differential effects of temperature have consequently
been decidedly more troublesome than those for effects
of wind and departure from standard density.

To remedy this difficulty, we suggest a somewhat
different approach which succeeds in bringing together
the curves p(k) for each type of disturbance and at the
same time in leaving the curves p(k) unchanged for the
important instances of effects of range wind on range,
effect of density on range and effect of cross wind

(12)
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on deflection. Recall that the unit effect for any type
of disturbance was defined to be the differential effect
of a disturbance whose value at all levels was equal to
1. We shall replace this by a* quantity which we shall
name the norm effect. This we define to be the maximum
differential effect of a disturbance which at all levels
is between - 1 and + 1 inclusive. It is this quantity
which we shall use as the N of equation (U).

First we must show how this norm effect can be
found from the effect curves. Let q(y) be any kind of
disturbance, and let g(k) be the corresponding effect
curve, say for the effect of q on range. We wish to
find the maximum value N of the integral

i:(13) I q(kY) dg(k),
0

subject to the restriction

(U) - 1 ^ q(y) - + 1

for all y. Let kf and k" ( > k1 ) be two numbers between
0 and 1. The part of the integral (13) between limits
k' and 'k" has the approximate value

q(kY) dg(k) i q1[g(k1) - g(k')J

Ik
"

k'
+ q2[g(*2) - e(ki)]
+ ... - qn[g(k») - g(kn_i)],

where
k' < kx < k2 ... < k^ < k"

and the q^ are average values of the function q(y) on
the interval

ki-lY < y < kiY*
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If g(k) is an increasing function of k on this interval,
the number in each square bracket is positive, and sub
ject to the restriction (lu) the maximum value of the
sum in (15) is obtained by putting all the qi equal to
+ 1. The sum on the right is then g(k") - g(k«). If
the function g(k) is a decreasing function, the number
in each square bracket is negative, and the greatest
value the sum can have subject to (1U) is reached by
putting all the qi equal to - 1. The sum on the right
is then g(k') - g(k"). Both cases are covered by the
statement that if g(k) is monotonic (increasing or de
creasing) between k' and k", the maximum value of the
integral (15) is

(16) | g(k») - g(k')|.
Suppose now that g(k) is not monotonic, but that the
interval from 0 to 1 can be split into several parts
on each one of -which g(k) is monotonic. To be specific,
we suppose that g(k) increases from 0 to k' , decreases
from k' to k", and increases again from k" to 1. Then

f 1 f k» r k" f 1
(17) q(kY) dg(k) - \ + +1 q(kl) dg(k).

JO J 0 J k' J k"

The integral in the left member reaches its greatest
value subject to (1U) when each of the three integrals
in the right member reaches its greatest value. But
as we have just shown, this means that the greatest
value of the integral is

N - Ig(k') - g(0)|
(18)

♦ | g(k") - g(k')| + | g(l) - g(k«) |.
This value is attained if we set q - + 1 on each stretch
on which g(k) is increasing and q ■ - 1 on each stretch
on which g(k) is decreasing. (Mathematicians will
recognize ' that we have in fact defined N as the total
variation of the function g(k).)

512 Ch. VTII



Having the numbers N, the "norm effects" for several
different values of y> v0 and we can define p(k)
by (h). However, if the effect curves mostly lie in
the region of negative abscissas, it will be slightly
more convenient to define p(k) by the equation

(19) p(k) - - g(k)/N.
For each type of disturbance we select either (h) or
(19) to define the functions p(k), and we graph these
functions. The resulting graphs will be referred to
as the "normalized effect curves."

In the important cases in which g(k) is monotonic,
the integral {13) reaches its greatest value subject
to (1U) if we set q • + 1 for all y or q - - 1 for
all y, according as g is increasing or decreasing.
This greatest value is |g(l) - g(0)| ■ |g(l)J. If
g(l) happens to be positive, we define p(k) by (U);if negative, we define p(k) by (19). In either case,
we have definition (6) back again. So for the cases
in which g(k) is a monotonic function our new defi
nition of N leaves everything unchanged. This is
desirable, because the traditional treatment of these
disturbances has been satisfactory.

In the other cases, in which g(k) is not monotonic,
our norm effect N will be greater than the unit effect
g(l) of the usual theory. It will no longer be true
that p(l) ■ 1. Instead, the graphs of the functions
p(k) have the following property. Imagine that a
point P traverses the curve from (0, 0) to its end
(1, p(l)). Let P' be the perpendicular projection
of P on the axis of abscissas. Then as P traverses
the normalized effect curve, P' will travel a total
distance of one unit of length. This can be seen from
(18). As a point Q traverses the effect curve, its
projection Q' will travel on the axis of abscissas
from 0 to g(k( ), from g(k') to g(k"), and from g(k")
to g(l), a total travel equal to N, as (19) shows.
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Since- p(k) is obtained from g(k) by division by N,
the distance travelled by P' is 1, as stated. As a
corollary, we see that the functions p(k) must. lie
between - 1 and + 1.

The normalized effect curves are used in the same
way as the weighting factor curves. If q is a depar
ture from normality, say a temperature excess A 9/ 9,
the integral (13) is computed, or to be more precise,
is approximated by a sum similar to that in (15).
This we shall name the "mean effective" disturbance;
thus if the disturbance is a departure from standard
temperature, the integral (13) is the "mean effective
excess temperature ratio."

When the mean effective disturbance is multiplied
by the norm effect, the product is either the differen
tial effect of the disturbance (if (b) has been used
to define p) or is the negative of the differential
effect (if (19) has been used to define p). Conse
quently the table of values of norm effect should bear
a heading "To be added if mean effective ... is posi
tive," or a heading "To be subtracted if mean effective
... is positive," according as (U) or (19) was used in
computing the functions p(k). This accords with present
practice in tabulating unit effects.

In computing the ballistic wind it is computation
ally more convenient to express the magnitude of the
wind in tens of miles per hour, rather than in feet
per second. To compensate for this, the unit effect
is multiplied by U4.6666... and entered as "unit effect
of ten mile per hour range wind on range." Likewise,
it is more convenient to express the excess of density
over standard in terms of per cent. To compensate, the
unit effect is divided by 100 and entered as "unit
effect of one per cent excess density ratio." A similar
remark would apply to the temperature also.

A number of the weighting factor curves have hori
zontal tangents at the top. Thus, unless the topmost
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zone is excessively deep, the graph of the weighting
factor curve will be approximately that of the function
1 - k ■ c(l - p)^, where c is some constant. If the
disturbance q is roughly linear from top to bottom of
the zone, we find by substitution of the above approxi
mation for p that

Thus in computing ballistic wind and density it is
possible to gain accuracy by replacing the arithmetic
means of the top and bottom values, used in the other
zones, by the weighted mean shown in (20), for the
top zone.

If this is carried to its very extreme, and the
ballistic wind is estimated by (20) with k' - 0, with
no intermediate points of subdivision at all, we can
hardly hope for much accuracy. The result, recalling
(7) and the assumption that the wind is a linear
function of the altitude, turns out to be that the
ballistic wind is roughly the wind at two-thirds the
summital altitude. It is an interesting fact that this
same rule, obtained of course by entirely different
reasoning, was in wide-spread use in the early part
of the First World War.

= [(2/3)w(Y) + (l/3)w(k'T)][p(l) - p(k')].
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Chapter IX

METHODS OF

DIFFERENTIAL
1. Some remarks on linear

COMPUTING
CORRECTIONS
differential equations.

It is true that the differential effect of any
disturbance of the types considered can be found by
solving equations (VIII. 2.11, 18, 22) or equations
(VTII.J4.ll, 12, 16). But solving differential equa
tions is too difficult a task to repeat frequently
unless it is unavoidable, and it is therefore desir
able to devise methods of treating these equations
which will avoid numerous integrations of the dif
ferential equations.

Trajectories may be classified into two different
types, the first type having a definite end point and
the second type not having a definite end point. The
first type includes the trajectories of projectiles
fired from the ground at targets on the ground (or
water). These trajectories terminate at the second
point at which y ■ 0, slight differences in elevation
of gun and target being handled by small correction
terms. The second type includes anti-aircraft and
bomb trajectories. Anti-aircraft trajectories normally
start from sea-level (departures being handled by
small corrections ) , but have no end point as far as
the tables are concerned. The target may be at any
distance up to the maximum range of the weapon. As
for bombs, it was pointed out in Section 2 of Chap
ter IV that with the assumption a ■ 1, it was feas
ible to compute trajectories with initial values
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x ■ y ■ 0 and various values of v0 and Tg, and then
for each Y to obtain the trajectory with initial
speed v0, reciprocal ballis.tic coefficient T and ini
tial altitude Y by simply replacing y by Y3 through
(IV. 2.6) and taking the first Y feet of drop as al
ready computed (or interpolated) for the projectile
with initial speed v0 and summital reciprocal bal
listic coefficient Yg. In this sense the trajec
tories of bombs have no definite end point; in each
instance of a bomb dropping there is an end point,
but in the numerical computation of bomb trajectories
any point of the computed trajectory might serve as
the end point of the trajectory for some particular
dropping.

To each of these two types of trajectory there is
an appropriate method of handling the differential
effects of disturbance?. In Sections 2 to 6 we shall
present the original method of the adjoint system,
due to Bliss, and two modifications of this method.
This type of computation method is well adapted to
the first type of trajectory. If only differential
effects on range are desired, a single numerical
integration of a system of differential equations is
all that is needed; after that is done, differential
effects can be found by means of quadratures. How
ever, the adjoint system is not nearly so well adapted
to the second type of trajectory. More convenient
methods for finding differential effects on trajec
tories of the second type will be discussed in Sec
tions 7 and 8. It should be emphasized that the
distinction between the two types of method is a
matter of convenience only. Any one of the methods
to be presented in this chapter can be applied to any
trajectory, but the difference in the amount of com
putation can be rather considerable.

In this section we shall collect some remarks on
linear differential equations that will be convenient
for use in the rest of the chapter.
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Equations (VIII. 3.11) and (VIII.l4.ll) are both of
the type

n
(1) dk/dt = 2 A^U) Z< + e.(t) (i - 1, n).

j-1 J J

If only the initial conditions are altered, the e^ are
identically zero both in (VIII. 3. 11) and in (VIII. U. 11),
and thdse equations are then of the homogeneous type

n
(2) dC/dt = Z A (t) 5 (i - 1, n).

j-1 J J

Let us suppose that we have found n solutions of equa
tions (2). In order to help keep the notation in mind,
we shall use Greek-letter subscripts to distinguish
between different solutions and roman subscripts to dis
tinguish between the components of a single solution.
Thus the n solutions will be designated by 5lv(^)5
each fixed value of v, the n functions §iv» §
form a solution of (2), so that nv

n
(3) d^^/dt - 2^ h±.(t) K^t) (i, v = 1, n).

If D is the determinant of these n solutions, the
derivative of D with respect to t is found by adding
n terms, the first of which is a determinant identical
with D except that the first row ( ^

-1 , . .., £-*J is re
placed by (dK^/dt, d£ln/dt), the secona of which
is also identical with D except that the second row
(Z21, ...» 52n) is replaced by

(dC21/dt, d^/dt),
and so on. When the derivatives are replaced by their
values as given by (3), this yields
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dD/dt

j-1

*21

-nl

^n-1,1 •

n

j-1

»2n

*»n-l,n
n

In the first determinant, from the first row we subtract
times the second row, Ann times the third row, and

so on; the other determinants we treat similarly. We
thus find that the first determinant is A^D, the second
A22^» ar>a so on. Thus {h) simplifies to

(5) dD/dt = (An + . .. + Ann) D.

The one and only solution of (5) which at a given point
tD assumes a given value D(t0) is

(6) D(tJ - D(tD) exp I (AU+ ... + Ann) dt,J t0
where exp J means the same as . Since the exponen
tial never vanishes, this implies that if D(t) ever
vanishes it is identically zero.
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If the determinant D is not zero, and . .., £nis any solution of (2), then at some one value of t,
say tQ, the equations

n
(7) et(t) = Z Civ(t) cv

v-1

can be solved for the constants cv. But then the
right and left members of (7) are both solutions of
(2), and coincide at t ■ t0, so by the uniqueness
theorem for solutions of differential equations, (7J
holds identically. Thus every solution of (2) is a
linear combination of the n solutions £^v> with con
stant coefficients. In this case the n solutions are
said to form a basis for solutions of the equations (2).

Since equation (7) and similar equations will recur,it is desirable to have something more than the state
ment that they can be solved; it is more useful to have
a formula for the solution. Let S^vbe the cofactor
of in the determinant D(t). By a well-known the
orem on determinants, if the elements of a row are
multiplied by the cofactors of the same row and the
products added, the result is the determinant; if they
are multiplied by the cofactors of a different row
and the products added, the sum is zero. The state
ment remains true if "row" is everywhere replaced by
"column." This is conveniently formalized with the
help of the "Kronecker 6" symbol, defined by

Then the statement about elements of rows and their
cofactors takes the form

(8 J f>i3
- l if i - j,

6 - 0 if i 4 j.

n
(9)

v?
i ^v 5JV
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while the statement about elements of columns. and
their cof actors becomes

n

(10) 2 £iv HiHl
»
6„^D.i«l

If we introduce the new symbols

(11) \vi(t) = 5iv(t)/D(t),
(observe the reversal of the order of the subscripts),
these two equations take the somewhat simpler form

V =1
(12)

n

Let
sum for
we obtain

us now multiply both members of (7) byX ^ anc*i - 1, n. tfith the help of (12) and (8)

n n

i-1 i,v=i

n
(13) - £ Vcvv-l ^

*
c|i»

From the equations (12) we can easily find the
differential equations that the Xu.^ must satisfy.
In the second of equations (12) we differentiate with
respect to t, ootaining

£ (dX , /dt) £iv+ £ X (dCiy/dt) = o.
i=l 1=1
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In the second sum we replace the index of summationi by k and substitute from (3)} obtaining

n n

i-1 k,j=l
In the left member we change the index of summation fromi to j; then we multiply both members byXVJ and sum for
V3 1, n. The result, because of (12) and (8), is

(iu) dWdt - - z x^ Aki.
k=l

In other words, each row of the array is a solution
of the differential equations

n
(15) dVdt - - L Aki\k.

k=l

Equations (15) are the system adjoint to (1) or (2).
They differ from (2) in having the rows of the array of
coefficients Aj_j changed into columns and vice versa,
and also in having all terms multiplied by - 1. Clearly
the system adjoint to (15) is again the system (2).

The interrelations between the solutions of (1)
and those of (15) form the basis of the methods of
the next five sections. Suppose first that£^(t)is a solution of (1) and that X^(t) is a solution
of (15). From (1) and (15) we readily deduce

1-1

n
(16) ■ E [ - Aki\kSi +Xi(Aik£k ♦ e^]i,k-l

n
■ Z Xj e*.
i-1
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Hence, by integration

n n
Z MtJ^i(t) - £ Xi(t0)^(t0)i=l

+ \ £ Xi(t) 6i(t) dt.
Jt0 i-i

Because of (12) and (8), the equations
n

are identities. We continue to suppose that the func
tions £^(t) satisfy (1), while we know by (Hi) that for
each v the functions \v j(t) satisfy (15). Hence we may
substitute from (17) in (18), obtaining

Equation (19) is essentially a formalization of the
well-known method of "variation of the parameters"
for the solution of linear differential equations.
It is highly important, because once we have found a
basis of solutions for the homogeneous equations (2)
and computed the Xyj by (11), we can use (19) to find
the solution of (1; for any initial conditions and
any disturbances e^(t) without having to integrate
the system of differential equations (1); all that
(19) calls for is n numerical quadratures, together
with multiplications and additions.

5i(t)

^9) - Z iiv(t)v-l
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2. Bliss' method; the adjoint system,

The first application of the adjoint system to the
computation of differential effects was made by G. A.
Bliss, during the First World War. We now investigate
this original method of Bliss, essentially as he de
velops it in Mathematics for Exterior Ballistics
(New York: John Wiley and Sons, Inc., 19UU).

The system of equations adjoint to (VIII. 3. 11) is

t±
* 0,

Xg - - [ h - (n - 2)&1 ]E(x\u + JX^),

^3
■ o,

£u
- -Xx + E [1 ♦ (n - l)U2/v2)]\u

(1) ♦ E [(n - l)xy/v2]\5,
is - - + E [(n - l)iy/v2] X^

♦ B [l ♦ (n - D(y2/v2)]X5,

where the dot denotes differentiation with respect
to t. We shall now show how to compute differential
effects by means of solutions of the system (1). For
example, to compute the effect on x at time T of a
disturbance it is necessary to find £i(T). Observing
(1.17) we see that this calculation is indeed simpleif we have available a solution of (1) for which

X^T) - 1, X2(T) «... - X6(T) - 0,
for in this case (1.17) with i » 1, t » T becomes

6 f T n
KiWi - L KAt) \{t0) + £ x^t) ei(t) dt.i-i J t0 i- 1
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In fact, any linear combination of the variations at T
can be obtained if we can suitably specify the values
of the X' s at T. But for any set of values of the
X.(T) there is a unique solution of equations (1) which
assumes these values. The computation of this solu
tion can be effected by a numerical integration using
methods closely related to those described in Chap
ter VI j in Section h we shall make a few more remarks
about the solution of these equations. It is then
computationally feasible to specify initial values for
the system (1) at t ■ T, and from these to obtain the
values of a linear combination of the £i(T).

Consider now the effect on range of a disturbance q.
By (VIII. 3. 22) this effect is

dx(q|y - y(T)) - #T) - cot 9 n(T).

We shall therefore need the solution of (1) with the
initial conditions

X,(T) = 1, X0(T) - - cot 0(T) « cot a),
(2) 1 ., 2

\3(T)
-
XU(T)

-
X5(T) -X6(T)

- 0.
We then have

dx(q|y - yCn; = - (cot ej t,(t)
= X,(T) tfT) + X?(T) n(T)

(3)
+ 53(T) C(T) +

XU(T) #T)

+
X^T) h(T)

+ X6(T) C(T),

if the Xj^(T) have the values (2). It is evident that
the solution of the third and sixth of equations (1)
with initial values (2) is X^(t) ■ = 0, while from
the first of equations (1) and (2) we see that X]_(t) isidentically equal to 1. Also, by (VIII. 3. 18) we have
el * e2 ' 0* When all these substitutions are made,

Sec. 2 525



(1.17) becomes

dx(q \r ' y(T)) - A x(tQ) + \2(t0)A y(tQ)

+ \U(t0)Avx(to) + \5(tQ) Avy(t0)

+ ( [X^tje^t) +X5(t)e5(t) ]dt.to

(We have here used (VIII. 3.19 ) with the slight nota-
tional change that the disturbance in initial values,
if any, is reckoned at time tQ instead of time 0. )

Equation (U) contains in particular the differen
tial effects on range of changes in initial conditions;
these we obtain by setting e^

■ ec ■ 0 in (la). It
also contains the formula for the differential effects
of departures from standard density, temperature, etc.,
when initial conditions are unchanged. For then the
first four terms in the right member of (U) are all
zero. The integral is computed by a numerical quad
rature, and its value is the differential effect of
the disturbance q on the range. Thus by means of a
single numerical integration of the equations (1) we
have obtained the functions \2 , X.^ and X.£, and no
further numerical integration is needed to find the
differential effects of any disturbance on the range
of the projectile. At most it will be necessary to
compute the functions e^ and ecj by means of (VII 1. 3 .18)
and then to effect the numerical quadrature in (h).
It is important to notice the special form taken

by (U) when the disturbance is a departure from stan
dard temperature, a departure from standard density
or a range wind. For the first of these, by (VII 1. 3. 18)
and (1), we find

(5)
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The derivative of \£ is known from the numerical inte
gration which gave us the \^(t). If we compute the
integral

for values of t from t0 to T, by (h) and (5) the differ
ential effect of a departure from standard temperature,
which is such that A 0/ © is zero up to time t and is
1 thereafter, is the same as J(T) - J(t*). This is
what we called h(t*) in Section 5 of Chapter VIII, and
from it we can construct the "effect curve" in the
manner described in that section. Once the "effect
curve" has been found, we can proceed in either of
two directions. We can find the unit effect and the
weighting factor curve in the traditional way, as
described in Section 5 of Chapter VIII. Or else we
can break with tradition and find the norm effects
and the normalized effect curves, also described in
the same section. In any case, the single quadrature
(6) has given us the material for finding the differ
ential effect on range produced by any departure from
standard temperature law.

Next we consider a departure A H from standard
density. .Recalling that ic is the same as A H/H, we
find from (VIII. 3. 18) and (1) that

(7) Xueu +\5e5
- {X2/[h - (n - 2^]} AH/H.

We can proceed as we did with the temperature, com
puting the integral similar to (6) but with the factor
■gn- omitted. From this we find the effect curve as
in the case of departure from standard temperature,
and from this in turn we find the unit effect and the
weighting factor curve. The "effect curve" is the
graph of a monotonic function, so there is no differ
ence between unit effect and norm effect, nor any
difference between weighting factor curve and normal
ized effect curve.

dt
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If the normal trajectory has been computed with
constant temperature, so that a^

a 0, this process
is even further simplified. For then the analogue
of the integral (6) is

(3) (\2/h) dt - \2(tj/h - ^(V/h.

If the departure from standard density is such that
A H/H is 0 before a time t* and is 1 thereafter, the
differential effect on range is

(9) \2(TJ/h -\2(t*)/h - [cot 03 -\2(t*)]/h.
This is the quantity denoted by h(t*) in Section 5
of Chapter VIII, and from it the effect curve is
found, the unit effect and weighting factor curve
being found in turn from the effect curve. Thus
when the normal trajectory has been computed with a
standard temperature which is constant, the unit ef
fect and weighting factor curve for effect of non
standard density on range can be found without even
a quadrature.

The effect of a one per cent increase in y is
exactly the same as the effect of a constant one per
cent increase in H(y). This- is evident from the
equations of motion themselves. Or it can be seen at
once from (VIII. 3. 13) or (VIII. h. 12). Hence if dif
ferential effects of departure from standard density
are known, the effect of a departure from standard
value of Y is easily obtained. In fact, the differ
ential effect of a one per cent increase in yis the
unit -effect for constant one per cent increase in
density. The importance of this is usually in applying
it in the reverse direction; a ballistic taole being
prepared, it is easy to find the effect of a one per
cent increase in y> and thereby to find the unit
effect of change in density. We shall make no further
mention of change in reciprocal ballistic coefficient.
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Whatever may be the system of computing differential
effects, it must be capable of providing the effects
of departures from standard density, and, as a special
case of this, it must also provide the effect of a
change in Y.

Finally, for a range wind wx we find from (1) and
(VIII. 3. 18) that

The differential effect on range caused by a wind wx
which is 0 before time t* and is 1 thereafter is given
by (h) to be

From this information we can readily find the "effect
curve," and from this in turn we can compute the
unit effect. and weighting factor curve for the dif
ferential effect of range wind (following wind) on
range. Not even a quadrature is necessary.

An alternative derivation of equation (11) can be
based on the fourth of equations (VII.U.7), in which
we replace t by T and t0 by t*. Interpreting the
vx0 of the formula as vx(t*), and noting that by (U)
we have [& xfi vx0 ]y = X^t*), we see that the fourth
of equations (VII. U. 7) is the same as (11).

If we wish to find the differential effects of the
disturbances on the time of flight, we must perform
another numerical integration of the equations (1)
with different initial values. By (VIII. 3. 22) we see
that the proper initial values to choose are

(10)

(ID
fT .

dt - T - t* - X^t*).

(12)
\2(H - - l/y(T),

V(T) - 0 (i = l, 3, U, 5, 6).
Sec. 2 529



For then by (VIII. 3. 22) we have

dt(q|y = y(T))

(13)
= C- V^T)]T(T)
-Xl(T) £(T) + \2(T) n(T) +X3(T) c(T)

+ XU(T) £(T) +\5(T) fJ(T) + X^T) C(T).
When the corresponding functions X^(t) are computed,
the right member of (h) represents the differential
effect dt(q|y - y(T)). From this point on, all the
remarks about differential effects on range apply
equally well to the differential effects on time offlight, it being understood that now the \<(t) are
those determined by the initial values (12).

The differential effects of the various disturb
ances on the components of striking velocity, on the
speed at impact and on the angle of impact can equally
well be found; all that is needed is to replace (2)
or (12) by the appropriate set of initial values.
But these differential effects are of minor impor
tance, and we shall not discuss them further.

3. Differential effects on deflection.

At the end of Section 1 of Chapter IV it was pointed
out that of the disturbances we are considering, only
changes in z(t0) and vz(t0), cross wind wz and cross-
acceleration az were capable of producing non-zero
differential effects on the z-coordinate of impact,
while in turn they were incapable of producing non
zero differential effects on range and time of flight.
We now investigate the differential effects on the
z-coordinate of impact caused by the disturbances
Az(tQ), Avz(t0), wz and az. All of these can be
handled by means of the adjoint system. But it is
interesting to observe that the first three of them
can also be discussed without use of the adjoint
system. So we now treat the first three differential
effects without using the adjoint system.
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If z(t0) alone is changed, the trajectory is merely-
translated in the direction of the z-axis by an amount
A z(t0) , so that

(1) dz( A z0|y) = dz( t z0 |t) « dz( A z0 |x) = A zQ.

If vzo alone is changed, to first-order terms the
effect is the same as rotating the trajectory about
the z-axis through an angle A vzo/vxo. (This has
already been discussed in detail in Section U of
Chapter VII.) Hence the point on the normal trajec
tory whose coordinates are (x, y, 0) is moved, as
far as first-order terms are concerned, to the place
(x, y, xA vzo/vxo) • from this it follows that
(2) dx(Avzo|y = y(x)) - Xivz0/VM.
If wz* is a cross wind which is zero at all times

before t* and is 1 at all times after t*, we can find
the differential effect of wz" by applying (VII. ^.23)
with t replaced by the time of impact T and with the
beginning of the trajectory taken as t0 ■ t*. Then
with this beginning point we have a constant wind
wz - 1 at all points from beginning to time T, and
formula (VII. lj.23) is applicable. It takes the form

(3) dz(wz*jy « y(T)) = T - t* - [x(T) - x(t*)]/x(t*).
This takes the place of the function h(t ) of Section
5 of Chapter VIII. From it we can find the "effect
curve" by the method described in that section, and
from this in turn we find the unit effect and the
weighting factor curve. Formula (3) involves nothing
that is not on the sheet on which the normal trajectory
was computed. So this important differential effect
can be found without even a quadrature.

To return to the adjoint system, we first observe
that by (VTII.3.22) and (VIII. 3. 20) and its analogues
for all other disturoances we have

ik) dz(q|y - y(t)) - dz(q|t) - c(t).
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Accordingly we wish to find the solution of the ad
joint system with the initial values
(5) \3(T)

- 1, \t(T) - 0 (i - 1, 2, U, 5, 6).
For with these values we have

dz(q|y - y(Tj) -X^T) ?(T) + X2(T) tj(T)

(6) +
X3(T) C(T) +XU(T) £(T)

♦
X5(T) *|(T) + X6(T) C(T).

From (5 J and the first, second, fourth and fifth of
equations (2.1) we see that Xi» X2» X-ii and X5 are
identically zero, while X-

j is identically 1. The last
of equations (2.1) is then

(7) X6(t) - - 1 + EX6(t).
We multiply both members of this equation by x and
recall that Ex - - Jc. The result is
(8) d(X6*)/dt - - x,
whence, by integrating and substituting from (5),
(9) X6(t) - [x(T) - x(t)]/x(t).
With the help of the preceding equations, (1.17) takes
the form

dz(q|y - y<T)) - * z(tQ) ♦ [x(T)/x(tQ) ]L vzo

(10) . f \*w 'rx(T) - x(t)
e6(t) dt.

L *(t) J

to

If only the initial conditions are changed, the integral
in the right member vanishes, and from (10) we obtain
(1) and (2) again. If the disturbance is a cross wind
wz* which is zero up to time t* and is 1 thereafter,
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by (VIII. 3.18) we have
e^

* 0 before time t* and e^
- E

thereafter. So by (10°, (9) and (7),

Jt*

It*
- T - t* -X6(t*)
- T - t* -[x(T) - x(t*)]/*(t*).

This is equation (3) again.

When the disturbance is a cross-acceieration ^ ,
as in computing the effect of the Coriolis force (see
(II. 1.13)) or the effect of the small aerodynamic force
which causes drift (see XI. 5. 15), it is necessary to
replace e^ by az in (10) and perform the quadrature.

U. Numerical integration of the adjoint system.

The initial values for the solutions of the ad
joint system are assigned at time T, which is the
end of the trajectory. Consequently it is necessary
to solve the equations by letting t go backwards
from T to t0 (which is usually 0). This is a slight
computational annoyance, which is easily remedied by
a change of variable. Qn the trajectory sheet, lines
have been computed for certain values of t which we
shall call "tabular values." Let I be the smallest
tabular value greater than T, and define a new vari
able s by the equation

Then for any function f(t) of the variable t we have

(1) s - I - t.

(2) df/ds « - df/dt.
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The initial values of the \^ now correspond to
s - I - T,

which ordinarily will not be an integer. The integra
tion of the adjoint system will now proceed for s
increasing from I - T to I. Because of (2), the left
members of equations (2.1) should be replaced by
_ d Xj/ds, i ■ 1, . .., 6. However, the third and sixth
of these equations may be discarded from the list;
differential effects on deflection have already been
discussed in full in the preceding section.

Also we may refrain from writing the first of the
equations if we keep in mind that \]_ is a constant.
Thus equations (2.1) may be replaced by

Whenever I - s is a tabular value of t, the tra
jectory sheet furnishes us with values of the quanti
ties E, x, y and v2 (or v2/100). with the last of
these we enter a table of the function (n - l)/v2,
assuming that such a table is available. (For at
least some drag functions both n - 1 and (n - l)/v2
have been computed and tabulated. )

On a computing sheet we tabulate either n - 1 or
(n - l)/v2, according to the tables available, for
each s such that I - s is a tabular value of t. It
will hardly be profitable to copy the trajectory entries
for E, x, y and v2, but it is desirable to tabulate
t ■ I - s to facilitate comparison with the trajectory
sheet. He provide columns for the three functions
X«> \. and X^, for their first derivatives, and for
the first and second differences of each of these

(3)

[h - (n - 2) a1]E(3Ku + yX^),

\l- E^- x[(n - l)/v2]E(x\u ♦ y\5),

- y[(n - l)/v2]E(x\u ♦ y^).
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derivatives. Since we know the values of the X^ at
s ' I - T, we can compute their derivatives by means
of (3). The process of obtaining more lines is a sim
plification of the numerical integration process of
Chapter VT. Suppose that line s = sn_^ is complete ex
cept for a final verification of the values X2» \h and

The second differences of the derivatives are
extrapolated to the next line, s ■ sn, and from these
the values of X^, X^ and X5 at s ■ sn are computed by-
Simpson's rule in the form (VI. 3.1). From these, the
derivatives of the Xj

^ at s ■ sn are computed by means
of equations (3). If these disagree excessively with
the extrapolated values it will be necessary to re
compute the line. When final values are reached, we
will also have final values for the second differences
of the derivatives at s ■ sn. So we can verify the
entries for Xo, Xi andXc on line s » sn 1 by means of
(VI. 3. 3). U *

The organization of the computation has of course

a great degree of arbitrariness. One of the many
possible ways of performing the computations with
the help of a computing machine will now be described.

(A) If standard temperature is not constant, multiply
the listed values of (n - 2)/v by v^a^. Subtract
from h, enter as h - (n - 2)a-i. If standard temperature
is constant, so that a-j_

■ if, omit this step.

(B) Extrapolate the second difference of dXg/ds,
compute X2(sn) by (VI. 3.1), and enter as X2(sn).

(C) Repeat (B) for X^ and X^.

(D) With the values of x and y from the trajectory
sheet, compute x\^ + yX^. Transfer to keyboard, mul
tiply by E. Transfer to keyboard, multiply by number
under (A). Enter product as dX2/ds. Clear dials.

(E) Multiply number on keyboard (which is E(xX^ + yX^))
by x, and enter in. a column. Clear dials.
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(F) Multiply number on keyboard by y. Enter result.

(G) The two preceding steps gave us the last terms
in the second and third of equations (3). Use these
equations to find dX^/ds and dX^/ds.

When the normal trajectory has been computed with
constant temperature, so that a^ • 0, it is customary
to introduce a new variable defined by the equa
tion

U) A2 - X2/h.
Then equations (3) may be replaced by

d A2/ds - E(iXu + yXjJ,
(5) dXjyds - Xx - EXfc - *[(n - l)/v2]d A^ds,

d^/ds
- hA2 _

eX^
- y[(n - 1 ; /v2] d A 2/ds .

Steps (B) to (G) of the preceding paragraph apply
to these with only obvious amendments. Step (A) is
omitted.

Since disturbances such as winds ana departures
from standard density and temperature can hardly be
determined to within one per cent, it should be satis
factory to have the solutions of the adjoint system
accurate to one per cent. This means that it will
not be necessary to carry as many significant figures
in the solution of the adjoint system as in the ori
ginal solution of the normal equations. Three signifi
cant figures should be enough. As a secondary result
of this, it may often be found that the second dif
ferences of the derivatives are so small that the
trapezoidal rule furnishes enough accuracy in deter
mining the

X^
from their derivatives. In any case,

the integration of the adjoint equations will ordi
narily be a much easier task then the solution of
the normal equations.
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5. Gronwall's method for integration of the adjoint
system.

Suppose that we are interested in a particular
solution
(1) x - x(t), y - y(t), z - 0
of the normal equations, and that we have found a
family of solutions
(2) x - x(t, e), y - y(t, e), z - 0

of the normal equations depending in a differentiable
way on a parameter e and reducing to (1) when e - 0.It is then possible to find a solution of the equations
of variation (VIII. 3. 11) with the e^ all equal to zero.
In fact, the functions

St) - 3x(t, e)/8e,
(3) n(t) - 3y(t, e)/3e,

C(t) - 0

evaluated for e ■ 0 satisfy these equations. This may
be shown without trouble if we recall that the normal
equations are a special case of equations (VIII. 2. lj)

and the equations of variation (VIII. 3. 11) are the
corresponding special case of equations (VIII. 2. 17).
In this notation, our task is to show that if the
functions y^t, «) satisfy (VIII. 2. h) for all « , so
that the equations

(h) 3yi(t, e;/3t - f±(t, y(t, e)) (i = 1, n)

are identities in t and e, and if we define

(5) 1i(t) - Sy^t, e)/ae
for e ■ o, then the functions (5) satisfy

n

(6) dTjUVdt - £ (df^Sy^TTjU) (i - 1, n).
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If we differentiate both members of (U) with respect to
e and set £ - 0, and make the substitution (5), we ob
tain (6), and the statement is established.

As a trivial application of this, we observe thatif (1) is a solution of the normal equations, so is
(7) x - x(t) + e, 7 - y(t), z - 0
for all e. So the functions (3), which now have the
special forms
(3) £(t) « 1, n(t) - C(t) - 0,
must be solutions of the equations (VIII. 3. 11) with
e^

■ 0. This is obvious from the equations. As a less
trivial application, we observe that if (1) is a solu
tion of the normal equations, so are the functions
(9) x - x(t + e), j - y(t ♦ e), z - 0

for all values of e. Therefore the functions (3),
which now have the special forms

(10) £(t) - *(t), n(t) - fit), c(t) - 0,
must satisfy the equations of variation (VIII. 3. 11)
with all e^ equal to 0. But whenever the e^ are all 0,
the right member of (1.17) is a constant. So by (1.17)
we find
(11) Xji + \2y + * k*
where k is a constant.

With the help of equation (11) it is possible to
reduce the third-order system (U.3) to a second-order
system, in any of an assortment of ways. For example,
let us replace the second derivatives of x and y by
their values from the normal equations; then (11) yields
(12) Xxx + Xgy - E(xKh * y\5) - g\$ « k.
If this is solved for X? and the result substituted in
(1^.3), the last two of these equations determine \^ and

X.£.
But the advantage of this procedure is meager.
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However, in the special case in which standard tem
perature is constant, so that a^_

- 0, a more significant
simplification can be had. With notation (U.U), (12)
yields

(13) X5
- (\k + h Agy - d A2/ds - k)/g.

From the first of equations (l\.5 ),

(1U) Xu
= - (y/i)\5 ♦ (dA2/ds)/E*.

In (13) we differentiate with respect to s, recalling
that because of (U.2) we have

dx/ds =■ - x - Ex, dy/ds ■ - y ■ Ey + g.
In the resulting equation we first replace d\cj/ds by
its value from (Lf.5) and then replace

A.
^ by its value

from (13). The result is
d2 A /ds2 - E(2xV - kj + 2hEy A„

(15) 2 1 2

♦ {#> + g(n - D/v2] - E}d A2/ds.
For the Gavre drag function, the function

h + g(n - l)/v2
has been tabulated against v2/100. Consequently for
each s such that I - s is a tabular value of t we can
compute the three coefficients

(16) S(2*XL - k), 2hEy, y[h + g(n - l)/v2] - E

of equation (15). The integration of equation (15) now
can be effected as in Chapter VT. From the values of

A2 we can find the unit effects and weighting factor
curves for the differential effects of departure from
standard density, and also we can find either unit
effects and weighting factor curves or else norm effects
and normalized effect curves for the differential
effects of departures from standard temperature. The
procedure is the same as in Section 2 of this chapter.
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If the time of firing is t - 0, by (2.11) the effect of
a constant unit range wind is T -\|j(0), and after (15)
is solved this can be found by use of (13) and (Hi) at
time t ■ 0. But if a weighting factor curve for wind
is desired, or any other effect is desired which re
quires the quadrature in (2.I4), equations (13) and (Uj)
must be applied to find \^ and at a number of values
of s or t spaced closely enough to permit the quadra
ture. The numerical integration of (15) is easier than
the integration of the system (i|.5), in spite of the
necessity of preparing the coefficients (16). But a
considerable part of this gain is dissipated in having
to compute \^ and \^ by (13) and (lii).
If the normal trajectory has been computed with a

non-constant standard temperature law, as is in fact
customary at the present time, there is no chance of
comparing the method of Bliss with that of Gronwall,
since Gronwall' s equation (15) applies only when a^

■ O.
In this case Bliss' method must be applied to the equa
tions (U.3) instead of to the slightly simpler system
(U.5), but the additional labor is small.

6. The adjoint system based on slope.

So far we have discussed the adjoint system based on
time; that is, the system of equations adjoint to equa
tions (VIII. 3. 11). However, the use of adjoint systems
is not restricted to any one system of equations. It
will now be shown that there is a great gain in simpli
city if the system adjoint to equations (VIII. h. 11) is
used instead of the system adjoint to (VIII. 3.11).

According to the definition in Section 1 of this
chapter, the system adjoint to (VIII. k. 11) is

d^/dt
- (n +

1)EX1
- 2(y/*)\2 - 2\} - (1/x)^,

dKjdt - - [h - (n - 2;a,]Ex\, ,
(1) 2
v '

dXydt - 0,

d\
,

/dt - 0.
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These are of course not the same functions as in the
preceding section. It is at once obvious that because
of the last two equations the 'functions X3 and

X^
are

constants, so that (1) is in fact a second-order system.

If we wish to find differential effects on range, we
see from the first of equations (VIII. I). 16) that the in
itial values of the X^, at t ■ T, should be chosen to be

X_(T) - 0, X0(T) - - cot 9(T) - cot co,
(2) *

X3(T)
- 1,

XU(T)
« 0.

If the differential effects on time of flight are
desired, by the second of equations (VIII. I4

. 16) we
should* choose

(3) X1(T)
" °> X2(T)

" "

X3(T)
- 0, X^T)

- 1.
For if the choice (2) is made, then with the help of
(VIII.I4.I6) and (VIII.h. 13), equation (1.17) reduces to
<kc(q|y - y(T))
- *i<to>[* vXQ

- (E/g)(vxo AVyo - vyo Avxo)]
+'X2(t0)Uy0 + (vyo/gvxo)(vxoAvyo - vyoA vXQ)]

♦ X3(tQ)U xQ

♦ (l/g)(vxo^vyo - vyoA vXQ)]

♦W KVgvX0)(vX0 AvyQ - vyoAvXQ)]
•T

[ Xi(t)e1 +

X2(t)e2

+ X e + \ dt.

to

With the choice of initial values (3), the right
member of (U) represents dt(q |y ■ y(T)).

Formula (k) looks cumbersome, but in specializa
tion to the most important instances it undergoes
notable simplification. First let us consider a
departure A 0* from standard temperature which is
zero up to time t* and is equal to 6 thereafter.
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By (h) and (VIII. h. 12),

(5) dx( A 9*
| y - y(T)) -

J^X^t) E*[(n
- 2)/2]dt.

This is the quantity called h(t*) in Section 5 of
Chapter VIII. From it we can find either unit effect
and weighting factor curve, or norm effect and normal
ized effect curve. The factors X-i(t) and Ex should be
available from the sheet on which equations (1) were
integrated, and the same sheet should also contain the
values either of n - 2 or of n + 1, from which the fac
tor (n - 2)/2 is readily found. If the \i(t) has been
found by solving equations (1) with initial values (3)
the right member of (5) will furnish the differential
effect of the disturbance on the time of flight, instead
of on the range.

Next we investigate the differential effects of a
departure from standard density. If the departure A H*
from standard density has value zero before time t* and
value H thereafter, by (U) and (VIII. U. 12) we find that

(6) dxU H*|y - y(T)) . -( ^(t) Ex dt,

when the initial values are those in (2). If they were
those in (3), the right member of (6) would represent
the differential effect on time of flight. Since Ex has
been found in solving (1), this is an easy quadrature.
From it we find the effect curve for differential effect
of non-standard density, and from this in turn we obtain
weighting factor curves and unit effects.

In the special case in which the normal trajectory
has been computed with constant temperature, the
integrand in (6) differs only by the constant factor h

from the right-hand member of the second of equa
tions (1). So the quadrature in (6) was in effect
performed while equations (1) were being integrated.
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Equation (6) takes the form

(7) dxUH*|y - y(T)) - [\2(T) - \2(t*)]/h-
The differential effects of range winds can most

easily be found with the help of equation (VII. l\.Q).
Let us suppose that the range wind w^* is zero before
time t* and is 1 thereafter. Clearly there is no
effect on the trajectory before time t*. We regard
t* as the start of the trajectory; then at all times
after this initial time we have wx* - 1. Equation
(VTI.I4.8) then furnishes us with

(8) dx(wx*|y - y(T)) - T - t* - [61/^]^,) ,
wherein vxo is understood to be the horizontal com
ponent at time t*. With (2) and (li), this yields

dx(wx*|y - y(T)) - T - t* - Xj(t*)[l ♦ Ey(t*)/g]

(9) ♦ \2(t*)[y(t*)]2/g±(t»)
+ y(t*)/g.

The quantity g + Ey is available from the trajectory
sheet, and likewise y; the value of y/x is available
from the solution of (1). So the computation of the
right member of (9) is not very difficult. It could
be effected for example by the following sequence of
steps: multiply by y/*> add multiply the sura
by y; add X^t^yTt*); divide by g; add T - t*.

The integration of equations (1) is slightly facili
tated by making the substitution
(10) A^t) - X2(t)/h.
Then the first two of equations (1) take the form

dkj/dt - (n + DE^ - 2(hy/i) A2 - &3 - (l/*^,
d A^dt

- - [l - (n - 2)a1/h]Ex\1.
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For finding differential effects on range, we use the
initial values (2), which now become

X1(T) -XU(T) - 0,
(12) A2(T) - cot co/h,

Mt) - 1.
For finding differential effects on tiite of flight
we use the initial values (3), which in the present
notation are

As in both previous methods, it is advisable to
change variable from t to s ■ I - t, where I is the
first tabular value of t above T. The left members
of ( 11 ) are thereby replaced by - dXj/ds and - d A2/dsrespectively. For each s such that I - s is a tabu
lar value of t, we look up the value of n - 2 in the
appropriate table and enter it on a computing sheet.
If is not zero, we compute and enter 1 - (n - 2)»i/hjif a^ is zero, we omit this step. From the trajectory
sheet we compute 2hy/x and enter it; and if differ
ential effects on time of flight are desired, we also
compute and enter the function 1/x. On the computing
sheet we provide columns for X^, A«, their derivatives, and the first and second differences of the
derivative of X^. If a]_ is not zero, we also provide
a column for the values of ExX^.

The integration process differs only trivially from
that described in Section h. First the derivative of
X^ is extrapolated, and by Simpson's rule in the
form (VI. 3.1) the value of X, is computed. This is
multiplied by Ex and entered in the column so headed
if ai 4 0 and in the co111™1 d A2/ds if a^

■ 0. In
the former case we multiply ExX^ by the coefficient
1 - (n - 2)a^/h and enter the product as d A2/ds.

(13)
XX(T)

-
X3(T)

- 0,

A2(T)
- - l/hy(T),

\(T) - 1.
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Again we apply (VI. 3.1) to find A2j and then compute
dX^/ds by the first of equations fll). If this dis
agrees excessively with the extrapolated value it
will be necessary to re-compute the line.

The alterations in previous formulas due to the
substitution (10) are simple ones. In (9), the term
involving should be replaced by

A2(t*) (2hy/*) (y/2g).

The second factor was computed in the process of in
tegrating the differential equations. Also, in the
case a^

■ 0 we can use equation (7), which in the
present notation takes the slightly simpler form

(1U) dx( AH*|y - y(T)) - A2(T) - A2(t*).
Equations (11) are noticeably easier to handle

than those of Section 2, whether by Bliss' method
or that of Gronwall. They form a second-order system,
as in Gronwall' s method, but they are not restricted
to the special case a^

■ 0, and they do not require
auxiliary calculations after the integration is com
plete, as in (5.13, 1U).

As a rather easy example of a use of the method
of this section (which however could equally well be
treated by either of the preceding methods) we shall
show that the relation

(15) maximum ordinate » (time of flight )^/8g,

which is exact for ground-to-ground trajectories in
vacuo, has an error which is of second order in y.
Thus we may anticipate that (15) will furnish a good
estimate for the maximum ordinate when time of flight
is known. Examination of a collection of artillery
trajectories will show that this is indeed the case;
the error in (15) is surprisingly small. Let us
choose the origin at the summit of the trajectory.
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As normal trajectory we select the trajectory in vacuo
with initial velocity vQ and angle of departure 0;
the time is taken to be 0 at the summit. Then the
equations of the trajectory are

(16) x - v0t, y - - gt2/2.
We first find the differential effects on time at the
level y - Y ■ - gT2/2 on the descending branch of the
trajectory. Since E ■ 0, the functions X2, X.

3 and
are all constant, as is evident from (1); and since the
initial values are given by (3)i we have

(17) \ - 1/gT, \3 - 0, \h = 1.

It is now easy to solve the first of equations (1)
with the initial value \^(T) - 0; the solution is

(18) X^t) - (t2 - tT)/vxT,
wherein we should recall that vx is a constant.

Now let us suppose that a range wind with speed wxis blowing; that the velocity at the summit changes
from vQ to v0 + Av.; and that the drag deceleration
changes from the value 0 on the normal trajectory to
the value ( AE)v on the disturbed trajectory. Then the
added acceleration has components - (AE)x, - (A E)y,
which are the ax and ay in (VIII.l4.i2). An important
property of A E is that it depends only on the velocity
and on the altitude, since density and temperature are
determined by the altitude. Since velocity and altitude
are the same at time - t as at time t, we have

(19) A E( - t) - A E(t).
Recalling that on the normal trajectory E is 0, from
(VIII. h. 12) we obtain.

(20) ei - - (AE)x, e2 - 63 ■
e^
- 0.
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The right member of (U) is the differential effect
on time at y ■ Y caused by the disturbances, sinceinitial conditions (3) were used. Since the only
initial condition changed is vxo and \-.(0) ■ 0, we
thus find

fT
(21) dt(q b » Y) I [U E)*(t2 - tT)/v^T ] dt,JO

where q is an abbreviation for the aggregate of all
the disturbances acting on the trajectory.

In the same way, in order to find the differential
effects at level y « Y - - gT2/2 on the ascending
branch, we solve equations (1) with initial condi
tions (3) holding at time t - - T. This time we ob
tain

Ut) - - (t2 + tT)/v T,
(22)

* X

^ - - 1/gT, X3
- 0, Xu

- 1.
Corresponding to (21) we obtain for the differential
effect of the disturbances at altitude Y on the ascend
ing branch

(23) dt(q|y-Y)- + fJ [ U E)*(t2 + tT)/vxT ] dt.

If we change variable from t to - t, recalling that
A E and x have the same values at - t as at t, we
find that this is the same as (21). That is, to first
order the change in time of passage of altitude Y on
the ascending branch is the same as the change in time
of passage of altitude Y on the descending branch.
Therefore the time of flight, which is the time-inter
val between the two passages of altitude Y, is to
first order left unchanged, as we wished to prove.
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J. Moulton's method.

Since the computation of difl'erential effects by the
methods of Sections 2, 5 and 6 requires integrating the
adjoint system of equations from time T backward, it is
evident that it requires some modification before it can
be effectively applied to trajectories in which, mathe
matically speaking, there is no end point. In Section 1
it was mentioned that anti-aircraft trajectories and
bomo trajectories are of this type. This difficulty can
be circumvented in either of two ways which superficial
ly seem quite different. The first possibility is to
find a basis of solutions of the adjoint system. In
terms of this basis we can express every solution of the
adjoint system. So when we select any particular point
at which we desire to fina differential effects, say on
range, we can form that combination of the solutions in
the basis which has values (2.2) at the point where the
effects are wanted. From this point we can proceed as
in Section 2. The second possibility is to find a basis
of solutions of the homogeneous equations of variation,
consisting say of equations (VIII. 3*11) with all ei set
equal to 0. Then the solution of the non-homogeneous
equations (VTII.3.11) can be found from this basis by
means of equation (1.19). The former of these methods
was suggested by Bliss in his. original papers on the
adjoint system; the latter is proposed by Moulton in his
book New Methods in Exterior Ballistics (Chicago: The
University of Chicago Press, 1926). It is interesting
to observe that the two methods are not really as dis
tinct from each other as a first glance might suggest.If, for example, we select the second method, in order
to use equations (1.19) we must compute the functions
X. .. But these functions form a basis of solutions of
theradjoint system. On the other hand, if we select the
first method we integrate the adjoint system to find a
basis of solutions of the adjoint system. For a given T
we wish to find the combination of these functions whose
values at T are given by '(2. 2) or by (2.12) if differential effects on time are desired. This means that we
must solve equations like (1.7) with the in place
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of the K^v. But the method of solving these equations
explained in the sentences following (1.7) would lead us
to functions which form a basis of solutions of the
homogeneous equations of variation.

Since the differential effects on deflection have
already been discussed, we need only consider the first,
second, fourth and fifth of equations (VIII.3.11).
These may be written in the form:

2)ai]Exn - E$
D/v2](x$+ yn) + eh,

2)]Ey - Ef)
D/v2](x^+ y*U ♦ e5.

We seek a basis of the homogenized equations (1), that
is of equations (1) with e^ set equal to 0. For this
we need four sets of functions

(2) ^t), n v(t), £v(t), r,v(t) (v- 1, 2, 3, h)
each of which satisfies (1) with ej_ = 0 and whose
determinant is not zero. By (5.6) one solution is

(3) ^(t) - 1, njU) » 0, tjit) = 0, ^(t) - 0.

By (5.10) another solution is

52(t) = *(t), r,2(t) - y(t),

(I) (2(t) « x(t) - - Ex(t),

n2(t) * y(t) - - Ey - g.

(i)

d^/dt - &
dri/dt » f,,

d^/dt = [h - (n
- Ex[(n

dtydt - [h - (n
- Ey[(n
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It remains to find two more solutions by numerical
integration. The initial values, a*t time t ■ 0, of
these remaining two solutions is immaterial, apart
from the requirement that the determinant

(5) D(t) -

C3(t)

T)2(t) n3(t) \(t)

n2(t) 13(t) nu(t)
be not zero. However, as Moulton points out, for
firing tables it is necessary to know the change of
range with change of initial velocity and also with
change of angle of departure. Hence it is convenient
to choose initial values of the last two sets of solu
tions in such a way that one of them corresponds to
change of initial velocity alone, the other to change
of angle of departure alone. Since

(6) x(0) - vQ cos 90, y(0) =
vQ sin 90,

corresponding to a change A vQ in initial velocity
we have

(7; Avxo« Av0 cos 0O, Avyo
= Av0sin90.

So for the initial values of the third solution of
the equations of variation we select

S->(0) - 0, n,(0) =.0,
(8) 3 3

£3(0)
= cos eo,n.3(0) = sin 9Q.

Corresponding to a change A 90 in angle of departure
we have, to first-order terms,

A v - - v sin 0nA9ft - - V, A 0
. , xo o oo yo o'

yo o o o xo o
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So for the fourth solution we shall choose, except
in the case

<10J

» 0, the initial values
0, ^(0) - 0,
- V__ , f\ , (0) ■ v

•yo

With these initial values of the solutions, determinant
D has at t - U the value

(11) D(0) -

1 vxo 0 0

0 V .0 0

0 - Evxo cos e0
- V

0 - Evyo - g sin 0O vxo

Unless launching is horizontal, as it is in the case
of bomb trajectories, this is different from zero,
and the four solutions form a basis. In the case of
horizontal launching the four functions fail to form
a basis; so instead of (10) we would use, for example,
the initial values
(12; <u(o; - o, yo; - 1, £u(o; = o, nu(o; = o.

If these are put in place of the last column in (li;
we find D(0) ■ g cos 60 4 0, so this set of four solu
tions forms a basis.

In the case vyo If 0 Moulton suggests replacing the
initial values (10 ) by their ratios to v0vyo, so that
D(0) = 1. This results in a slight computational
saving in finding D(t).

After the third and fourth solutions have been found
by numerical integration of equations (i; with e^

» 0,
it would be possible to compute the determinant D(t;
from equation (5). But computationally this is quite
undesirable. It is much easier to compute D(t; with
the help of (1.6;. Since in (i; there are four equa
tions, the integrand in (1.6; is the sum of four terms;
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the first is the coefficient of £ in the first equation,
which is 0; the second is the coefficient of t) in the
second equation, which is also Oj the third is the co
efficient of £ in the third equation, which is

- E - Ex2(n - l)/v2j
and the fourth is the coefficient of tj in the fourth
of the equations, which is

- Ey2(n - D/v2 - E.
The sum of the four is - (n + 1)E, so by (1.6) we have

(13) D(t) - D(0) exp f [- (n + 1)E] dt.J o
Since E is known from the trajectory sheet, and n ♦ 1
can easily be found from quantities entered on the sheet
on which the third and fourth solutions of (1) were com
puted, the integrand (n + 1)E can be found without dif
ficulty. Then, by a numerical quadrature and a table of
the exponential function, D(t) can be found.

Next we need the four-by-four array of functions
Xv^(t) defined by equations (1.11). The first column is

(1U) ^n(t) - l, \21 - X31 - \hl « 0.

The second column is

\12(t) = - *\22(t) -S3 X^U)
-
4U ^(t),

(15)
"
*32(t)

- lmh - (g > Ey)tU]/D,

\2it) - [(g ♦ Ey)C3 - Exnj]/D.
It will be seen that only the values at -t • t0 of
the functions (15) enter the computations, so it is
sufficient to compute them for this single value of t.
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(16)

Moreover, even the values at t - to enter only in find
ing the differential effects of change of location of
the muzzle, and unless these effects are wanted we may
omit the four functions (15) completely. The third
column of the array is

X13(t; - [- itf3rih - n3nu)
- (,^y\ * (g + EyJ'V

x23(tj - [%\ - Vu]/D'
^33(t)

-
[y^u ♦ (g ♦ EyjnJ/D,

\^t} " "
£**3

* (g + EyjT,3]/D-

It might be a help in computation to observe that the
first of these is the sum of - x times the second,- £3 times the third and - $h times the fourth. The
fourth column of the array is

\lh(t) « [- i(n3^ -
nUS3)

♦ S3(y£u ♦ £inu)
- Zulft* + Extu)]/D,

(17) h 3 3

The remark after (16) applies here also.

We are now ready to use equations (1.19). However,
we must observe that the quantities which in Section 1
were denoted by the symbols e^, e2, 63, ej^ are here
designated as 0, 0, e^, ecj, because we have omitted
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the third of equations (VIII. 3. 11). Equations (1.19)
can be put in the form

h

v-1 v

(18)
ti

n(t) - £ n^t) cv(t),v-l
with the corresponding equations for the derivatives
of £ and T), the coefficients c^(t) being defined by

Cv(t)
(19)

- cv(t0) ♦ I [Xv3(t) eu(t) +\u(t) e5(t)] dt,J tQ
where the initial values of the c v are

(20)
Cv(to) " Kv^to)Ax° + ^^o^yo

(Here it is understood that initial values for the
trajectory are given at t0 and that A x0, etc., are
the changes in these initial values.)
If we wish to find the effects of a change in ini

tial conditions, it would be possible to compute the
functions in (lb), (15), (16) and (17) at t - tQ,
compute the cv(tD) by (20), observe that by (19) the
c ^t) are constants because the ei vanish identically,
and finally compute £(t) and n.(t) by (18). These are
the differential effects on x and y at fixed t, due
to the disturbance in initial conditions. From them
we can deduce the differential effects on time and
range at fixed y or on time and altitude at fixed x,if these are desired; we have only to apply (VI1. 1.10)
or its special case (VIII. 3. 22). But because of the
way in which we have selected the initial values
of the second and third of the solutions of (1),
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we already have the differential effects of the most
important changes in initial conditions; these are the
functions £31 and

n.^
themselves.

If initial values are unchanged, but there is some
disturbance which causes the e^ to be different from
zero, we first compute the corresponding e^ and e£.
The functions in (16) and (17) having been prepared,
we form the integrands in the four integrals (19) and
perform quadratures so that the cv(t) are known for
the entire interval of values of t for which the normal
trajectory was computed. Then equations (18) furnish us
with the differential effects of the disturbance on x
and on y at all times t from the start to the end of the
computed trajectory. From these we may find the effects
on range and time of flight at fixed y or on time of
flight and altitude for fixed x if we so desire.

The process of computing a weighting factor curve is
closely analogous to that in preceding sections. Sup
pose, for example, that we are studying the differential
effects of a departure from standard temperature. The
differential effects are desired at a point of the tra
jectory where time is T and y is y(T). Let t* be a time
intermediate between t« and T, and suppose that A 9 is
zero at times before t and is equal to 0 at all times
after t*. By (VIII. 3. 18) and (19) and (20), we see that

(21) cp) - - f 'iEn(±\3 + y\u) dt.

With these coefficients we compute £(T) and rj(T) by
(18). If we wish the differential effect on x at fixed
y, we apply (VII I. 3. 21) to obtain

(22) dx(&e|y - y(T)) - £(T) - cot 9 tj(T).
This is the quantity called h(t*) in Section 5 of Chap
ter VIII. From it we deduce either unit effect and
weighting factor curve, or else norm effect and normal
ized effect curve. If the curves are wanted for several
different values of T, the materials are at hand;
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it is easy to change the upper limit in (21) and make
the corresponding changes in (18).

The weighting factor curves and unit effects for
differential effects of range winds can be obtained
without performing the quadratures in (19) by using
(VII. U. 7, 8). Also there is a device by which the
weighting factor curves and unit effects for the dif
ferential effects of departures from standard density
can be found without performing these quadratures. The
details will not be written out here. They will be
found in the next section, in connection with the method
of computation of differential effects explained there.
The authors are of the opinion that the method in the
next section is computationally preferable to the one
just explained, and will leave further details of spe
cific applications of the present method to any reader
who may be interested in its use.

8. Differential corrections based on slope.

For trajectories having no specific end point, it is
possible to compute the differential effects of distur
bances at a smaller cost in time and effort than is re
quired by the method of the preceding section. The
method now to be described has as its central feature
the matching of points of equal slope on normal and
disturbed trajectories. Before beginning it two remarks
of a general nature should be made. First, the method
is equally applicable to anti-aircraft trajectories and
to bomb trajectories. In the latter, however, it is
customary to choose the y-axis positive downward. The
adaptation of our formulas to this system of coordinates
is quite easy; all that is needed is to replace h, g and

a^ everywhere by - h, - g and - a^ respectively. Second
on bomb trajectories it will often be found that for
large values of t the trajectory has been computed with
a number of significant figures in x and 5c inadequate
for present purposes. However, E has a sufficient
number of significant figures, so we can find improved
values of k by integration of the equation x ■ - Ex.
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From this we obtain

(1) x(t) - x(t0) exp

In the system of equations (VIII.l4.ll) the first
two can be solved independently of the last two; the
last two can be solved afterward by a quadrature. We
isolate the first two and write them in the homogene
ous form, with e^

• 0, obtaining

do/dt - - (n + l)Ep + [h - (n - 2)a-,]Exn,
(2)

dn/dt - (2y/i)p.

From the trajectory sheet we can find v2/l00 for each
tabular t, and with this and a table of n we can find
n + 1 and n - 2. The trajectory sheet also furnishes
us with E and f, and x we obtain either from the tra
jectory sheet or if necessary from (1). So for each
tabular value of t we can compute the three coeffi
cients in (2). IVe suppose these prepared and tabu
lated. The numerical integration of (2) with given
initial values is a fairly easy task. One reasonable
procedure would be to extrapolate the second differ
ence of dp/dt, compute p on the new line by Simpson's
rule in the form (VI. 3.1), compute dn/dt by the second
of equations (2), compute n by Simpson's rule in form
(VI. 3.1), and then compute dp/dt by the first of equa
tions (2). If this disagrees excessively with the
original extrapolation the line must be re-computed.

We shall -need two independent solutions of (2), in
order to have a basis of solutions. Any two will be
satisfactory. Usually it will be convenient to choose
(1, 0) and (0, 1) as the two sets of initial values.
Thus if, as usual, the trajectory begins at time t ■ 0,
we select initial values
(3) px(o) - l, n1(o) - 0; p2(o) - 0, n2(o) - 1.
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As a result the determinant

Pl(t) P 2(t)
U) D(t) -

^(t) n2(t)
will have the initial value
(5) D(0) - 1.
However, this is not essential; it is merely some
what convenient. The determinant D(t) could be com
puted without much trouble from the formula (h) after
the two solutions of (2) have been found. However,
by (1.6) we have

(6) D(t) - D(0) exp [- (n * l)E]dt.

The integrand is already available, being one of the
coefficients in (2). So the computation of D(t) by (6)
is easy, especially if the initial values (3) are used
so that D(0) ■ 1. Having the independent computation
(6) for D(t) furnishes us with a valuable computational
check on the numerical integration of (2).

After the four functions P.i, t]^, p2, have been
found, we can compute by quadratures the four functions

(7)

T2(t)
t
(1/x) p2(t) dt

0
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We tabulate these four functions. It is possible
to proceed without computing them, but they are use
ful in simplifying the computation of differential
effects of range winds and departures from standard
density.

Since there are two equations in the system (2),
equations (1.11) define four functions, namely,

(S)

Kn(t) - t,2(t)/D(t),

\12(t) - - p2(t)/D(t),

K21(t) - -^(tVDU),

X22(t) - Pl(t)/D(t).
Suppose now that there are disturbances which produce
changes in initial conditions and also disturbances
along the trajectory. The corresponding functions ei ,
e2, e^, ej^ can be calculated by means of (VTII.U.12),
while the initial values of the functions p(t), etc.,
are furnished by (VIII. U. 13). Then the differential
effects at equal values of the slope ra are given by
the functions p(t), etc. By (1.19) and (VIII. U. 11)
these functions have the values

(9)

p(t) - cx(t) Px(t) + c2(t) P2(t),
ii(t) - Cl(t) muj + c2(t) ^(t),

tt'ti ■ £(t0) ♦ \ (2P ♦ e3) dt,J tQ

T(t) - T(tc) + [ (p/± + e^) dt,J to
wherein the two coefficients c^, c2 are defined by
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<?i(t) - [i2(t0)p(t0) - p2(t0)n(t0)]/D(t0)

J t0
(10)

c2(t) - [ - VV^V + Pi(t0)n(t0)]/D(to)

♦ [ [( - lie! + P^VD ] dt.
J to

In these equations it is not necessary that t0 be 0.If it is, the first terms in the right members of (10)
are somewhat simplified.

To find the effects of a change in initial condi
tions, we take t0 * 0 and all ei ■ 0 in these equa
tions. If the initial values of the two solutions
of (2) are given by (3), by (3), (10) and (VIII. U. 13)
the Ci are the constants

(n)cl
* P^o) " *vxo " (E/gXvxo*vyo " vyoAVxo>»

c2 -l(t0) ' 4y0 ♦ (vyo/gvXo)(vxo 4vyo - vyoivxo).
Then by (9), (7) and (VIII. U. 13),

p(t) - c1p1(t) ♦ c2P2(t),
T)(t) - ciTn(t) + c2\{t),

(12) £(t) - AXq + (l/g)(vxoA vyo - vyoAvxo)
♦ c]£i(t) ♦ C2^(t),

r(t) « (l/vxo)(vxoA vyo - vyoAvxo)
+ C1T1(t) + C2T2(t).

From these the differential effects at fixed values of y
can be found with the help of equations ( VI II. U. 16).

Consider next the differential effects of a dis
turbance which does n'ot affect initial values, but
produces terms not all zero. We first compute the
e^ by (VIII. lj. 12) , and then by numerical quadrature
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(13)

we compute and tabulate the integrals

Jl(t) - J [(l2ei - P2e2)/D ]dt,

J2(t) "
J K " Vl + plelVD] dt,

J3(t) - ( [2(J1p1 + J2P2) + e3l dt>J o

Jj,(t) - j [(1/x)(J1p1 + jp2) + e^]dt.

By (10), the first two of these are respectively ci(t)
and c2(t). Hence by the first two of equations (9)

P(t) - J,(t) P,(t) ♦ Jp(t) P?(t),
rj.(t) - Jx(t) ^(t) + J2(t) n2(t).

This and the last two of equations (9) show that the
last two functions in (13) are respectively £(t) and
T(t). If q stands for the disturbance producing the
functions e^, by (VIII.I4.I6) and the preceding equa
tions we have

dx(q|y - y(T))

(15)
" J^T) " t*(T)/^(T;*Jl(T)l,l(T) + J2(T>VT>]»

dt(q|y - y(T))
-
JU(T) -[l/yd^^T^CT) + J2(T)ri2(T)],

together with two equations for the differential effects
on components of velocity which we shall omit.
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If we were interested only in a- single value of
T, this method could not compete with that of Sec
tion 6. To obtain the quantities in (15) two numer
ical integrations of equations (2) were needed, plus
the four quadratures ( 13 ) • If only the differential
effect on range is desired, this could be attained
by the method of Section 6 at the cost of one numeri
cal integration of equations (6.1), which is about
as much work as one integration of (2), followed by
a single quadrature (6.5). If differential effects
on both range and time of flight are desired, the
advantage of the method of Section 6 is much dimin
ished, for then two numerical integrations of (6.1)
and two quadratures would be needed. But if -differ
ential effects both on range and on time of flight
are desired at as many as two different values of T,
the four integrations and four quadratures called for
by the method of Section 6 would require more work than
is called for by the present method; and the advantage
of this method increases with each increase in the
number of values of T at which the differential ef
fects are to be found.

If we compare the method of this section with that
of Section 7, we notice first that the two integrations
of (2) are considerably easier than the two integra
tions of (7.1), which amount to two integrations of
a third-order system followed by two quadratures.
Equations (2) are of second order, and have simpler
coefficients than (7.1). The quadrature (6) is a
trifle easier than the identical computation (7.13)
because the integrand in (6) is already tabulated as
one of the coefficients in (2). The four quadra
tures (13) are of the same order of difficulty as the
four quadratures (7.21)'. But the remaining numerical
work, consisting mostly of (15), is far less labori
ous than the computations (7.15, 16, 17, 13).

If the disturbance is of a type for which weighting
factor curves are needed, we can find these curves by
a modification of the method just described, although
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we shall see later that for the important cases of range
wind, departure from standard density and departure from
standard temperature easier methods can be found. What
ever be the type of disturbance, when the disturbance q
has unit value, the functions e^ will have certain
values given by (VTII.U.12). With these ei we compute
and tabulate the four integrals (13). Now let t* be any
time between 0 and the last tabular value of t, and let
q* be a disturbance of the type being discussed whose
value is 0 at all times prior to t* and is 1 at all
times thereafter. The corresponding ei are those for
which the integrals (13) were computed when t > t*; for
t < t* the e^ are zero. By (10),
(16) Cl(t) = Jx(t) - JjU*), c2(t) - J2(t) - J2(t*).
Then p(t) and n(t) are given by the first two of
equations (9), while

[ (2P + e-,) dtJt* J

J3(t) -J3(t*) - J^t^^U) - Sx(t*)]
- J2(t*)U2(t) -e2(t*)],

( (p/x + eL) dtJt*

#t)

(17)

:(t)

- Ju(t) - Ju(t*) - J1(t*)[x1(t) - xx(t*)]
- J2(t*)[T2(t) - T2(t*)].

By means of (VIII. U. 16), from the functions n.(t) given
by (9) and (16) and the functions 3t) and x(t) given
by (17) we form the differentials dx(q*|y - y(T)) and
dt(q*|y ■ y(T)) for any desired value of T. From these
functions of t* we can find the effect curves as in
Section 5 of Chapter VIII, and from these effect curves
we can compute either unit effects and weighting factor
curves, or norm effects and normalized effect curves.
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It is fortunate that for the important special
cases of range wind, density and temperature effects
a simpler procedure can be devised. Consider first
the case of a range wind. Let wx* be a range wind
which at all times before t* has the value 0 and at
all times thereafter has the value 1. We regard t*
as the initial time; no disturbance has taken place
previously, and by regarding t* as initial time and
confining our attention to subsequent times we may
consider that there is a wind of constant strength 1
at all times from initial time on. If the initial
conditions (at time t*) are changed by amounts

(18) Ax . Ay a AVy « o, Avx - 1,
by (VIII. h. 13) the functions p(t), etc., have the
initial values

p(t*) - 1 + Ey(t*)/g,
n(t*) - -[y(t*)]2/gx(t*),
Kit*) - - y(t*)/g,
T(t») - - y(t*)/gx(t*).

To find the differential effects at a time t later
than t* produced by the change in initial values (18)
at time t*, we first apply (10) with the e^ set equal
to zero and with t0 chosen as t*. The c^ are then
constants, with values

Oj. - {T)2(t*)[l * Ey(t*)/g]

♦ P2(t*)[y(t*)]2/gx(t*)}/D(t*),
(20)

c2
- -{1 !(!*)[! ♦ Ey(t*)/g]

+ P 1(t*)[y(t*)]2/gx(t*)}/D(t*).
The functions p (t), etc., defined by (9) with these co
efficients are the differential effects on vx, etc . , at
equal values of m, caused by a change of 1 in vx(t*).
So by (VII. 3. 10) these are the quantities denoted
by [6vx/6vx(t*) ]m=m(T) » etc. With this notation
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equations (9) become

Ovx/&vx(t*)]m(T) - clPl(T) + c2P2(T),

[MTx(f)^t)
- - y(t*)/g ♦ c^Ct) - d(t*)]

(21) * c2K2(T) - ?2(t»)],
P>t/6vx(t*)]m(T)

- - y(t*)/gi(t*) + ciCx^T) - ^(t*)]
♦ C2[T2(T) - T2(t*)].

Combining these equations with (VIII. U. 16) and (VII.U. 8)
yields

dt(wx*|y - y(T))
- y(t*)/gi(t*)
- c^cr) - TX(t*) - \(T)/jW]
-c2[t (T) - T2(t*) -n2(T)/y(T)],

(22)
d d d d

dx(wx*|y - y(T))
- T - t* + y(t*)/g

- ^(T) -Cl(t*) - (xdVKTjh^T)]
- c2U2(T) - £2(t*) - (i(T)/y(T))ri2(T)],

together with two equations for the differential ef
fects on the components of velocity which we shall
not exhibit.

Equations (22) have been used in the following way.
For an appropriate selection of values of t* (the selec
tion t* ■ 2, Uj and all multiples of 3 seconds was found
serviceable) the coefficients c^ and c2 were computed
by (20). The effects (22) were desired at certain
values of T which were exact multiples of 1000 feet;
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these corresponded to non-integral values of t, say
Tn, .... Instead of interpolating for the values
of the functions corresponding to these T^, a graph of
each function (22) was drawn, showing it as a function
of T for each fixed selected t*. Points on the graph
were found for tabular values of t near the Tj_, so
that the graphs would be accurate at the T^. The re
sulting graphs had the appearance of Figure 1. Now
for each selected the graphs furnish the values of
dx(wx*jy - y(Ti)) and dt(wx*j y * y(Ti)) for the selected
values of t*. Thus for each fixed Ti the differential
effects are known as functions of t*. These are the
same as the functions h(t*) of Section $ of Chapter VIII
from which the unit effects are weighting factor curves
may be deduced.

There are three of the more important disturbances,
namely, departure from standard density, departure from
standard temperature and change of G, which share
the property that &2

*
e3

3
ek

" 0* as i-s shown by
(VIII. h. 12). It is possible to utilize this common
property in such a way as to avoid the quadratures (13)>
or rather to replace these quadratures by a much simpler
computation. Let Ei(t) be a function continuous for
tQ 5 t 5 T. To be specific, we shall suppose that
we are interested in the effect on range at height
y • y(T); a similar discussion applies to effect on
time of flight. If a disturbance (say in density) is
absent until time t* and from t* to T is present in
such magnitude as to produce e^ - ei(t), it will have
a certain differential effect, which we will call
f(t*, T). By (6.U) we know that there is a certain
function ^(t) such that

(23) f(t*, T) - J #Xl(t) el(t) dt5

and we shall make use of this. However, the real point
of the present discussion is the avoidance of the ac
tual computation of this and related integrals.
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Next we suppose that q(t) is a unit disturbance of
any one of the three types mentioned in the first sen
tence of the preceding paragraph. To this disturbance
corresponds a continuous function ei(t); as already
stated, &2 " ■ ■ 0. Let q-t,*tt) be a similar
disturbance which is 0 before time t* and is 1 there
after. We denote by h(t*, T) the differential effect
of qt* on range x at height y - y(T):

h(t*, T) - dx(qt#|7 - y(T)).
This is the same as the h(t*) of Section 5 of Chap
ter VIII. Again by (6.U),

(210 h(t*, T) - f e-,(t) X-,(t) dt.
Jt*

Now let t^ - t 5 t2 be an interval on which neither
z\ nor X-i is zero. Let b and B denote the least and
greatest values of the ratio e]_(t)^i(t) for the inter
val t]_ 5 t - t2. Then on this interval we have

(25) bejUJX^t) <
e1(t)^1(t)

<
Be^tJ^t)

if ei*X^ > 0, the inequalities being reversed if
el*Xl < 0. By integrating from t\ to t2,

b[f(t2, T) - f(t,, T)]S h(t2, T) - h(t,, T)
(26)

5 B[f(t2, T) - f^, T)],
the inequalities being reversed if ei'^i < 0. In any
case, h(t2, T) - h(^, T) is the product of

[f(t2, T) - f(tx, T)]
by a number between b and B, which by the continuity of
&l/c1 is the value of e^(t)/ ^(t) at some t between t^
and t2. We have thus shown, that if Ei*X^ 4 0 between t^
and t2, there is a number t between t^ and t2 3uch that

h(t2, T) - h(t-., T)
(27) - [e1(t)/e1(t)]-[f(t2, T) - f(tx, T)J.
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This statement attains usefulness by way of a judi
cious choice of £i(t). We select

e^t) - - Ex[h - (n - 2^].
If we substitute this in place of e^ in (VIIT.U.ll) ,
along with B2

™
e3
" eL ™ 0, the resulting equations are

dp/dt - - (n + 1)EP ♦ [h - (n - 2)ax ]Ex(n - 1),
dn/dt - 2yp/x,

(23)
dS/dt - 2P,

dVdt - (l/x)

Thus we see that from time t* on, the four functionsP(t), n(t) - 1, 5(t), f(t) satisfy the homogeneous
equations (VIII.l4.ll) . At time t* the values of x,
y, x and y are unaffected by the disturbance, so by
(VIII. h. 13) all four functions p(t*), n(t*), £(t*),
x(t*) are zero. Since p(t) and n(t) - 1 satisfy (2),
they must be linear combinations of the two pairs of
functions in the basis, so that there are constants
cl> c2 such that

p(t) =■>clPl(t.) + c?p?(t),
(29)

n.(t) - 1 = c1T)L(t) + c2T2(t).
The coefficients can be found by setting t - t*; they
are

(30) cx - P2(t*)/D(t*), c2 - - P1(t*)/D(t*).
From (28) and the fact that £ and f vanish at t* we find

(31)
^(t) " °llKl{t) ' KlW ] + C^{t} " ^2(t*)3»

T(t) - C^T^t) - T^t*)] ♦ C2 [*£t) - T2(t*)].
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Thus at altitude y - y(T) the disturbance &i(t) has the
differential effects (recalling ( Vlll.U.lfc) )

dx^Jy - y(T))
- - (x(T)/y(T))

- P,(t*)[UT) - (x(T)/y(T))n9(T) - L(t»)])/D(t»),
(32)

1 2 2 2

dt(^|y - y(T))
- - l/y(T)

♦ (p2(t*)CTi(T) - (l/^Tj^T) -^(t*) ]
- Pi(t*XT2W - (Vy(T))n2(T) - x2(t*)]}/D(t*),

together with expressions for differential effects
on components of velocity which we shall not write.

To be specific, let us suppose that we are trying
to find differential effects on range; differential
effects on time of flight can be treated in the same
way, using the second of equations (32) instead of
the first. Let the left member of the first of equa
tions (32) be denoted by f(t*, T). Let us select
any one of the several values of T at which the dif
ferential effects are wanted. For this fixed T we
compute f(t*, T) for a collection of values of t*.
This is somewhat easier than might be suspected from
a first glance at (32). The first step would be to
compute the three numbers

x(T)/y(T),

(33) ^(T) - (xtTVyWJn^T),
£2(T) - (x(T)/y(T))n2(T).
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If t* is any tabular value of t between 0 and T, we
can compute f(t*, T) on a computing machine without
writing any intermediate steps. First we set P2(t*)
on the keyboard, multiply it by the second of num
bers (33) and then by - £i(t*). The result is left
on the dials, and the keyboard re-set to the number
p^(t*). This is multiplied by the negative of the
last of the numbers (33) and by J^*"*)* The l°ng row
of dials now shows the quantity in braces in the first
of equations (32). This is divided by D(t*). The
quotient is set into the keyboard, and the first of
numbers (33) added to it to furnish f(t*, T). .

Now let us apply this to find the effects of a de
parture from standard density. A unit change in density
ratio is one for which M * H for all y. The corre
sponding ei, by (VTII.U.12), is

At any particular T, the differential effect on range
produced by a departure from standard density such
that A H - 0 before time t* and A H - H thereafter is
h(t*, T). If the interval from 0 to T is subdivided
into small intervals by points

each small enough so that el>i does not change sign
on it (note that is positive), then (27) holds.
Although t is unknown, a g^ood approximation can be
had by replacing e\{t)/^i{t) by the arithmetic mean
of its values at the beginning and end of the small
interval. But

(3b) e-j_
» - Ei.

t0 • o> *a, t2, . . • ,

(35)

Hence, approximately,

(36)
h(tif T) - h(ti_1, T)

- Uv(35))[f(ti, T) - fCtj^.T)],
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where (Av (35)) means the average of the values of the
quantity in (35) at tj_i and at t^. Since h(T, T) - 0,
by addition of the differences in (36) we can find
h(ti? T) for each t±.

In case a^
» 0, the process is a little simpler, for

then the quantity (35) is always l/h, and therefore

In either case, from h(t, T) we proceed as in Sec
tion 5 of Chapter VIII to compute either unit effects
and weighting factor curves, or else norm effects and
normalized effect curves, completing the task.

Next consider a departure from standard tempera
ture such that A 9/9 - 1. By (VXII.lt.12), the cor
responding e^ is ,

Therefore

(39) e1(t)/e1(t) - - (n - 2)/2[h - (n - 2)ax].
As before, let h(t*, T) be the differential effect
on range produced by a departure from standard tempera
ture such that A 9 " 0 before time t* and A 9 * ©
after time t*. Then by (27) we have approximately

h(ti, T) - h(ti_1, T) « (Av(39))[f(ti, T) - flty, T)],
where Av(39) is the average of the values of the quan
tity in (39) at tj_i and at tj.. Since h(T, T) - 0,
this permits us to find by addition the values of
h(t^, T), which as usual can be used to compute either
unit effect and weighting factor curve, or else norm
effect and normalized effect curve.

A similar procedure can be applied to a change in
G, but in this case only the differential effect is
desired; no weighting factor curves are required.

(37) h(t, T) - f(t, T)/h.

(38) ex(t) - E*(n - 2)/2.
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9. Non-linear effects of large temperature changes .

In the process of finding "the differential effects
of disturbances, there was in essence a double linear
ization. In the first step, equations (VIII. 2. 17 ) were
shown to provide linear functionals of the A fi which
approximated the effects of the disturbances A f^ with
an error which vanished to the second order with the
norm of the disturbances. In the second step, the
A fi themselves were replaced by approximations linear
in the several variables appearing as parameters in
the f^, which in the ballistic applications were the
density, relative sound velocity, etc. This second
step in linearization leads to no additional error
in the .case of density, since E is already linear in H.
But the temperature Q, expressed in degrees Kelvin,
enters through the relative sound velocity

(1) a - JQ/28Q,
which occurs in the equation

(2) E - Y H(y) a G(u/a).
The dependence of E on 0 is therefore by no means
exactly, linear. We may anticipate, as a result, that
the differential effect of 'a fairly large departure
from standard temperature will be a less accurate ap
proximation to the actual effect than will the dif
ferential effect of a comparably large departure from
standard density. This is in fact the case. Differ
ential corrections are adequately accurate for small
departures from standard temperatures, but leave rather
excessive residual errors when the departure from
standard temperature is as much as 50 degrees or
60 degrees Centigrade.

Insofar as these departures from standard tempera
ture are caused by fluctuations, not much can be done
about them. But at high altitudes there is not much
fluctuation, and it is possible to keep the depar
tures from standard rather small by judicious choice
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of standard temperature law. Unfortunately, in the
case of the trajectories of bombs we are handicapped
in the choice of temperature law by the need of using
a constant standard temperature. It was pointed out
in Section 2 of Chapter IV that by assuming a^

■ 0,it was made possible to eliminate one parameter and
thereby greatly reduce the number of trajectory com
putations needed to prepare a set of bomb ballistic
tables. Although the assumption of constant tempera
ture of 59 degrees Fahrenheit is rather far from the
truth, it leads to no serious trouble when the altitude
of release does not exceed some 25,000 feet. For then
in the upper portions of the trajectory A Q may be
quite large, but the bomb has not yet reached velocities
near the velocity of sound, so E is not yet large and
the factor n - 2 is also not much different from zero.
In the lower parts of the trajectory (n - 2)E is larger,
but these parts of the trajectory are in the warmer
levels of the atmosphere near the ground, and so A 9
is not so large. However, when the release altitude
exceeds 25,000 feet the effect of departure from stan
dard temperature becomes more significant. But it
is hardly feasible to make a differential correction
for departure from standard temperature. At strato
spheric levels the departure from the constant standard
of 59 degrees Fahrenheit is normally over 100 degrees
Fahrenheit, and the differential effect of such a de
parture from standard temperature may be a very poor
approximation to the actual effect.

Let us then envisage ourselves in the following
situation. A number of trajectories have been computed,
with an assortment of values of v0 and ys (or Cg), each
running through a range of values of y beginning with
0 and ascending to a bound greater than any reasonable
bombing altitude. Each of these is computed on the
assumption that standard sound velocity ratio a is
constantly equal to 1. From them a set of ballistic
tables has been prepared, showing range and time of
flight as functions of release altitude Y, initial
velocity v0 and reciprocal ballistic coefficient Y.
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Also, unit effects and weighting factor curves are
prepared for several types of disturbance, including
departure from standard density. Now we choose a new
standard relative sound velocity function a*(y) which
is a better approximation to average conditions than
the original standard a ■ 1. We wish to find adequately
accurate answers to two questions:

(A) . Suppose that a bomb of reciprocal ballistic co
efficient y is dropped from altitude Y with speed vQ,all conditions being standard including the relative
sound velocity, which is the new standard a*. The
bomb will have a certain range X and a certain time
of flight T. If in the ballistic tables we find the
reciprocal ballistic coefficient of a bomb whose range
is X when release altitude is Y and initial velocity
is vQ, the value we find will not be Y, but will be
some other value Yj, j, because the ballistic tables
were prepared under the assumption a ■ 1. (The sub
scripts b, X are intended to signify that the Y was
found from the ran^e by using the ballistic tables.)
Similarly, from the ballistic tables we find that if a
bomb has time of flight T when dropped from altitude Y
at speed vQ, its ballistic coefficient must be Y^ f,
which will be different from y because of the assumption
a » 1 underlying the ballistic tables. How can we
determine ^ from Y, and conversely; and how can we
determine Y^t from 7, and conversely?

(B) . On any given day, the temperature will not be
the same as standard. How can we find the differen
tial correction for the effect of the difference be
tween actual temperature and that corresponding to
the new standard relative sound velocity function a*?

If the drag function on which the tables are based
is not greatly different from the actual drag function
of a given bomb, after corrections have been made for
all departures from standard conditions we should
anticipate that experimental range bombings from
various altitudes will provide nearly equal values
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for the reciprocal ballistic coefficient. But if the
tables have been based on constant 59 degree Fahren
heit temperature, and no correction is made for de
parture from standard temperature, it is to be expected
that experiments at different altitudes will lead to
different estimates for y » the variability being es
pecially marked when the release altitude is great.
This makes extrapolation to altitudes and speeds be
yond those of the experiments both more difficult
and more doubtful. If we can answer (A) and (B) with
satisfactory accuracy, we will be able to correct
for effects of temperature and thus (presumably) to
obtain more nearly constant values of y from the ex
periments, with consequent gain in ease and trustworth
iness of extrapolation.

Since we are interested in effects of temperature
changes and not in effects of change of initial con
ditions , we shall assume that the bomb is launched
horizontally with speed v0 at height Y. We can choose
the origin vertically below the point of release and
integrate the equations of motion with initial values
x(0) * 0, y(0) - Y, i(0) - v , y(0) - 0. At the point
at which y ■ 0 the x-coordinate will be the range X
and the time will be the time of flight T. It is of
course not usual to choose the axes in this way, since
the axis system in Section 2 of Chapter IV is more
convenient in practice. Nevertheless the present
choice is logically sound and is more easily fitted
into the discussion about to be presented.

The ran^e X will depend on the reciprocal ballistic
coefficient y , on the function H which specifies rela
tive air density as a function of altitude y, and on
the function a which specifies relative sound velocity
as a function of altitude y. In the terminology of
Section 1 of Chapter VIII, X is a functional of these
two functions ; and in accordance with the notation
we have been using for functionals, we write

(3) x - tfr, H( ), a( )] .
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Likewise the time of flight T also depends on these
same variables, so that

(U) T - T[T, H( ), a( )].
The dependence on Y and v0 and g will be omitted from
the notation, since these quantities are not to be
changed in this discussion. If the standard density
function is denoted by H*(y), the ranges and times
of flight in the ballistic tables, for initial velocity
vQ and altitude Y, are the quantities

(5) X - X[T, H*( ), 1], T - t[y, h*( ), 1].
Suppose now that at some time the relative sound

velocity function is a(y). For given values Y, vQ and

Yb of altitude, initial velocity and reciprocal ballis
tic coefficient the normal trajectory is the solution
of the equations

x = -
Yb H*(y) G(v) i,

y - - Yb H*(y) G(v) y - g.
For each y we can find the corresponding v and com
pute the ratio

(7) R(y) - G(v)/a(y)G(v/a(y)).

In (6) we substitute the value of G(v) from (7), ob
taining

x - - Yb [R(y)H*(y)] a(y) G(v/a(y)) x,
(3)

y - - Yb[R(y)H*(y)] a(y) G(v/a(y)) y - g.
For the given vQ and Y the solutions of (6) and (8)
are identical, since the equations are in fact iden
tical. Hence at y ■ 0 the solutions of (6) have
the same values of x and t as the solutions of (8).
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In the notation (5) and (ij)

*YK, R( )H*( ), a( )] - tfY., H*( ), 1],
(9) b b

Hr. , r( )h*( ), a( )] - ir. , h*( ), i].
D D

If density is normal, or (more realistically) if ef
fects of departure from normal density have been re
moved, the quantities of interest to us are the range
and time of flight corresponding to density law H*
and relative sound velocity a(y). If the reciprocal
ballistic coefficient of a bomb is Y, and it is dropped
at initial velocity v0 from height Y, and all conditions
are standard except that the sound velocity function is
a(y), the range and time of flight will be

(10) X - x[y, H*( ), a( )], T - T[y, H*( ), a( )].
With the given altitude and initial velocity, the
ballistic tables will show the range X as that cor
responding to a certain reciprocal ballistic coeffi
cient Yfc. This is what we called yD X ^n ^A^; tempo
rarily we are omitting the subscript X for ease in
printing. So by (5),

(11) X[T, H*( ), a( )] - X[Tb, H*( ), 1].

A similar equation would hold for time of flight, but
the Yw would then be what was termed Yb j in (A).
By (9) and (11), '

(12) X[Y, H*( ), a( )] - x[Yb, R( )H*( ), a( )].
Our approximate evaluation of the terms in (12)

will be based on two assumptions. The first is that
the difference between the right member of (12) and
the corresponding term with the second argument re
placed by the standard H*(y) can be adequately esti
mated by means of the differential effect of change
of density on range. We may feel confident of this,
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because many numerical trials have shown that the
linear approximation to effect of change of den
sity is quite accurate over a large range of density
change. The second assumption is that the differ
ential effect of replacing,' say, xCyd» H*( )» »*( )]
by x[yd, R*( )H*( ), a*( )], can be adequately estimated
by using the weighting factor curve for effect of change
of density on range which was computed for the normal
trajectory with the same Yb> vp and Y. This is probably
a satisfactory assumption, since the weighting factor
curves for effect of change of density on X or T at a
given Y are seen by inspection to be insensitive to
change of Y or v0. So the weighting factor curve which
we should use, namely the one corresponding to the tra
jectory with the same Yb, v0 and Y, standard density H*
and standard relative sound velocity a*, is presumably
not much different from the one with the same Yb, v0 and
Y, and the same H*, but with a ■ 1; and the latter has
the virtue of being available, while the former is not.

Let p(k) be the function whose graph is the weight
ing factor curve for differential effect of departure
from standard density, determined for altitude Y with
reciprocal ballistic coefficient Y and initial velo
city v0. At altitude kY (0 - k - 1) the density used in
computing x[Yb, R( )H*( ), a( ) ]is R(kY) tines standard
density at that altitude. The ballistic density (for
range) defined as in (VIII. 5. 12) is then

(1U) XLYb, R( )H*( ), a( )] - *Yb, ), a( )]
is satisfied, by the definition of ballistic density,
or ballistic density-excess. But it is evident from (6)
that multiplying H* by the constant Bb has the same
effect as multiplying y by Bb. Hence (1U) implies
(15) X[yb, R( )H*( ), a( )] - X[YbBb, H*( ), a( )]

.

JO
R(kY) dp(k).

Then to first-order terms the equation
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For given Y, v0, given density law H* and given relative
sound velocity a(y), different values of y correspond to
different ranges. By (12) and (15), y and Yb^b corre
spond to the same range, and therefore must be equal:

In particular, if the relative sound velocity func
tion is the new standard a*(y) we shall use the abbre
viation

(17) \ - Bj>b, vQ, Y] - B^Yb, vQ, Y, a*( )].
By use of (13) we can compute the values of this
function for a collection of values of Yb, vQ and Y.
This furnishes us with the answer to question (A).If the relative sound velocity function at the time
of a range bombing were a*(y), other conditions being
standard, and its reciprocal ballistic coefficient
deduced from range is Yb according to the ballistic
tables, then its reciprocal ballistic coefficient is
actually Y * Y^B^Cy^,, v0, Yj. Conversely, given Y,
the range of a bomb dropped under new standard condi
tions can be found from the ballistic tables by solv
ing (16) for Yb and then looking up the range determined
by v0, Y andYb according to the ballistic tables.
This latter process can be made a bit easier by first
re-tabulating Bj

, as a function of Y, v0 and Y. Having
determined the function (17), for each tabular vQ and

Y the value of Yb determines both Y and B^. The lat
ter is tabulated against the former, and by interpo
lation Bfc, can be found for equally spaced values of t.
In this form we denote it by

the subscript b being omitted from the functional symbol

B to remind us that it is also absent from the Y inside
the brackets. In ter.ms of this new function, (16)
becomes

(16) T " Y^Yt, v0, Y, a( ) ].

(18) Bb

"
vo»

(19) Yb - y/b[y, vq, Y].
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The foregoing discussion has been in terms of range,
merely for brevity. A similar discussion applies to
time of flight also. For this we would use in (13)
the weighting factor curve for effect of departure
from standard density on time of flight. To distin
guish the Yfo of the preceding paragraphs from that
when the weighting factor curve for effect on time
of flight is used, we shall add a subscript X to the
Yb and BD of the preceding paragraphs, and add a sub
script T when the weighting factor curve for effect
on time of flight is used. Thus under the new stan
dard conditions, (16), (19) and their analogues for
time of flight take the form

The computation in (13) is a rather straightforward
one. For a set of tabular values of t on the normal
trajectory the corresponding altitude is found, and
from this the new standard a*(y) is found. From the
trajectory sheet we read v2/l00, divide it by [a*(y)]2,
and use the G-table to find G(v/a*). We now compute
R by (7). Knowing the altitude y we compute k ■ y/Y
and read p(k) from the weighting factor curve. For
each pair of consecutive values of k we multiply the
difference of the values of p(k) by the average of
the values of R. The result is approximately the
integral in (13).

Next we take up the problem of making corrections
for departures from the new standard relative sound
velocity law. Suppose that the relative sound velocity
a(y) exceeds the standard a*(y) by an amount A a(y).If all the other conditions are standard, the range
will be x[y, H*( ), a( )], while if temperature also

(20)

YbT

Y/BX[Y, v0, Y],

Y/Bt[y, vq, Y].
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had been (new) standard, the range would have been
]£y> H*( ), a*( )]. The effect of the departure from
standard temperature is the former of these minus the
latter. That is,

AXUa|y = Y)
- X[Y, H*( ), a( )] - X[Y, H*( ), a*( )].

By (11) the first term on the right is #Yb, H*( )» l]»
We define Yb* hy (H) with a* in place of a. Then (21)
becomes

AX(Aa|y - Y)
(22) - x[Yb, H*( ), l] - irh*t H*( ), l].
To first-order terms, the right member is the product of
8X/frr evaluated at Yb by the difference Yb - Yb*. Tem
porarily we use R* for the quantity defined by (7) with
a* in place of a, and Bb for the quantity defined
by (13) with R* in place of R. Then by (16)

(23) Yb*V - YbV
whence

- - (V/v^ - h*>
(2U) - (rb*/ty

1
i Six) Sl22 ldp(k)
la*(kY)G(v/a*(kY)) a(kY)G(v/a(kY)) I aVK*}*

05

If we multiply both members by dX/b y, evaluated at Yb»
we obtain the first-order estimate of A X. If we re
place a by a* ♦ A a and expand to first-order terms, we
further obtain

AX(Aa|y - Y)
(25) n" " (Tb*/6b)[9X/»^ b I Jq* (n - 2)R*(KY) dp(k).

Y Jo*
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Here we have replaced A a/a* by A 0/2 0*, which is
correct to first-order terms. To first order, we
identify YD* and Yb in the right member of (25). The
right member of (25) is the linear (principal) part
of the left member, and is therefore the same as
dx(A a |y - Y) or dx(A 0|y = Y). The computation of
the right member for a given disturbance A 0 can
best be done by preparing normalized effect curves.
To do this we choose a set of tabular values of k,
and for each one of these we compute the right member
for the particular A 0 which %is 0 for greater values
of k and is © for smaller values of k. That is, we
compute the usual finite sum which approximates

for each tabular k, and we multiply this by the co
efficient of the integral in (25). The product is
a function of k whose graph is the "effect curve."
From this we can deduce the norm effect and the normal
ized effect curve, or if preferred we can deduce the
unit effect and the weighting factor curve. As an
alternative procedure we could compute the integral (26)
and refrain from multiplying it by the coefficient
of the integral in (25). If this resulting function
of k is graphed, the result is the "effect curve" for
the differential effect of departure from new standard
temperature on the coefficient B^. For this differen
tial effect we could compute norm effects and normalized
effect curves, and for any given departure from new
standard temperature we could use these to find the
effect on B^. With the corrected BD we would then use
(16) to compute y • The advantage of this procedure
would be that (26) is more nearly constant than (25),
so that interpolation would be easier.

(26)
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Chapter X

BOMBING

1_
. The bombing problem.

It is our purpose here to consider certain prob
lems which are not part of the general problem of ex
terior ballistics, the problem of predicting the mo

tion of a projectile, but which are closely related
to this. We suppose that the principal probLem or ex
terior ballistics for bombing has been solved, and
that trajectories, computed for each bomb for all
usable combinations of air speed and altitude of re
lease, are available. The question is, in what form
is the ballistic data most readily usable by the bom
bardier, and what will his procedures be?

We first list some of the assumptions under which
the operation of bombing is usually performed. It is
assumed that the atmosphere has a standard density
and temperature structure, that the acceleration due
to gravity has a standard value, that the target is
at sea-level, and that the launching is perfect, there
being no initial angular velocity and the axis of the
bomb pointing in the direction of the initial veloci
ty. The earth is supposed flat and the motion of the
aircraft is presumed to be straight-line motion in a

horizontal plane at a uniform speed. However, it is not
assumed that there is no wind. The vertical compon
ent of the wind is supposed to be zero, and the hori
zontal component is supposed constant, independent of
the altitude. Even under these restrictive assumptions
the bombing problem is not trivial.
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First, let us consider the motion of the bomb from
the point of view of the man doing the bombing. The
bomb is released in the bomb bay and is subject to
two major forces, the force of gravity, and the drag.
Since the first of these is directed downward and the
second is initially opposite in direction to the mo

tion of the plane, the bomb must appear to the bom
bardier to fall down and back from the airplane. The
bomb, in fact, will never leave the vertical plane
which is attached to the airplane and contains the
velocity vector of the aircraft. The most natural
description of the trajectory, from the point of view
of the man in the airplane, would be to list the dis
tance of the bomb behind the airplane and the depth
of the bomb beneath the airplane against the time from
release. It is this fact which motivates the defini
tion of trail which we give.

(1) Definition. Suppose that a bomb is dropped from
an aircraft moving horizontally with constant veloci
ty. The trail, r, is the horizontal component of the
vector from the position of the aircraft at the im
pact of the bomb to the position of impact. The sym
bol T (time of flight) is used for the time from re
lease of the bomb to impact.

Both r and T depend on the air speed, u, the alti
tude at release, Y, and on the particular bomb. Under
standard bombing table conditions there is no other
dependence.

The condition that a bomb dropped be a hit can now
be stated concisely. The bombardier must fly along
such a straight line and drop his bomb at such a time
that T seconds later the target lies r feet directly
behind him. Thus the bombing table consists primarily
of trail and time of flight, or quantities equivalent
to these, listed against air speed and altitude. Both
trail and time of flight must be considered as impor
tant, in contrast to the situation as regards artil
lery firing against fixed targets where only one func-
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AIRPLANE POSITIOl
AT IMPACT

X= RANGE, B= RANGE LAG,
T=TIME OF FLIGHT, A = TIME LAG,
r = TRAIL, U =A\R SPEED.

Figure X.l.l
Elements of a Bomb Trajectory
in the Absence of Wind



tion, the angle of elevation, is of primary importance.
This fact is due to the presence of wind. In the ab
sence of wind, or to be more precise, in the absence
of relative motion of the air and the target, a single
function, the range, would furnish sufficient informa
tion to the bombardier to permit him to make a hit.
There is, however, an advantage in having a mechanism
which is independent of the wind. A motion of the
target will be treated precisely by the same mechan
ism. For example, the problem of bombing a ship which
is steaming north at 20 knots when there is no wind is
precisely the same as the problem of bombing the ship
when it is motionless with respect to the water, but
when there is a wind of 20 knots blowing to the south.
The pertinent data are the notion of the aircraft
relative to the air (because this information is easily
available to the bombardier) and the motion of the
target relative to the air. Motion of the target
relative to the ground and motion of the ground rela
tive to the air are quite irrelevant. Thus, any de
vice which may be used to get a hit on a target when
there is wind may also be used to get a hit on a tar
get which is in uniform straight-line motion. For
convenience, we shall speak only of wind, but it will
be understood that target motion is automatically
covered.

It is convenient to define here certain terms and
symbols which will be used in the remainder of the
chapter. First, let us consider a trajectory when there
is no wind. (See Figure 1.) Under these conditions
we define the following nomenclature and symbols.

(2) Definitions. The range , X, is the length of the
horizontal component of the vector from the point of
release to the point of impact. The difference be
tween the range in vacuo and the range for the same
initial conditions is the range lag, B. The differ
ence between the time of flight, T, and the time of
flight in vacuo is the time lag, A.
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U = VECTOR AIR VELOCITY, W - VECTOR WIND,
7* GROUND VELOCITY, X = DRIFT ANGLE,
TCOSXr RANGE COMPONENT OFTRAIL, T Sin Xs CROSS TRAIL,

C=> DROPPING ANGLE.

Figure X.1.2

Elements of a Bomb Trajectory
in Ground Coordinates



The bomb ballistic tables give the quantities A and
B as functions of u, Y and the reciprocal ballistic
coefficient, y " 1/C. The quantities A and B are
smaller and change much more slowly with changes in
u, Y and Y than do the range, X, and the time of
flight, T, and interpolation is correspondingly sim
plified. The relation between A, B and r is easy to
see. A bomb falling in vacuo would remain directly
under the bombing aircraft. At the end of the time
of flight in vacuo the aircraft would therefore be B
feet ahead of the (eventual) position of impact of the
bomb. In the regaining time, A seconds, before the
actual impact the airplane would travel uA feet. Thus

(3) r - B + uA.

In the presence of wind the situation is more com
plicated. The following terms are used. (See Fig
ure 2).

(h) Definitions . The course, sometimes called the
heading, of an aircraft is the direction of the vec
tor velocity of the airplane with respect, to the air.
The track is the vertical projection of the path of
the airplane. Its direction is the direction of the
vector velocity of the aircraft with respect to the
ground. The drift angle "X. is the angle, measured
positively to the right, from the course to the di
rection of the track. The wind speed is denoted w,
the component, the range wind, along the track being
wx and the component, the cross wind, perpendicular
to the track being wz. A tail wind is a positive
range wind. The range component of trail is the pro
jection of the trail on the track, and the cross trail
is the projection of the trail perpendicular to the
track. The dropping angle is the angle measured at
release from the vertical to the aircraft-target line.

We note that the trail is measured from the foot
of the vertical from the aircraft at impact, back
wards in the direction opposite the course. That this
is the correct direction is clear from the argument



Figure X.2.1

Schematic Bombs ight



presented earlier, showing that "with constant wind the
bomb always falls directly back from the airplane.

2. An hypothetical bombsight.

In this section we show how knowledge of the trail
and time of flight permits a bombardier to obtain a
hit. The bombsight we describe is suggestive of some
of Rube Goldberg's creations, but circumstances do not
permit discussion of the sights currently used. How
ever, the bombsight will have enough of the features
common to several German, British, and American sights
to give a basis for discussing certain problems which
occur in bombing.

The bombsight is shown in Figure 1. The line ab
is fixed in the plane of symmetry of the aircraft-
its direction is supposed to be the course. The dis
tance AF is supposed adjustable, and the entire re
maining mechanism of the sight pivots about F. In a
position h units vertically above F is the "driven"
disc, C. The inner bearing surface of C is supposed
to be threaded, so that the rod R, which is slotted
to prevent rotation, is driven forward or backward by
rotation of C. The disc C is driven by contact with
the drive disc D, and the distance, p, from C to the
axis of D is supposed to be adjustable, so that the
rate is controllable.

The bombardier's procedure is, very roughly, as
follows. After noting the air speed u and the alti
tude Y the bombardier finds in a table the value of
r/T, called the trail ratio, and the value of the re
ciprocal of the time of flight, l/T, for the partic
ular bomb. He then begins the process known as syn
chronization. First, he attempts to adjust the dis
tance p, and thereby the rate of motion of the rod,
so that the cross-hair remains on the target. If the
target moves, say to the left, relative to the cross
hair, the aircraft is turned to the left beyond the
target and the angle X is increased slightly. Suc
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cessive adjustment eventually reaches the stage where,
without further change by the bombardier, the line of
sight remains on the target. At this stage the rel
ative motion of the target with respect to the air
craft is determined and the bombing problem is solved.
We have actually set up a duplicate of the Figure 1.2
in the bombsight, and a little computation will indi
cate at what point the release must be made to get
a hit. The rod R is moving at a rate a proportional
to the distance p multiplied by the angular rate of
D, which in turn is proportional to 1/T. Let us sup
pose that the constant of proportionality is one.
Then a ■ p/T. We assert that the bomb should be re
leased when the position of the eyepiece E reaches the
axis of the driving disc D. For, T seconds later,
since a ■ p/T, the eyepiece would reach the disc C,
the bomb would hit the ground and the line of sight
would run from C through A. The line of sight would
then run through a point on the ground which is

(hr/Y)Y/h - r
feet behind the aircraft. This is precisely the po
sition of the bomb.

The bombsight has, in the process of synchroniza
tion, actually found the ground speed of the plane (to
be more precise, the relative velocity of the plane
with respect to the target). Using straight propor
tionality, we must have

a/h - p/Th" v/Y.
Thus v - Yp/Th
and these quantities are known after synchronization.

Finally, it should be remarked that a bombsight op
erating on this principle has certain advantageous fea
tures. The problem solved by the bombsight is purely
geometric and no ballistic data are "built into" the
sight. If different bombs are employed, different
sight settings are used, but a complete redesign of
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the entire series of bombs used would not require re
design of the sight.

3. Differential corrections.

The operation of bombing must be performed in a
very short time. The bombing run, during which the
bombardier makes instrument settings, synchronizes and
releases his bomb, must be made as short as possible
since this is the time when the aircraft is most vul
nerable to anti-aircraft fire. Anti-aircraft directors
are at their best in tracking and predicting the mo
tion of an aircraft in the straight-line uniform mo
tion of the bombing run, and the risk in making a run
over a well-protected target goes up tremendously
after the first twenty seconds. These facts require
that the operation of bombing be kept as simple as
possible. The magnitude of the dispersion at present
inherent in bombing, together with this requirement,
makes the inclusion of a large number of differential
effects impractical. Save for a few general remarks
our discussion will therefore be limited to an anal
ysis of differential ballistic wind.

Any deviation of the actual bombing conditions from
standard will in general result in a change in both
trail and time of flight. In order to be more easily
usable the effects are frequently listed as an effect
on trail alone, following the argument we now give.
Suppose the correct trail to use in a given situationif r, and the correct time of flight, T. We shall
compute the error resulting from the use of an incor
rect trail r' and an incorrect time of flight T1 . The
error will be broken into components along and perpen
dicular to the track, the first being referred to as
range error and the second as deflection error. At
time T1 after release, since the bombsight is unaware
of the deception practiced on it, the aircraft will
angle. Therefore, at T after release the aircraft
is r' cos "X. + (T - T1 )v ahead of the target. How-

where "X. is the drift
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ever, in order to secure a hit, at time T the aircraft
should have been r cos"X ahead and the range error is
accordingly (r - r1 ) cos X + (T - T« )v. On the other
hand, the aircraft will fly a distance r* sinX to one
side of a line parallel to the track and passing through
the target. Since its correct position is r sinX to
one side, the deflection error is (r - r' ) sin"X..
Sunmarizing:
(1) If the correct trail and time of flight are r
and T, and r' and T' are used in bombing , the range
error is

(r - r« ) cos \+ (T - T» )v
and the deflection error is

(r - r' ) sin \.
The first of these formulae suggests strongly the
advisability of making an error in both trail and time
of flight, if an error is to be made. For example,
suppose the values ro and T0 correspond to standard
bombing conditions and the correct values for the par
ticular conditions are r ■ ro +Ar and T = T0 + AT.
Instead of listing Ar andA T it is desired to list a
single correction on trail. The incorrect value
T1 ■ T0 for time is therefore used. We then decide
to use an incorrect trail, r', so that the range error
will be zero if there is no windj i.e.,

(r0 ♦ Ar - r» ) + (T0 + AT - T0)u - 0

and hence (r1 - ro ) * Ar + UA T. The quantity
(r1 - r0) is listed as the correction to trail. If
there is a wind the error can be computed from (1). The
range error is
(r - r' ) cosX* (T - T» )v

" -At u cos X ♦ AT v

-At wx

where wx is the range wind. The deflection error
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will be
(r - r») sin%- =» uA? sin X

where wz is the cross wind. These errors may, if /\T
is not large, be quite tolerable.

U. Differential ballistic wind.

Of the many oversimplifications made in the assump
tions mhich comprise the standard bombing conditions
one of the most serious is the assumption of a con
stant wind. In actual practice the wind is found to
vary markedly with altitude, resulting in errors
which, for certain combinations of bomb and atmospher
ic conditions, are too large to ignore. As a resultit has become necessary to devise some sort of proce
dure to correct for the effects of a variable wind
structure. In order to do this it is convenient to
make use of the concept of "ballistic wind," as defined
in Section 5 of Chapter VIII. Let us first define the
"differential wind" at altitude y to be the vector
difference (wind at altitude y minus wind at bombing
altitude Y). The effect on range caused by this dif
ferential wind is not strictly a linear functional of
the differential wind. But there is a strictly linear
functional which approximates the actual effect to
within a small error (an infinitesimal of order higher
order than 1 in the "norm" of the disturbance.) This
linear approximation is the differential effect on
range produced by the variable differential wind.
There is a certain constant differential wind, having
the same value at all levels from target to just below
bomb bay, which would produce the same differential
effect. This is called the differential ballistic
wind, abbreviated DBW. It should be noted that the
exact effects of the variable differential wind and
the DBW may not be the same. Their differential ef
fects are equal; their full effects may differ by a
higher order term.
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The DBW is computed from the variable differential
wind by use of the appropriate weighting factor curves,
and thus depends on the true air speed of the air
plane, the altitude of release and the ballistic co
efficient of the bomb, as well as on the wind struc
ture.

The differential wind at altitude y is the veloci
ty of the air at altitude y with respect to axes mov
ing with the air at bombing altitude Y. Consequently
it is desirable to refer positions to such a set of
axes. We choose a set of axes fixed with respect to
the air at altitude Y, with origin vertically under the
release point, y-axis vertically upward, x'-axis in
the direction of the course, and z*-axis perpendic
ularly to the right. These are obtained, by rotation
through the angle ")(., from thexyz-axes, where x is
along the track. If the vector differential wind
~w(y) at altitude y is resolved into components
6wx',6 wz' along the x'- and z'-axes, the ballistic
wind along the x'-axis is found by use of the weight
ing factor curves for effect of range wind on range,
and we shall therefore aenote it by W^Wx']; the bal
listic wind along the z'-axis is found by use of
weighting factor curves for effect of cross wind
on deflection, and we shall therefore denote it by

Wz [&wz i ]. The differential effect on x1 produced by
the component &wxi is the same as the differential
effect of a constant component Wx[forxi J. It is given
by (VTI.U.8). In the present notation, t - tQ is T,
or Tvac + A, while x at y ■ 0 is X, or Tvacu - B, and
vXo is u, the true air speed of the airplane. So
(VTI.I4.8) becomes

dx» (6wx,|y = 0) = (T - aX/9u)Wx[&wx, ]
(1)

= (A + 3B/3u)ix[6wx. ] .

The A, B, X, T refer of course to time lag, etc., in
absence of differential wind. In a similar way,
(VII.U.23) yields
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C2)
d»'(6wa, I y - 0) - (T - X/u)Wz [6wz, ]

- (A ♦ B/u)Wz[6wz. ] .

The differential effect of &wzi on time of flight is 0.
The differential effect of 6w xi on time 01 flight is
obtained by computing the corresponding ballistic
wind and multiplying by unit effect. Since the weight
ing factor curve used is that for effect of range wind
on time, we denote it by «t[6wX! ]. By (VII.U.8),

(
dt^ifc. I y - o)- - (ar/9tt)wt(&wxI ]

- - (aA/aOwtOwxi ].
Inspection of the bomb ballistic tables snows that

B is not far from linear as a function of u, so that
(A + 3B/du) and (A + B/u) are not widely different.
However, differential winds are necessarily 0 at alti
tude Y and are greater near the ground. For a wind
6w which is large near y ■ 0 and small near y ■ Y, it
will be found that Wz[&w] is greater than Wx[ow],
while (A +9B/3u) is greater than (A + B/u). The result
is that (A + oB/3u)Wx[bw] and (A + B/u)Wz[6w] differ
by a significantly smaller amount than a comparison
of the unit effects would indicate, usually roughly
half as much. In addition, it is tactically desirable
to approach the target nearly down-wind when the wind
is large, so that the cross wind effect is not very
great. Therefore we shall henceforth use the quantity
(A + 9B/du)Wx[6wzi] instead of the correct value
(A + B/u)Wz[8wzi] for the differential effect" of cross-
course wind on the coordinate z' at impact. Now, to
this approximation, the differential effect of the
differential wind is a vector with components

(i,) (A ♦ 3B/au)Wx[6wx, ], (A + aB/3u)Wx[6wz,].
This is the same as though in computing the differ
ential ballistic wind, the vector zone-wind 6w(y) had
been multiplied by the zone-weight, and the products
added. In vector notation, to the approximation we
are using, the differential effect in the coordinate-
system moving with the air at altitude Y is the vector
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(5) (A + 5B/3u)Wx[6w].
In the absence of differential wind, impact would

occur at a point x1 ■ X, z1 - 0 at time T(u). In
the presence of the differential wind, impact occurs
at

approxi irately, and at time T(u) - (aA/3u)W^[6wxi ].
The delay in impact is - (8A/du)Wt,[&Wxt ], and during
this time the (x1 , y, z' ) -system has moved a vector
amount - w (Y)(aA/au)W-t[6wX! ] with respect to the
(x, y, z)-system. So on the ground the impact has
been displaced by the vector amount

(7) (A +3B/au)Wx[6w] - w(Y)(aA/au)wtOx,].
The second terra is far smaller then the first; for ex
ample, at Y - 30,000 ft, t * 0.5, u» 500 mi/hr, even
with 6w in the x' -direction and w(Y) = 100 nd/hr, the
second term is about ,0U times the first. It will be
ignored. The result is:

(8) Except for an error term »hich is negligible un
less the air speed at release and the differential
winds are very great , the displacement of the impact
point caused by the differential wind 6w(y) is the
vector

5. Correcting for effects of DBW.

A discussion of differential wind essentially as in
the preceding section was made by one of the authors
before the Second World War, and a method of correct
ing for the effect was proposed. Since at the Aber
deen Proving Ground the wind structure is measured
frequently, it is feasible to furnish a bombardier
with the DBW. The quantity (1.8) is divided by Y/lOOO

(6;
x« - X + (A + aB/auJWxk wxt ],
z' - (A + 3B/au)Wx[&wz, ],

(A ♦ 3B/au)Wx[6wj .
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to convert to mils and plotted as a vector on the
usual navigational computer, to resolve into trail and
deflection effects. The trail effect can be set on
the sight; the deflection effect must be allowed for
by estimation. Trials during range bombings, by Col.
S. C. Smink and bombardiers under his command, showed
that the method is feasible when the wind structure
is known. However, there are obvious difficulties in
attempting to use such a procedure operationally. It
is necessary by some means or other to determine the
wind structure over the target area, so as to deter
mine the DBW. Two methods suggest themselves. First,
a prediction of the winds over the target can be made by
meteorologists. However, this prediction is of neces
sity based on weather data taken at a distance from
the target, a distance which in certain theatres was
of the order of a thousand miles. Such predictions
are of course subject to large errors. A second pos
sibility is to measure the wind over the target, or
near the target, shortly before the attack. This is
feasible, but requires that aircraft fly at several
altitudes over enemy territory for periods long enough
to make a ground speed determination. Moreover, while
in this undesirable situation the navigator is re
quired to perform certain conputations. So the data
obtained may well be inaccurate— even if they are
brought back. Therefore the procedure under discus
sion, while theoretically sound, is seldom a practicable
one under service conditions.
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Chapter XI

ANGULAR MOTION OF A

PROJECTILE

l_
s Requirements for a theory of motion of a. projectile.

This chapter is devoted to the solution of the
equations of motion of a projectile when it is not
assumed that drag is the only aerodynamic force. The
equations considered are those derived in Chapter II,
which include a complete system of aerodynamic forces
and torques. Before undertaking this rather involved
computation it seems proper to explain why it is nec
essary.

Suppose that all observations are interpreted on
the basis of drag alone. If the experimental data
consist of range bombing from 2000 feet altitude, which
is part of the range bombing of every bomb, serious
difficulties may result. The value of the ballistic
coefficient which results from the measurement of
range may. differ by a factor of two or three from the
value obtained from the measurement of time of flight.
This is utterly inexplicable on the basis of drag
alone. Worse, if the altitude of release is 1000 feet,
the range of the bomb may be more than the range in
vacuo, giving a negative ballistic coefficient, while
the time of flight may give a small ballistic coeffi
cient. The reason for this phenomenon was given in

a qualitative way by one of, the authors several years
ago. This chapter will contain a later precise anal
ysis. Of course, the result of interpreting data such
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as these on the basis of drag alone is that wind ef
fects, etc., are totally incorrect. Another extreme
example of this sort of thing occurred in the range
firing of a mortar. The ballistic coefficient changed
violently with angle of elevation — in itself an indi
cation of the inadequacy of the theory applied. When
the effect on range of a head wind was computed, it
was found that a head wind increased the range! It
is surely necessary to have a theory to predict what
sort of "non-particle " effects to expect, and to
interpret and properly reduce range firing data.

In many cases, rather extreme extrapolations must
be made in constructing a firing table. For example,
aircraft firing tables must predict the trajectories
of bullets fired under densities as low as one fifth
normal, at temperatures down to - 55 degrees F. , with
initial yaw as high as 10 degrees. It is quite im
possible to conduct range firings which cover in an
adequate fashion the tremendous variety of initial
conditions. In addition to density and temperature
variations, one has to consider variations in aircraft
speed, in azimuth and elevation of the fire. It ac
tually comes down to the following situation: we must
construct a theory which is adequate to predict, from
firings conducted on a range in the basement of the
Ballistic Research Laboratory, the trajectory of a
bullet fired sideways from an aircraft travelling at
300 miles per hour at an altitude of 25,000 feet. It
would be foolhardy (and wrong) to assume that the drag
coefficient alone was sufficient information on which
to base this prediction. The solution of the equations
of motion must tell us what the important factors in
this prediction are, and must indicate a method of
measuring these.

Finally, the principal assumption of the normal
trajectory, that the yaw is small enough to be neg
ligible, certainly requires a careful examination.
This is the problem of stability. It is necessary to
have a reasonable mathematical basis for predicting
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when a shell will travel with small yaw. The theory
must be capable of being used to devise experiments
to test the stability of shell and to indicate in the
light of such tests what measures are necessary to
improve the stability.

Since the force system on a projectile has been
analyzed in Chapter II the principal problem of the
present chapter is simply that of obtaining a suffi
ciently accurate approximate solution to the equations
(II.7.1U). This solution must then be utilized to
answer the questions we have raised. The presentation
given here differs from those previously given in two
ways. No assumption will be made concerning the mag
nitude of the spin of the projectile, so that the
analysis is simultaneously valid for bombs and for
shell. This added generality is utilized in the dis
cussion of stability, and a criterion for stable mo
tion is derived which is new. This criterion explains
in a rather satisfactory way the observed instability
of certain spinning bombs, further, the theory ex
plains and gives a basis for the treatment of the
rather remarkable experimental results on range bomb
ing. Finally, we obtain, with somewhat more precision
than the earlier authors, the necessary formulas for
computation of non-drag effects in sideways fire from
aircraft.

Some rather involved mathematical calculations are
used in obtaining the solution of the equations of
motion, but the method used is intrinsically simple.
It is a method of successive approximation. It is
first assumed that the motion of the center of mass
is given by the solution of the normal equations. On
this basis a solution for the yawing motion is ob
tained. Using this solution for the yawing motion, a
second solution for the motion of the center of mass
is made. The equations are "almost" linear and this
fact is used strongly in obtaining a solution. A
number of simplifying approximations are made, and of
course the final test of their validity lies in the
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accuracy with which the solution obtained fits experi
mental data. In the next chapter we will give some
discussion of the adequacy of the analysis.

2. Simplification of the equations of motion.

We now begin the task of simplifying the equations
of motion which comprise (II.7.1U). Because of the
large number of terms this is extremely tedious. The
procedure of this section is the following. We first
re-state the equations and adopt a notation which is a
first step in a general scheme to reduce the equations
to a dimensionless form. It is then assumed tempo
rarily that the normal equations give an adequate
approximation to the motion of the center of mass.
On the basis of this assumption, we then change inde
pendent variable from time to arc length measured in
calibers, which gives a dimensionless independent
variable. Finally, we change dependent variables, in
two ways. First, instead of the cross velocity, the
cross velocity divided by axial velocity is used so
that the tangent of the yaw instead of cross velocity
is the dependent variable. We then change the coor
dinate frame, which was attached to the projectile,
to a non-spinning frame. To aid in following the
argument we break it into short subsections.

a. The equations.

For convenience, the equations from (II.7.1U) which
will be needed are re-stated. 'The notation used is that
of Section II. 7.

m( C - + i aii £) =
c1 £ + c2n - mg<ty,

Brj + (B - A)i a)]/) =
C3 £

+ c^n.,

(1) n [ux - ( $ - %i))l/2 ] - F1 - mgylt
AaJx = G-l, y-L - (<ty?i

- «1jnJi/2,

<
ty = iyjn - i " "171 + Ufy 5^/2.
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The values of C]_, Cg, c-j, c^, F]
_ and G^ in terms of the

aerodynamic coefficients of the projectile are given
by (II.14.6).
b. New notation.

To simplify notation we make the following conven
tion:

(2) Convention: The symbol J with a subscript is de
fined to be the corresponding aerodynamic coefficient
multiplied by the "density factor" p d-vm. For example,

■ pd^Kju/m. The J's are dimensionless. We further
use 3pin per caliber* of travel instead of spin. Thus

(3) v ■ co^d/u^
Then the c's and G

^ can be written in the following
form:

cx ■ ( - JN + iVJp^mu^d,

c2

- ( VJ^, + ijgjmup
(U) c^

» ( - v JT - iJMMu14

c^

=» ( - Jjj + i vJ^t^^u^,
= -

vu^ m.

c. Approximation by means of the normal equations.

We now take the normal equations as a first approxi
mation to the motion of the center of mass. If 9

is the angle measured from the horizontal to the tan
gent to the trajectory, the normal equations have the
form (TI.8.3):

u = - pd^K^/m - g sin 6,
■ - u2«Wd - g sin 6,

0 * - g cos 8/u,

X » u cos 6, Y - u sin 6.
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The assumption which will be made in order to obtain
the approximate yawing motion, is the following.

(6) Assumption. The equations (5) are supposed solved,
and it is presumed that u^ may be replaced by the so
lution U of these equations.

In terms of the J notation the first of equations (5)
can be written:

(7) 0 = - JDU2/d - g sin 9.

d. Change of independent variable.

The new dimensionless independent variable can now
be defined:

(3) p »

^

(uj/d) dt -
|

(U/d) dt.

This is simply the arc length measured along the
trajectory in calibers. The reason for adopting
this parameter is that by this means the equations
determining the yawing motion will become essentially
independent of the size of the projectile. This will
imply, for example, that a large bomb has the same
period of yaw, measured in calibers of travel, as a
smaller model. Returning to the calculation, the
derivative of any quantity with respect to t is simply
its derivative with respect to p multiplied by

dp/dt * u-j/d - U/d.
The derivatives with respect to p will be denoted by
primes. Equations (1) then must be modified by replac
ing K> *\i ttp 7, ^ by U/d, n'U/d, etc. It will be
convenient to write out explicitly the equations for
U' , 6' , V. From (7) it follows at once that

U« = - UJD _ gd sin 9/U,

9' » - gd cos 9/U2.
(9)
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To compute v, from the fourth of equations (1),
(o^«

■ dG^/AU. Replacing by its value in terms of
aerodynamic coefficients from (U) gives

40 1' - " JAvmdU/A'
Hence

v ' =
(oJ^d/U)'

= co^d/U - co^U'/U2
- - JA vmd2/A + v JD + vgdU-2 sin 6,

and we may write

(10) V = v(JD - JAmd2/A + gdU-2 sin 8).

e. Change of dependent variable.

Ve now transform the dependent variables n, g\
and by the formulas:*

X = ( K/V) exp \ i
^

v dp ,

H - (nd/U) exp
£
i

^

v dp ,
(ID

T fP 1
g<tyexp i \ vdp ,

Geometrically, these equations can be interpreted as
follows. The quantity £/U is the "vector" yaw. It
has the magnitude of the sine of the angle of yaw.

*Recall that exp ( ) is the notation for e^ \
.where e is the base for natural logarithms.
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The factor

exp
£
i

^

v dp j ■ exp i
^

a>x dt j
changes the coordinate system from one which rotates
with the projectile to one which does not rotate about
the x-i-axis. Explicitly, Xis the complex yaw measured
from the axis of the projectile to the trajectory, on a
coordinate system with one axis along the axis of the
shell, and which is not spinning about this axis. Simi
larly, u, V , gi have interpretations in this system.

The coordinate system thus described is determined
up to a constant angular rotation about the x^-axis.
For convenience we describe a particular coordinate
system which meets the specifications rather closely
except for high-angle fire.

(12) The Xq1 -axis is supposed to lie in a vertical
plane containing the x^-axis and points downward.
The xy -axis is therefore perpendicular to this plane
and points to the left.

He shall not use this specification immediately.
It will not be needed until Section 5, where the yaw
of repose is discussed. However, with a view to
future convenience we make a further slight digres
sion. The aerodynamic force perpendicular to the
axis of the shell has the complex number representa
tion, in coordinates fixed in the shell,

<7 - ( - JN + i vJF)mU £/d + ( vJXir + UgMn .

In a non-rotating coordinate system the force is
this quantity multiplied by

h:exp | i 1 v dp
lo

which is
<3T»

» ( - JN + i vJF)mU2\/d + ( vJ^- + iJs)mU2|i/d.
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Suppose we now consider a coordinate* system with
X2M-axis perpendicular to the trajectory and pointing
downward, and XV'-axis horizontal and pointing to the
left. The aerodynamic force acting on the projectile
would have the complex number representation (to first-
order terms), 7' > together with that component of the
axial drag whic,h is in the X2nXy -plane. This com
ponent is a.<1qU m/d, so that we may state:

(13) The aerodynamic force perpendicular to the tra
jectory has the c omplex number representation

[ (JD - JN + i VJF)\ + ( v Jxp + iJs)H ] mU2/d.

The real axis is perpendicular to the trajectory point
ing downward, and the imaginary axis is horizontal
pointing to the left. The quantities X and u. are the
cross velocity divided by the axial velocity U and the
cross angular velocity multiplied by d/U.

We now return to the main line of argument.

f. Final form of equations.

The remaining task is simply to transform equations
(1) to equations in X, u., Y and g^, with p as inde
pendent variable. Computing:

t - ^' U/d - |
Xu exp - i

|P
v dp j j U/d

- [ X • U ♦ X( - JD - gdU-2 sin 9)0 - iv>u]
• j exp - i

|P
v dp j | U/d

= [X' - ivX- X(JD + gdU sin 6) ]

| (U2/d) exp - i P
v dp

|
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Similarly,
n - - iv^i- ^(JD + gdU"2 sin 9j]

•j
(U2/d2) exp

£
- i

^
v dp j | ,

- (Y' - ivY)(U/d) exp
£
- i

^P
v dp j .

Substituting these values in (1) leads to the equations:
m O _ \(JD + gdU"2 sin 9) - iu]

■ (ciK + C21! - mg^j
•

j(d/U2)
exp

£

+ i jP v dp j |
- Cl\(d/0)+ c2u(l/U) - iY(d/U2),

B[ u • - u ( + gdlT2 sin 9)] - lAv u

- c3Xd2/U) + cUM(d/U)
Y' - igm, gx' - ( tjl - Yl* )i/2.

We now exhibit these equations with the values of the
c's substituted from (h). For ease of writing, one
more abbreviation is made. We define

(15) k2 - B/md2
■ (transverse radius of gyration in calibers J2.

From (lit) and (U), the final equations are then formed.

\' - (JD - Jn + i vJf + gdU"2 sin 0)\
+ (vJjj. + iJs + ij|i - YdU"2,

(16)
' ( "VJl " iJM)Xk"2

♦ (JD - k-2JH + ivk-2JXT
+ gdU"2 sin 9 ♦ iA v/B)^,

T« - ig^, gli - (YJI n )i/2.
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3. Solutions of the equations of motion.

In this section we shall find an approximate so
lution of the "homogeneous" part of equations (2.16).
But for reasons that will be clearer to the readerif he glances ahead to equations (5.5), we group to
gether the pair of terms in the first of equations
(2.16) which contain a factor g: one of these visibly
depends on X, but the other is less conspicuously
dependent on X in such a way that the sum of the two
is very nearly a function of p alone. With this
grouping the first two of equations (2.16) become
the following pair, whose homogeneous part (omitting
the last term in the first equation) we shall try
to solve:

X« - (JD - JN + i v JF) \ + ( v Jxp + iJs + i) n
+ (g X sin 9 - Y)dU2,

u • - ( - VJT - iJM)k-2 X

+ (Jj) - k-2Jjj + ivir2^ + gdlT2 sin 9 + iAv/B)H.

It is necessary to make some approximations, and to
do this some estimates of the order of magnitude of the
various terms in (1) must be made. Each J-term con
tains a factor pd-tym, which will be quite small. For
a hundred-pound bomb, with a diameter of 8 inches, this
factor is less than 1/6000, and for a 3-inch shell,
weighing about 17 pounds, the factor is less than
1/11*000. It is therefore very reasonable to neglect
J-terms in comparison with terms of the order of mag
nitude of A/B, which is usually about 1/10 and is at
least 1/20. Further, gd/U2 is less than 1/1000 if d is
less than 1 foot and U is greater than 180 feet per
second, and it will therefore be assumed that this is of
the same order of magnitude as a J-term. Finally, the
derivatives of J-terms will be neglected. These terms
are functions of the density p and the Mach number, and
except in the immediate neighborhood of the velocity of
sound this treatment should be wholly justified.
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The equations (1) are rather cumbersome and it
will be convenient to abbreviate them as follows:

X.' ■ a-i \+ a?H + b,
(2) \
where, recalling the remarks about the order of magni
tude of J-terras,

ax
- JD - JN + i VJF,

a2
- v Jjp + i,

(3) a3
= ( - v JT - iJM)k"2,

ah
" JD " k"2 JH + gdU"2 sin 9 + iAv /B»

b - (g X sin 9 - y )dU"2.
We now proceed to eliminate u- from the equations (2)
by solving the first equation for p. and substituting
in the second. The result of this computation, which
is performed in a perfectly straightforward manner, is

\" ♦ X'( - - - ag'/ag)
(U) + Ma^a^ - a2a3 + a]_a2'/a2 - *l' )

+ b(a2'/a2 +
aj^
- b'/b) - 0.

Under our assumptions, in computing the derivative of
an a, it is only necessary to examine the terms in v.
For convenience we recall equation (2.10;:

(5) V = ( - JAmd2/A + JD + gdlT2 sin 9) v.
Examining the equation (U) we find that in each paren
thesis the real and imaginary parts contain terms of
the order of J at least, whereas a2'/a2 and a^' are of
the order of J . It is therefore permissible to re
place (M with the equation

\n + \i( _ a a.)
(6 )

+ Ma^a^ - 8^3) + bCajj - b'/b) 3 0.

For the remainder of this section we consider
only the homogeneous part of (6), deferring the find
ing of a particular solution to Section 5.
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There is a standard way of changing the dependent
variable in such a second-order linear equation in
order to eliminate the first-derivative term. This
is done by defining q by the equation

f P
(7) X- q exp J j (a-j^

+
a^)

dp.

Computing,

f P
V - [ q' + + a^)q ] exp \ \ (ax +

a^) dp,Jo
\» - [q" + (ai + ai1)q« + J(ai + a^q + £(ai + aj^'q]

• exp i I (a! +
a^) dp.

This substitution of these expressions in (6) leads
to the equation
(8) q" - r2q - 0,
where

r2 - iC (•1 ♦
a^)2

- - a2a3) - 2(ax + a^']

We are now faced with the problem* of finding an
approximate solution to the equation q" - r2q ■ 0,
where r is a slowly varying function of the independent
variable p. This equation is "almost" a familiar type.

*Approximate solutions of equations of this type have
been obtained by H. Jeffreys, Proceedings of the London
Mathematical Society (2) Vol. 23 (1923), p. hW, and by
Wentzel, Kramers, Brillouin (»WKB method"). See, for
example, G. Wentzel, Zeitschrift fur Physik, Vol. 36
(1926), p. 518. The solution we obtain will be essen
tially the same as the solution obtained by these
methods.
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If the substitution
(9) z ■ (log q)', (log * log to the base e),
is made, the resulting equation is
(10) z' + z2 - r2 ' 0.
If r were actually constant, this equation would have
the solution i •! r. Since r is nearly constant, the
equation may be expected to have solutions nearly equal
to r and - r respectively. Consider first the solution
which is nearly equal to r. Writing it in the form

(11) z - r + e

where e is small, the equation (10) becomes

(12) £• + 2re + e2 + r' - 0.
Thus if we define*

e - - r'/2r,
the differential equation is satisfied except for
terms e' and e2. The error thus is in the ratio
( e' + e )/r2 to one of the terms of the equation,
and we can verify that for the problem at hand this
is negligible. Referring to (11), the solution for
z is z - r - r*/2r, and hence for q, from (9),

(13) q - exp ^
(r " r'/2r) dp-

Of course, the term r'/2r can be integrated at once.
With notable restraint we refrain from doing this
integration. Use of - r instead of r in the above
argument leads to another solution, so that we have
the pair of solutions

(11,) q - exp jP [ ( - r'/2r) ± r ] dp.

""We omit discussion of the case where r may be zero.
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Since the equations are linear, every solution is a
linear combination of these.

Returning to the variable \, by the definition (7 )
of q, the solutions for X are

(15 J X - exp
^ [ (ax ♦ r«/r)/2 1 r] dp.

We must now put this solution for the yaw X in terms of
the original combinations of aerodynamic coefficients.
This simply requires use of the definitions (3) and (8)
of the a's and of . r. Keeping in mind the relative mag
nitude of the various terras, we compute:

al + aU
" 2JD - JN - k-2 JH

+ gdU_z sin 0 + iAv /B
and

Ur2 - (ax - a^)2 + Ua2a3 - 2{ai + a^)'
- ( - JN + k_2JH - gdU-2 sin 9 - iAv /B)2

+ U( v Jyp + i) ( - v JT - iJM)k-2 - 21AV/B,
or, referring to the expression (5) for V,

Ur2 - - A2 v 2/B2 + Uk-2JM

(17) + [JN - JD - k"2JH
- (2JT - JA)md2/A ] 2iAV /B.

A further approximation will be applied in computing
r'/r. Certain terms in the expression for Ur2 are
frequently useful later and have special nomenclature.
Namely we define

s - stability factor ■ v 2/hBk"2ju,
(18)

o - / 1 - 1/s.
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The real part of Ljr2 can then be written - A2v2o2/B2.
In computing r*/r !!§ shall ignore the imaginary part
of hr . In a sense this is quite justifiable. If
r'/r is computed precisely and the denominator mul
tiplied by its conjugate, our usual conventions con
cerning magnitudes would lead us to precisely the same
form unless r is extremely small. When r is small the
form of solution is no longer valid; to avoid com
plication we shall omit discussion of this special
case. Computing on this basis,

r'/r - (Ur2;»/2(Ur2)
- ( v 2 a2)»/2 v2 o2

(19) * v'/v + o'/o
- JD - JArad2/A + gdlT2 sin 0 + 0'/0 .

Making use of this expression leads at once to the form
of solution needed for the discussion of stability.

(20) The yawing motion is a combination of the solu
tions

X - V'o Jo exp J
^

P
(JE „ - k"2JH +■

JAod2/A ♦ iiA/B)

- { - a2v2/B* ♦ UC-2J,,

+ [J„ - JD - k-2JH
- (2JT - JA)md2/A] 2iVA/B}£ dp.

For stable projectiles it will turn out that there
is a simpler form which is an adequate approxima
tion. For all adequately stable projectiles, spin
ning or not, the ratio of the imaginary part of r2
to the real part is less than 1/20, so that the bi
nomial theorem may be used to approximate the square
root, and thus obtain a simple expression for r.
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According to the binomial theorem, 'if | a | > |
b | ,

1
va + b ■ t/a (1 + b/a)2

- «/a~(l + b/2a - b2/8a2 + ...),
Thus if the ratio | b/a | is less than 1/20, the error

in approximating * a + b by

Va (1 + b/2a) - + b/2

is less than 1/2000. Applying this to the expression
for fyr2 shows that

2r =■ iAvo/B + [jM - Jn - k~2JH
(21)

U

- (2JT - JA)rad2/A]/o.
Applying this approximation to equation (20) leads
to the conclusion*:

(22) If a projectile is adequately stable, its yawing
motion is given by an arbitrary combination of the
two solutions:

\ - Jo Jo exp J
|
P

{ JD - JH - k"2JH + JAmd2/A

+ [ JH - JD - k"2JH - (2JT - JA)md2/A]/o
♦ lvA(l * o)/b} dp.

*The authors are grateful to Mr. B. Fallon for pointing
out an error, an omission of a "gd" term, in their
earlier work. It is to be understood that g is the
acceleration due to gravity and d is the diameter of
the projectile.
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This is the form of solution which has been used
at Aberdeen in the reduction of spark range data. We
refer to Chapter XIII for a geometric description of
this function.

An alternate form of the solution (22) may also
be noted. In computing r'/r, referring to (17), we
may write:

r'/r - (lir2)'/2(Ur2)
- - A2 V v»/B2( - A2 V2o2/B2)
- (JD - JAmd2/A)/o2.

The equations (15), (16), (17) and (21) then lead to
the following form.

(23) An alternate form of the solutions (22) is:

\ - oxp \ I { 2JD - JN - k~2JH + gdlT2 sin 9J o
- (JD - rad2JA/A + gdtT2 sin 0)/o2

- [Jn - Jd - k_2JH
- (2JT - JA)md2/A]/o

+ [ivA(l t o)B] } dp.

We intend to base an analysis of spark range data
on the form (23), instead of, as is now done, on (22).
Of course the validity of (22) and (23) depends on
o being at least 20 times as large as a J-term. We
now turn to a discussion of stability, which will
show that for adequately stable shell this assumption
is justified.
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U. Stability.

We are now prepared to discuss the question of
stability*. One might define a projectile as stable
provided the yaw decreased, tending toward zero as p,
the arc length in calibers, increased. The definition
of stability which we wish to adopt is not, however,
of this sort. '.Ve will say a projectile is stable if
small disturbances have no permanent effect, that is,if the. yawing motion does not, in the limit, depend
on the initial yaw and the initial yawing motion (the
initial cross spin). To be precise, the yawing motion
of the projectile is given as a linear combination
of the solutions (15) of the previous section and a
particular solution. The projectile is stable if the
solutions (3.15) decrease in magnitude, so that in
the limit only the particular solution remains. This
does not always mean that the yaw will become and
remain small, for the particular solution may give a
large value of the yaw. For example, if the spin given
a shell is excessive, its rate of precession is slow,
and the direction of its axis changes only slowly.
Since the trajectory curves, the yaw becomes large.
Nevertheless, the projectile may be stable in the sense
in which we use the word. In order to assure that the
yaw be small it is necessary to know that the projec
tile is stable and that the particular integral is
small. Actually, except in the case of high-angle
fire, the particular integral will be small, so thatif the projectile is stable its yaw will become and
remain small.

*The "first stability condition" (see (9)) is quite
old, and is probably due to George Greenhill. The
criteria we derive are new. For shell with normal
spin, this stability condition, in a somewhat less
precise form, was contained implicitly in the work of
Fowler, Gallop, Lock and Richmond, as was stated by
R. H. Kent.
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The question to be decided in this section is then
the following: what are the necessary and sufficient
conditions that the solutions given by (3.20) approach
zero as the arc length p increases? Except for the
trivial case where r is extremely small (in which
case the solution must be replaced by another simpler
form), it is easy to see that the yaw will decrease if
and only if the real part of the first bracket under
the integral is negative, and in absolute value greater
than the real part of the second. That is, the pro
jectile is stable if and only If*
(1) a > |

R -/b + ic
1
1 ,

where R denotes "real part of" and

a » ( - JD + JN + k_2JH - JAmd2/A),
b - - (A2 v2/B2) + Uk~2JM,

c - 2AV [JN - JD - k"2JH
- (2JT - JA)md2/A]/B.

*To be precise, we should consider stability in the
special case where r is very near zero. However,
such an investigation would be of no practical interest,
since, for military use a projectile must not only
be stable, but projectiles with aerodynamic charac
teristics differing somewhat from the design must be
stable. (Production items frequently show fairly
substantial differences.) It seems quite improbable
then that stability attained for r ■ 0 could give
satisfactory performance on production items. Con
sequently, when in this chapter we state "necessary
and sufficient" conditions for stability, we mean in
this practical sense and not in the strict mathe
matical sense.
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The quantity b + ic can be written as

where

and

Since

"|/b2
+ c2 (cos P + i sin P),

cos P « b/ ^
b2 + c2

sin P - c/ 1/b2 + c2.

cos2(P/2) - (1 + cos P)/2,
it follows from De Moivre's theorem that

| R >A> +"ic |

- Vb2 + c2 J{
\

+
b/^b2

+ c2)/2
(2) y(b +

y^
2

+ c2v2.

The inequality (2) is therefore equivalent to one of
the form

(3; a > </(b + yb2 + c* J/2,

where a is the negative of the real part of a^ + a[,f
and b and c are respectively the real and imaginary
parts of hr . We now perform a few elementary alge
braic manipulations with the inequality (3). Each
line in the following list is equivalent to the pre
ceding and to the inequality (3).

a2 > (b + * g2)/2 and a > 0,

2a2 > (b + y?
2

+ c2) and a > 0,

(2a2 - b) > yb
2

+ c2 and a > 0,

(U) (2a2 - b)2 > b2 + c2 and a > 0

( since always | b | - yb
2

+ c2),
- Ua2b > c2 - Uafr and a > 0,

_ b > - a2 + (c2Aa2) and a > 0.
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The condition is then necessary and sufficient
for stability. From the expressions (1) it is easy
to see that a2 is of the order of J2, while c2/Ua2
and b are of the order of one, so that the a2-term
may be neglected. For convenience, let us denote the
part of c which is inside the bracket by f , so that
c - (f2av/B). Then the inequality (I4) can be written

We now state the principal result of this sec
tion, defining the stability factors s^, S2 and S3 as
a, a + f and a - f respectively.

(6) In order that a projectile be stable it is neces
sary and sufficient that the following inequalities
be satisfied.

(5)

(A2 v2/B2) - uk~2JM > (£2A v/B)2/Ua2,

1 - UB2k-2jM/A2v2) >f2/a2,

(\iB2k-2Jy/k2 v 2)

< 1 - (f2/a2) - (a ♦ f )(a - f )/a2.

l/s - uB2k"2JM/A2 v2

rjN _ JD - k"2JH - (2JT - JA)rad2/A-l
< 1

B\ ■ Jfj + k~ - Jn - J^md /A,
3 2

* 2JN " 2JD 2Jxmd /A,

S3 - 2k"2JH + (2Jt - 2JA)md2/A.
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The notable feature of either form is that the spin
v occurs only as a factor on one side of the inequality
so that it is extremely simple to discover the effect
on stability of varying the spin. We now consider
separately the stability of spin-stabilized and fin-
stabilized projectiles.

Case I. Spin-stabilized projectile : %> 0.

We first remark that the classical stability con
dition, s > 1, is shown to be necessary by (6). Of
course this condition (s > 1) is by no means suffi
cient. Inspection of the equations shows that if s is
greater than one, by an amount which is large relative
to the J-terms, say by 0.5, then the yawing motion of
the projectile will be epicyclic, and there will be many
maxima of yaw. (See Chapter XIII.) However, the
successive values of the yaw at maxima may increase
without bound. On the other hand, if s < 1 the yaw
increases steadily, and the motion is very similar
to the falling-down motion of a top when its spin
becomes too small.

A remarkable fact obtained from these inequalities
is that it is quite possible, that shell exist which
are incapable of spin stabilization. First, the pro
jectile is surely unstable if s^ is negative. This
is actually rather improbable, 'for Jjj and Jjj are
usually positive and of the order of ten times the
magnitude of Jp. However, the possibility of
being negative cannot be ruled out, in view of the
formula (II. 5.7) which gives the change in Kjj for a

change in center of mass position. Even if s^ ispositive, it may not be possible to stabilize the
shell, for, referring to (6), the bracketed quantity
may be greater than 1, whereas the quantity on the
left is always positive. If sj>0, the bracketed
quantity will be less than one if and only if the
denominator i the numerator are both positive, i. e., if
S2 and S3 are positive. On the other hand, if S2 and S3
are positive, their sum, which is 2s^, is positive.
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Thus we may state:

(8) A projectile with K» positive is capable of spin
stabilization If" and only if s? and""s ^ are positive.If the projectile is capabTe of spin stabilization
"Eh~e amount of spin required is given By

o
s > S^ /S2S3.

He remark that this can be considered as a sharp
ening of the classical stability condition; instead
of requiring that s > 1 we require that s be greater
than a certain combination of aerodynamic coefficients
which is, by reason of its form, always greater than 1.

There is ample experimental evidence of the im
portance of the complete stability conditions. For
example, A. C. Charters has fired rounds in the aero
dynamic range at Aberdeen which, although having a
stability factor s of 1.5, were unstable. Further,
models have been fired which were unstable, and yet
a model having the same exterior contour but a center
of mass farther back was stable. That is, by a change
in distribution of mass, which reduced the factor s,
stability was attained. In this case the cause of
the instability was the excessive magnitude of Jm.
As we have remarked, Jf is usually negative and in
this case the factor S3 was therefore negative. By
moving the center of mass to the rear the magnitude
of was decreased and consequently the shell became
stable.

Too little is known about the stability character
istics of shell to be able to draw any conclusions
about design criteria. It is known, in a general
way, that very short shell seldom have stability
troubles of this sort. Unfortunately, very short
shell are unsuitable for most ballistic purposes
because of their high drag. The question of stability
is now being studied experimentally in some detail.
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Case II. Fin-stabilized projectiles: < 0.

For fin-stabilized projectiles the implications of
the stability criteria are quite different. If s^_ ispositive and the spin is sufficiently small the pro
jectile, in view of (7), is surely stable. If, further,
S2S3 is positive the projectile "is stable regardless
of spin. (In this case, since 2s\ ■ S2 + S3, both
S2 and 33 are positive.) On the other hand, if either
82 or S3 is negative then the condition (7) limits
the amount of spin possible before instability ensues.
Summing up:

(9) For a projectile with negative it is neces
sary that s 2 + si be positive in order that the pro
jectile be stable . If both S2 and

s^
are positive

the projectile is stable regardless of the amount
of spin. If So +

S3 is positive but either S2 or s-jis negative, then a necessary and sufficient condi
tion that the 'projectile be stable is that the square
of the spin be less than

I iiB2JMk-2Sl2/A2S2S3 I .

It would be rather exceptional if for a fin-stabi
lized projectile the quantity

s2 +
s3

3 2sl
were negative. The normal force coefficient for a
bomb is usually of the order of twice the coefficient
for a shell at the same Mach number. The damping
coefficient Kj

j is usually larger by an even greater
factor, and for some bombs this coefficient is as large
as 30. These are, of course, natural effects of the
guiding surfaces. On the other hand, there is no par
ticular reason to expect that one of the numbers
So and s-j should not, for some designs, be negative.
That this is the case is indicated by the fact that

a number of bombs, particularly those of marginal
stability, have been observed to go into a "flat spin"
when, due to launching or to misalignment of fins, some
axial spin had been induced.
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Actually, the analysis which we have given does
not apply to most bombs. In defining the aerodynamic
coefficients a factor

0)i ■ axial component of angular velocity

was removed from the Magnus forces and torques on
the grounds that, if the projectile has a plane of
mirror symmetry these forces and torques are odd
functions of co j. Most bombs do not have a plane of
mirror symmetry. The edges of the fins are usually
turned over to give the fins additional rigidity.
This means that when the bomb is yawing the fins act
like the vanes on an anemometer, inducing a spin on
the bomb. Further, in this instance there is no reason
to suppose that even with spin zero the force perpen
dicular to the plane of yaw, which we call Magnus force,
vanishes. The form chosen for the aerodynamic coeffi
cients is then not suitable, since it cannot be supposed
that they are almost constant — in fact, there is
reason to think that for such a projectile the Magnus
force coefficient as defined here would have an in
finite discontinuity at cd^

■ 0. A further analysis
thus seems necessary to get adequate criteria for this
sort of fin-stabilized projectile. This analysis will
not be carried out here; presumably criteria similar
to (6) and (7) would result.

$. k_ particular integral; the yaw of repbse.

The solutions so far obtained are solutions of the
homogeneous equations (3.2). For stable projectiles
these solutions are transients, that is \ and \i decrease
exponentially along the trajectory and eventually
become negligibly small. The importance of these
solutions lies in the fact that they enable us to ana
lyze the initial motion of a projectile and to compute
the effects of a particular set of launching conditions.
We now turn our attention to a particular solution.
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This solution is essentially unique, in that it is the
non- transient part of any complete solution. The ex
pression for X we obtain is called the yaw of repose,
since it is that yaw which a projectile will have after
the transients have died out.

It might at first seem strange that the "repose"
position of a projectile is not that of zero yaw, but
a little reflection serves to show that this must be
the case. If a projectile moves with no yaw, the
fact that the trajectory is curved means that the
projectile must have a non-zero angular velocity,

9 - - g cos 0/U.
This angular velocity changes along the trajectory,
decreasing steadily along the upward branch. The
question is, what torque causes this change? If the
yaw is zero, the only possible torque is the damping
torque, depending on %, and if % is positive this is
of the wrong sign. One must conclude that in general
the rest position of a projectile is not a position
of zero yaw. We now proceed to compute this yaw,
the corresponding angular velocity and the effects
of these.

It will be convenient to obtain the particular solu
tion for X and n in terms of t • We return to the
notation of Section 3, and recall that the equations,
a particular solution of which is desired, are:

\' = a^X + a2 k1 + b,
=
83 X+ a^,

al " JD " JN + ivJF*
a2 - v Jvp. + i,

_2
aj ■ ( • v Jj - i^M^ '

au
. JD - k"2JH + gdU"2 sin 9 + U v/B,

b - (gX sin 9 -T )dlT2.

(1)

where
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Further, the equation which is obtained by eliminating
p. from this system is equation (3.6), which is

X" ♦ X»( - a-, - ai.)
(2) u

+ Ma-ja^ -
a2a^)

+
b(a^

- b'/b) - 0.
The solution which would exist if the coefficients
of this equation were constant instead of slowly vary
ing functions of the arc length p actually furnishes
an adequately accurate approximation, We define the
yaw of repose, Xr, by
(3) Xr - - b(au - b'/b)/(aiau - a2a3).
If the values of the a's and b in terms of the aero
dynamic coefficients are written, as they will be
below, it can be verified that Xr' is of the order ofJ .times ba^, and X£ is even smaller. Thus Xr fur
nishes a particular solution of the equations (1).

We now compute the expression for Xr in terms of
the definition (1) of the a's and b. If, as before,
j2-terms are neglected,

aiaj^ - 8383
• (J^ - Jjj + i v Jp)iv A/B

(U) 0/
+ ik-2( v JT + iJM).

We now choose that coordinate system described just
before (2.13). In this system we make the following
approximations, whose justification is given in a note
at the end of this chapter:

Y - g X sin 9 • - g cos 9,^ b - gdir2 cos e.

The expressions (2.9) for U1 and 9' may be used to
compute b'/b.

b'/b » (IT2 cos 9)'/U~2 cos 9

- - 2U'/U - 9' sin 9/cos 9

- _ 2( - JD - gdlT2 sin 9) + gdlT2 sin 9

- 2JD + 3gdU-2 sin 9. .
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Thus,

aj
j - b'/b - - JD - k"2JR - 2gdU"2 sin 9 + ivA/B).

We therefore have the following expression for the
yaw of repose:

- gdir2 coo e( - jd - k-2Jg - 2g<nr2 «in e ♦ i va/b)
\° ) X_ - r •

(JD - JH ♦ iv JF)ivA/B ♦ iirz(v JT ♦ Ug)

This expression is actually of a different order of
magnitude depending on whether the projectile is spin-
stabilized or fin-stabilized. We therefore consider
separately the two cases. First, if v ■ 0, we have
at once:

(7) If the spin v is zero the yaw of repose is given by

Xr - gdU"2 cos 0 ( - JD - k_2JH - 2gdlT2 sin e)/k-2Ju.
Since for a bomb the coefficient Jy is negative, the
yaw of repose is positive real, which means that the
trajectory is below the axis of the projectile. Thus
the "repose" position of a fin-stabilized projectile
is such that the nose of the projectile is above the
trajectory. This, as we shall see, causes a "lift
effect," so that the range of a bomb is greater than
would be the case if drag alone were acting. Further,
the time of flight is greater than would be the case
on the basis of drag alone.

The other special case we wish to consider is that
of a spin-stabilized projectile with normal spin;i. e.,vA/B is of the order of 1/50. In this case
the first part of the denominator of the expression
for Xr is much smaller than the second part. Thus,if both numerator and denominator are multiplied by
the conjugate of the denominator, the resulting de
nominator can be approximated by k~^(v2J>p2 + ^u^*
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The numerator is then

- (gdlT2 cos 9)( - JD - k~2JH - 2gdtT2 sin 9 + ivA/B)
'[ - k-2^ - A v%/B

- iVA(jD - JN + JTmd2/A)/B],

Under the assumption on the order of magnitude of y/k/B
this can be replaced by

- (gdlT2 cos 0)( - k~2JM - JF v2A/B)iv A/B.

Thus the yaw of repose can be approximated by

\r m (gdU~2 cos e)(iv A)
(8)

•(k-% + JF v2A/B)/Bk-^( v2JT2 + JM2).

This is not as good an approximation as (7), but in
practice an even poorer approximation is usually
used. This is

(9) For projectiles for which v A/B is_ of the order
of 1/50, the' following equation gives the yaw of re
pose to about $ per cent,

\ r - gdU-2 cos 9 i v A/JMBk-2
- gdlT2 cos 0 ivA/JMrad2.

This expression indicates that the repose position
of a shell is with its axis pointing slightly to the
right of the trajectory. An inspection of the more
precise form (6) shows that in general the shell also
points above its trajectory, although to a much lesser
extent. This rest position shows the reason for the
drift of a projectile. A shell with normal right-
handed spin will, in the absence of wind, always fall
to the right of the vertical plane which contains
its initial velocity vector. The equation (9) will
permit us to compute the amount of this deviation.
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Corresponding to the yaw of repose there is an
angular velocity Hr which, according to equations (1),
is given by

(10) ur - (\r» - ai\r - b;/a2.
In case the spin is zero (equation (7)), both\r' and
aj\r are of the order of J times b. In the other case,
(equation (9)), these terms are of the order of 1/50
of b. In either case, to an accuracy corresponding to
the accuracy of the expression for \r, we may write

(11) ur - gdU"2 cos 9/( vjjp * i).
We now return to Section 2, equation (13), to compute

the acceleration due to \r and u^. . We have at once :

(12) The component of acceleration perpendicular to
the trajectory due to aerodynamic forces is given by

a - [(JD - JN + i vJF)\+ (vJ^ + Us)ji] U2/d.
A positive Imaginary acceleration is measured to the
left of the trajectory and a positive real downward .

For a non-spinning projectile this gives an accel
eration a_, corresponding to \r andur, of, (by equa
tion (7)),

Bp - g cos 0 (JD - JN)( - JD - k~2JH)/k"2Ju
+ g cos 9 (JD - JN)( - 2gdU"2 sin ej/k"2^

(13) + g cos 9 Jg
■ g cos 6 (JL/k"2JM)(JD + k"2JH + 2gdU sin 9)

+ g COS 0 Jg.
We have replaced Jjj - Jd by Jl (see (II.U.9)). Since
Jy is negative for fin-stabilized projectiles, this
acceleration will ordinarily be directed upward.
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Making the corresponding calculation for spin-
stabilized projectiles, employing (9) and (11), we
have

^ - ( - JL + ivJF)(ig cos 9)(vA/JMmd2)
+ (vJjjr + UgXg cos ej/CvJjp + i).

The second term here is of the order of J, while the
first is of the order of 1/50. Thus, to an accuracy
which is quite adequate, considering the accuracy of

(1U) Bj. » ig cos 8vA( - JL + ivJF)/JMmd2.
Of course the J's in this equation can be replaced
by the aerodynamic coefficients Kjj, Kp and Ky, since
the density factor pd3/m is common to numerator and
denominator.

The computation of the effects of the acceleration
ar is best made by the method of differential correc
tions. The real part of a-, which represents an accel
eration in the vertical plane of the trajectory, re
quires, for the computation of its effect, solutions
either of the equations of variation or the associated
adjoint system. The imaginary part of ar permits a
direct computation by means of quadratures. In fact,
referring to (IX. 3. 10), we may state:

(15) The drift, which is the deflection due to the
yaw of repose, is given by

Drift

T
gA f ( [x(T) - x(t)] v cos 6 KL \

md2 I \ x(t) % )J tQ
_2Of course, V cos 9 may be replaced by co^d x(t) Uif desired.
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6. Initial motion of the center of mass; swerve .

It is the purpose of this section to display the
equations describing the angular and spatial motion
of a projectile in a form suitable for use in experi
ments in which the initial motion of a projectile
is measured. In particular, we have in mind spark
range measurements and yaw card trials, both of which
are discussed at some length in Chapter XIII. In
both of these cases one is concerned with the motion
of the projectile for a relatively short distance —
a distance of the order of 7000 calibers. The meas
urements which we will wish to interpret are of vary
ing accuracy. In the case of spark range data, the
angular position of a shell is measured to an accuracy
corresponding to a probable error of about 0.1 degrees,
while in yaw card trials the accuracy is roughly one
degree. In either case the most important range is
from a yaw of two degrees (although this is usually
too small for successful yaw card experiments) to a
yaw of ten degrees, with some importance attached to
yaws up to twenty degrees.

It is convenient to measure the yaw of the pro
jectile from the trajectory to the axis, instead of
in the reverse direction. The coordinate system com
monly used in the spark range at Aberdeen has one
axis pointing along the trajectory, another, the
H-axis, pointing to the left and horizontal, and the
V-axis pointing upward. (These axes are obviously
connected with the horizontal and vertical plates
on which the silhouette of the projectile is photo
graphed.) The components of yaw in the H- and V-
directions, or, to be precise, the tangents of the
angles from the H- and V-axes respectively, to the
axis of the projectile, are denoted by and £y.
Recalling the definition of \, and "the coordinate
system (2.12), one sees that

(1) K - SH + tfv " iX'
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The form of the variation of £h + i£y *ith distance
is thus the same as that of \, a linear combination
of the solutions (3.23) with the yaw of repose added.
Two small simplifications are possible. Since in the
spark range the projectile is fired almost horizontally
the terms gdlf" sin 9 may be neglected. Secondly, the
yaw of repose may surely be approximated as in equa
tion (5.9), and the cos 0 term* there may be replaced
by one. These two simplifications made, one obtains

(2) The yaw as a function of distance in calibers
is given by

K - SH + tfv ' cl exP * l + c2 exP *2 " 6U"2A / Jtfnd,
where and *

2
are given by

*v *
2
B i \ { 2JD - JN - k"2JH - ( JD - JAmd2/A)/o2J o

t [JN - JD - k'2JH - (2JT - JA)md2/A]/o
♦ ivA(l ± 0)/B} dp.

We now consider the motion of the center of mass,
taking the point of view that the yaw is a known func
tion of the arc length p. Referring to equation (2.13),
the aerodynamic force on the projectile has the form
Force - [ (JD - JN ♦ ivJF)\ + ( vj^ + iJsVl mU2/d.
This is, of course, the representation of the force
in the coordinate system of \ and \x. If X is known,
according to equations (3.2) and (3.3), u- is given by

li - [\» - (JD - JN + iv JF)X ♦ YdU"2] /(i + vjjp).
If we now inspect the expression for force above, we see
that terms within the bracket which are much smaller
than JX-terms may be neglected. In computing the
force, therefore, one may surely replace the ex
pression for H by the simpler form U ■ X'/(i +

v^xF^'
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If the numerator and denominator of this fraction are
multiplied by the conjugate of the denominator, in
spection of the expression for force shows that the
vj^p terra may be neglected, so the aerodynamic force
takes the form:

(3) Force = [ ( JD - JN + Jy JF) X- KvJjp + iJs)\«] mU2/d.
We are now in a position to determine the motion of
the center of mass. The spatial coordinate system
used in the spark range has the x-axis horizontal
and to the left, the y-axis pointing vertically up
ward and the z-axis horizontal and (approximately)
along the initial line of fire. Because the photo
graphic plates used are small (3 inches by 10 inches)
the line of fire is always within a few mils of the
direction of the z-axis. Equation (3) gives the com
ponent of aerodynamic force perpendicular to the tra
jectory. The component perpendicular to the z-axis,
m(3f + iy), will be the expression (3) multiplied by
the cosine of a very small angle, together with a
component of the aerodynamic force along the trajec
tory, the drag. The coordinate system in which (3)
is valid has its real axis downward, the imaginary
to the left. Using S as an abbreviation for x + iy,
it then follows that
(U) mS ■ m(x + iy) » - i(Force) + mUS/U - img,
where "Force" is given by (3). The drag is mU, and
§/U projects this force perpendicular to the z-axis.
The two terms in S can be combined to give a simpler
and more convenient form. Using primes, as usual,
to denote derivatives to arc length, p, we compute:

m§ - mUS/U - (SU - US)m/U - (S/U)mU
- (S'/d)'mU2/d - S"mU2/d2.

Modifying (h) by means of this computation and re
placing i\ by £ gives

S" - - [(JD - JN ♦ i vjfk
(5) - i( vJjp + iJsK'] d - igd2/U2.
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We now obtain S by repeated integration. According
to (2) the yaw ^ is of the form

_2
c^ exp + C2 exp ♦ 2

~ 8^ v ^/J mc*»

where ♦ \ and ♦ 2 are almost linear in arc length p.
In what follows the integration for S will be performed
as if these were linear functions. This amounts to
ignoring the variation of y Thus,

P
exp *i dp - (exp - 1)/ * j>

* ,

o!

fP fP

J J

exp dp dp - (exp $x - l)/( ♦ •)« - p/t i» ,

and similarly for exp $2* Using this equation, and
grouping terms in the order constant, linear func
tion of p, exponential, drift and gravity drop, leads
to the following equation for S:

S - Sc + ( - Jl + i vJjOd KA* x' ^
* + C2A •2' )2 ]

- i( v Jjp + iJj.)d(Cl/» x« ♦ c2/* 2' )

+ pS0« + p( - JL + ivJF)d(c1/» 1«

+ c2/4>2')

- i(v Jjp + iJs)dp(c1 + c2)
+
cxd exp * x [ - ( - JL + iv JpVU^ )2

(6) + K vjjp + iJg)/*!' ]

+ cgd exp 4>2 [ - ( - JL + ivJF)/(*2')2

+ i( v J^p ♦ iJs)/* 2» ]

♦ [ gA( - JL ♦ iv JpV^m ] fP fP lT2v dp dp

np
Jo Jo

U"2 dp dp.
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One term, that corresponding to the rate of change of
the yaw of repose, - gU-^A v /Jj^md, has been omitted,
and Jj) - Jjj has been replaced by - Jl. It is possible
to obtain several useful facts from the form of (6).
In particular we can discover the effects of the ini
tial yawing motion. The exponential terras in (6)
will damp out if the projectile is stable, and the
constant terms involving c^ and 03 are too small to
be of practical significance. However, there is a
term linear in p which involves c^ and C2« This term
shows that as a result of the initial yawing motion
there is actually a change in direction of the mean
trajectory. We state explicitly for future reference:

(7) An initial yawing motion, c^ exp *i + c2 exp * 2»
changes the direction of motion of- a_ projectile tjjr
the angle (in radians )

( - JL+ lvJp)(ci/*i' - c2/*2') - KvJjp + iJs)(c1 ♦ c2),
where

*!' , V " * f2JD - JN " k"2jH " (JD ~ JAmd2/A)/°2

i[JN _ JD _ k"2JH - (2JT - JA)md2/A]/o
+ ivA(l 1 0)/B } .

This result will be used in the discussion of the ef
fects of yaw in aircraft fire.
It will also be convenient to atate explicitly the

facts from equation (6) which will be used in the
spark range reduction.

(8) If the initial yawing motion is given by

£ ■ c^ exp $i + C2 exp *2>
the motion of the center of mass is given by

S - (linear function of p)
+ (drift) + (gravity drop)
+ r^ exp *x + r2 exp *2>
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where

rx - Cld[ - ( - JL + iv^)/(f1»)2 *±(yaJF* iJg)/*^]
. and T2 is £ similar expression in C2 and * 2*

As far as spark range work is concerned it is pos
sible to use approximate forms for the drift and
gravity drop in the above equation which will be very
simple computationally. The equation governing the
velocity permits simplification since the fire is
very nearly horizontal, so that U is the solution
of the equation U1 ■ - UJn. Hence U * U0 exp( - J^p).
By straightforward computation one then obtains:

gd2 [P fP U-2 dp dp
Jo Jo

exp (2Jpp) dp dp

2 -2
i:

(gd'00~72JD) I [exp (2JDp) - 1 ] dp'
0

- (gd2uo-2/2JD) {[(exp 2JDp - 1)/2JD ] - p }.
For normal rounds fired in the range the velocity
loss is at most 10 per cent, and the exponential term
above can be approximated by a polynomial. Replacing
exp 2JDp by

1 ♦ 2JDp + (2JDp)2/2 + (2JDp)3/6 +

■we have

gd2 [P (P U"2 dp dp
(9) Jo Jo

- kd2U0"2P2 [1 + (2JDp/3) ♦ ... ] .
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The procedure which is used in the spark range reduc
tion is to subtract from the measured values of S
the quadratic and cubic terms of (9) and the terms
of the same order in the expression for drift. The
revised values should then be of the form, a linear
function of p added to a combination of the exponentials
exp $i and exp ♦2* Since these exponentials are
obtained from the yaw reduction it is then possible
to fit the revised values of S with a linear combina
tion of four known functions, namely, a constant,
the function p and the two exponentials. This can
be done by a more or less routine least squares pro
cedure, and the values of r^ and T2 (see equation (8))
so obtained can be used to evaluate the coefficients
Kt, Kj,, Kyjp and Kg. Actually, as we shall see, only
the first of these, K^, can usually be evaluated with
meaningful accuracy. In line with this program an
approximate expression for the drift is also needed.

The drift is of the form

multiplied by a constant. In approximating this inte
gral we shall use the fact that the spin-decelerating
moment is small, so that if v is written a»^d/U, the
variation of <o^ can be neglected. Thus,

vdp dp

IT3 dp dp

- CD;|dU0-3 1 I exp (3Jnp) dp dp
0 Jo

■
a>idU0~3 exp (3JeP)/(3Jd)2 + (linear terms)

- vouo~2 exP (3JDP)/(3«V2 + (linear terms)
■ i Vo°o"2P2(l + JDp + ''•>'
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Actually, v0 should be taken as a mean value of v.
Making use of this approximate formula gives at once
the desired form:

[( - JL ♦ ivJF)/JM] (gA/m) fP f
P
IT2 vdp dp

(10)
J 0 J 0

- £P2L( - Jl + ivJF)/JM](gv0A/mU02)(l ♦ JDp + ... ).
7. Initial motion; evaluation of constants.

The two constants, c-l and c g> which appear in the
expression for the yaw are determined by the initial
yaw and the initial angular velocity of the projectile.
We will now evaluate the constants in terms of these
quantities. This evaluation will be needed in com
puting the effects of particular launching conditions.

In making this computation it is quite justifiable
to ignore the yaw of repose, since this ordinarily has
the magnitude of only a fraction of a degree. The
yawing motion is then of the form

(1) £ ■
c-l exp ♦ i + c2 exp

4>2>

where and *2 are given by (6.2). For p « 0, the
equation (1) and the equation obtained by differen
tiating it show that

(2)
*° " Cl ' H'
*o' " ClV + c2*2'

These equations may be solved for c^ and C2 easily,resulting in the following values for the constants:

ci; (s0' - Co^1 - *2%)>

c2
" (V " 5o*l>/< *2 - *\%)*
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These equations are in a fairly convenient form ex
cept that it is desirable to have £0' expressed in
terms of the initial angular velocity. Let us denote
the component of initial angular velocity perpendicu
lar to the initial tangent to the trajectory by QQ —
or, to be more precise, let QQ be the complex number
representation of this vector, taken in the same coor
dinate system as The relation between \ and u. is
given by equations (3.2) and (3.3), but for present
purposes a very approximate form of these equations
will be used. We shall assume \' ■ iu.. Since u. is
a representation of the cross angular velocity multi
plied by d/U, this equation gives very simply a rela
tion between QQ and£Q' . In the previous section we
noted that i\ * £, and a direct comparison of the
coordinate systems (2.12) and that of the previous
section shows that - inQ ■ QQd/U. Thus

(a) KQ}
- - iQ0d/U.

This value may now be used to replace £0* in the equa
tions (3) for c>l and c2. Summarizing the information
contained in equations (1), (3) and (U) we may state:

(5 ) The initial yawing motion of a_ projectile which
is launched with yaw £ Q and cross angular velocity Q 0is given by

K - ( - iQ0d/U - S0*2' ) exp *-,/(*]/ - *2' )

+ ( - iQ0d/U - Kq*!1) «cp *2/( * 2' - * x» ),
where *^ and *2 are given by (6.2).
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NOTE: We now give the omitted justification of the
approximation (5.5). Let (yi, J2> 06 the unit vec
tor pointing upward. In our coordinate system, the
X2~axis is coplanar with this and the velocity vector
(ul» u2» u3)> 30 ^ne vector (0, 1, 0) is a combination
of those vectors. That is, there are numbers h and k
such that hyn + Ion ■ 0, hy2 + ku2 ■ 1, hy3 + ku^

■ 0.
Then y^ ■ yit^/uif, which is nearly (U3AO sin 0. The
x^-axis lies above the trajectory by a small angle C

whose sine is ^/u, so to a close approximation

y2 ■ - cos (9 + C) • - cos 9 cos C + sin 0 sin C

■ - cos 6 + (U2/U) sin 0.

Hence

y2 * *y3 " " cos 6 + ^u2 + iu^J/u] sin 0.

On multiplying by g and transposing, this becomes (5.5).
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Chapter XII
LAUNCHING EFFECTS

1. Preliminaries.

It is the purpose of this chapter to compute the
magnitude and direction of the deviations of certain
trajectories from normal; in particular, deviations
which are due to the character of the launching.
There are really two distinct sorts of effects which
will be considered. One sort may be called systematic.
Of primary importance among these is the effect of
launching with large initial yaw, as is done in side
ways fire from aircraft. Such effects are predictable,
since the character of the launching is known, and
they form an integral part of computed firing tables.
The second sort of effect is not systematic, but simply
adds to the dispersion of the weapon. Among these
are the effect of yaw in the gun (although the magni
tude of this yaw is predictable, its direction is not)
and the effects of eccentricity of mass. The study
of these is not intended as a preliminary to firing
table computation but simply as a means of setting up
suitable tolerances in the manufacture of projectiles
and guns. It also gives an indication of the impor
tance of these factors in dispersion.

As a part of the procedure for the computation of
the systematic effects, Sections 2 and 3 are devoted
to a description of the experimental procedure and
the analysis of data required to evaluate these. The
second of these procedures, drift firing, is almost
self-explanatory. The first, yaw card firings, is
essentially the same experiment as that conducted in
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the spark range. The angular motion of the shell Is
analyzed more or less completely. Because the same
data, but given to a higher order of accuracy, are
analyzed fully in our discussion of the spark range,
and because the method has been described previously
by Fowler, Gallop, Lock and Richmond, the discussion
of yaw card firings here is rather sketchy.

The fourth and fifth sections are devoted to the
computation of windage jump and yaw drag. These
sections are definitely designed for use in construc
tion of aircraft tables, where the range is short and
the trajectory very flat. This specialization is
justified since this is the only case in which pro
jectiles are systematically launched with large yaw.
Further, since this yaw occurs when the projectile
has its maximum velocity, the effect is vastly greater
than in the case of bombing, since for most bombs
aerodynamic factors are least important at launching.
However, there is, in the case of bombing, a "shel
tering" effect which is of some importance.

The discussion of the effect of yaw in the gun, of
eccentricity of mass and of muzzle blast is intended
to give some estimate of those components of disper
sion which are. due to the non-particle character of
the trajectory. A complete discussion of dispersion
is beyond the scope of this book. The effects con
sidered here, together with those considered in pre
vious chapters, such as the effect of non-standard
ballistic coefficient, include the principal compo
nents of dispersion which are primarily exterior
ballistic in character.

The accuracy required in the computations which
follow is not extreme. As has been remarked, the
windage Jump and yaw drag computations are done pri
marily for sideways fire from aircraft, where the
trajectory is very flat and the range is short. On
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the other hand, in the computation of effects which
are not systematic there is no reason to require high
accuracy. An accuracy of 10 per cent is more than
adequate. Accordingly, the simplest forms of the
various computations made in the previous chapter can
be used. It is convenient to assemble all the facts
from that chapter which are needed in what follows,
and to adopt a less complex notation. Accordingly,
we rewrite equations (XI. 3. 22), in a simplified form.
For convenience the term Jjj - Jp will be replaced by- Jj,. The factor Jajv will be replaced by 1. Finally,
the integration indicated in (XI. 3. 22) will be per
formed as if the integrand were constant. These simplifications then yield:

(1) If the yaw of repose is neglected, the yawing mo
tion of a projectile is given by

5 - ci exp (hi ♦ ifi)p ♦ c2 exp (h2 + if2)P>
where and c2 are constants determined by the ini
tial conditions, p is the arc length along the tra
jectory measured in calibers and h^, h2, f^ and f2
are given by the following, where the subscript I
corresponds to the positive choice of sign:

bp h2
" £ {

- JL " k"2jH + JA md2/A

* [jL - k"2jH - (2JT - JA)md2/A ]/o },

fx, f2 - A v (1 * o)/2B.

The symbols in this equation are defined in Section
2 of the preceding chapter, except for o * */l - l/s,
where s is the stability factor defined in (XI. 3. 18).It is to be remembered that the h's are very *uch
smaller than the f*s. For normal shell, the ratio
h/f would hardly be more than one or two hundredths.

6UU Ch. XII



For use in the discussion of drift firings we also
ote from (XI. 5. 15).

) A pro.lectile drifts to the right of the vartiftal
ane containing its inlti al velocity vector by the
ount

- Drift - & r£f(T^x(t)^vcoseKT|^J to
jre x is. the horizontal component of tils distance
-om the muzzle is the shell.

The constants contained in the expression (1) for
le yaw were evaluated in Section 7 of the previous

. hapter. It was shown in (XI. 7. 5) that if the initial
otion of a shell was given by

K ■
c^ exp*^ + Cg exp*2»

~ ihen the constant Ci was

( - iQ0d/U - Co*2*)A»i' - • 2'),
inere Q0 is the initial cross angular velocity and
(0 is the initial yaw. Referring to (1), we see that
in the present notation *i - (hi + if^Jp. The deriva
tive ♦]) contains two terms, but the larger of theseif if j. Using this terra as the derivative we may the
state :

(3) The constants c^ and C2 of, (l) have the values

Cl - - (Q0d/U +^0f2)/(f1 - f2),
c2 * - (Q0d/u +50f1)/(f2 - fx),

where Q0 is. ths. initial cross angular velocity and.
£o is. the initial yaw.

-

There is one more result which will be needed.
According to equation (XI. 6. 7), an effect of the
initial yawing motion £ ■

c^ exp * ^+ c2 exp *2
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to change the direction of the mean trajectory by the
angle
- (JL - ivjpHci/*!1 - c2/*2') - i(yJiF - iJs^cl * c2^
In the present notation, and to the accuracy used
here, this states:

(U) An effect of the yawing motion given by (1) is
to change the direction of the mean trajectory bjy the
angle

it + JL - iv JpKcx/fi + c2/f2).
Z. Taw card firings .

We now proceed to discuss a method of observation
of the angular motion of a projectile and the deduc
tions that can be made from the observation. This
method was devised by Fowler, Gallop, Lock and Rich
mond, and even today is used on almost all firing
table construction. A series of cards, called yaw
cards, are placed at intervals in front of the muzzle
of the gun. Upon firing, the projectile punctures
each card. From the shape of the hole, an estimate can
be made of the yaw of the shell at that position. (We
discuss this estimate further in the next paragraph.)
Thus, what amounts essentially to a continuous record
of the yaw as a function of distance is obtained.
This record is compared with the theoretically known
form of the yawing motion and the pertinent constants
are deduced. This is, in outline, the procedure. In
practice there are many difficulties, some of which
will be discussed below. The reduction of the data
is a rather delicate operation, and the accuracy of
the results depends greatly on the person performing
the reduction. For optimum results, one might suggest
getting H. P. Hitchcock to look at the data.

The precise relation between the perforation in the
yaw card and the yaw of the projectile depends, of
course, on the shape of the shell. If, for example,
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it is known that the bourrelet of the shell (this is
the point of forward support, in the gun, and is the
first point where the shell is a full caliber in
width) and the band cut the top and bottom of the hole,
the yaw of the shell could be deduced as follows. The
upper half of the bourrelet would cut out a half ellipse
having a major axis d and a minor axis d cos 6. If
the distance from the bourrelet to the band is b, there
would be a straight section of length b sin &, and then
a lower half ellipse of minor axis d cos 6. The max
imum diameter of the perforation is then

d cos o + b sin 6,

and the yaw is approximately
(maximum diameter - d)/b.

This is an oversimplified case, but it is clear that
the geometry of the shell together with the maximum
diameter of the perforation determines the magnitude
of the yaw. The orientation of the yaw is determined
by the line of symmetry along the direction of maxi
mum diameter. An individual measurement of yaw is
good to about one degree. The analysis is complicated
by the peculiar properties of the cards. For example,it is possible for a shell to pass through a cardboard
leaving a perforation of diameter smaller than that
of the shelll Very careful examination is necessary
in order to secure accurate measurements.

It is unfortunately true that the cards themselves
have an effect on the motion of the shell. Certain
corrections can be made for this effect. One can
assume that the effect of each card is to impart a
discrete amount of angular momentum to the shell, this
amount depending linearly on the yaw. Firings can then
be made with dense and with sparse distribution of
cards, and the change in behavior of the shell attrib
uted to the change in number of cards. This gives a
means of evaluating the amount of angular momentum
transmitted to the shell. (Another way of thinking
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of this is to extrapolate from a dense distribution
and a sparse distribution to a vacuous distribution.)
We shall not go into the methods of making these cor
rections. It may be well to point out that they pre
suppose a certain amount of uniformity in the yawing
motion from round to round. This uniformity actually
exists, at least to a degree. If shell are loaded
in the same manner they will have similar initial con
ditions and hence similar initial motion. This is,
however, true only in a general way. No two shell are
identical, and no two are seated in precisely the same
way in the bore of the gun.

Let us suppose that we have available a continuous
record of the yaw (as a function of distance, a series
of points in the plane, each corresponding to a known
distance from the muzzle. What sort of pattern is to
be expected? We begin the analysis with a geometric
description of this yawing motion. According to (1.1),
the yaw is given by

£ ■
c^ exp (h^ + if^)p + Cg exp (hg + if2^P»

Let us consider first the case where C2 is zero. Then

K -
c1 exp (hx + if^p

-
c^ (exp bjp)(cos fjp * i sin f^p).

This has a simple meaning. The point £ is moving in
the xy-plane with an angular velocity of f^ radians
per caliber of travel about the origin. The distance
of the point ( from the origin is |cj_ exp (h^ + ifi)p|
and if the shell is stable this distance decreases,
although relatively slowly. If the xy-plane is thought
of as being situated with its origin on the trajectory,
and moving so that it is always one unit ahead of the
center of mass of the shell, this circular pattern
with decreasing radius is the pattern that would be
traced on the plane by the axis of the shell. Or the
shell may be thought of as writing this pattern on a
blackboard which travels along the trajectory ahead
of it. In three dimensions, one may consider the
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axis of the shell to be moving around on a conical sur
face, the vertex angle of which is constantly decreas
ing.

The other simple motion, £ ■ C2 exp (h2 ♦ if2)p, is
of the same type, a damped circular motion. In general,
one would expect, then, to have a combination of these
two motions, with neither c^ nor 03 zero. This is
a vector sum, and the pattern can be visualized as
follows. An arm rotates about the origin with speed
f2> the arm decreasing at the logarithmic rate h2»
At the end of this arm another arm is pivoted, and this
arm rotates at rate f^ and shrinks at the logarithmic
rate h]_. The pattern drawn by the end of the second
arm is the pattern described by £. This is called an
epicycle, and the motion is called damped epicyclic
motion.

It might be remarked that epicyclic motion is not
uncommon. Suppose that we refer the positions of all
objects to a coordinate frame fixed with respect to
the earth. To the ancients these were the only reason
able reference frames. We know that they are incon
venient in astronomy, because they are not inertial
frames. Nevertheless we continue to use them for
many purposes; for example in celestial navigation
the first step is the measurement of the angular dis
tance from the sun or a star to the horizon, which is
an earth-bound reference frame. To a first approxi
mation, in a system fixed to the earth it will be
found that the sun travels in a circle centered on the
earth, the angular velocity being l£ degrees per hour.
To a first approximation, the motion of a planet in
our reference system is then an epicycle; the first
arm rotates about the earth, and the sun is its other
end; the second arm starts at the sun, and the planet
is its other end. Before 100 A. D. it was known that
the description is not adequate. In the second cen
tury Claudius Ptolemy showed that it could be made
highly accurate by using more than a mere two revolving
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arms, forming what might be called epi-epi-epicycles
(but nevertheless were called epicycles). Today we
prefer inertia! frames, and compute orbits as ellipses
with superposed perturbations. But this preference is
based on the essential simplicity and comprehensiveness
of the Newtonian theory, not on any defect of accuracy
of the Ptolemaic predictions.

We now proceed to consideration of the yaw card
data. Suppose that the absolute value of the yaw is
plotted against distance, giving a graph of which Fig
ure 1 is typical. We may ask what the distance should
be between successive Mad ma of yaw. If the damping
rates h^ and h? were both 0, so that the motion were
a true undamped epicycle, maxima would occur when the
two epicyclic arms pointed in the same direction, and
minima when the arms pointed in opposite directions.
This Is not strictly accurate in the presence of damp
ing. But h^ and hn are so much smaller than f^ andfj that even in the most accurate spark range measure
ments the maxima occur at an imperceptible distance
from the places where the epicyclic arms have the
same direction. The angle between the arms changes
at the rate f^ - f 2 radians per caliber since one
rotates at the rate f^ and the other at the rate f 2*
The distance between maxima is then 2 it divided by this
rate. Thus, substituting the values, from (l.i) in
the expression 2w/(fi - f2)»
(1) The distance between two maxima of yaw is 2nB/A vf
calibers of travel.

Since A and B for a shell can be measured before
firing, the measurement of the distance between maxima
yields at once a value of v o. An approximate value
for v may be obtained from the known twist of the
rifling. Thus if the barrel has rifling making one
turn in thirty calibers, v must be very nearly 2n/30,
We say "very nearly" because there is some increase in
the velocity of the shell due to muzzle blast, whereas
there is no corresponding increase in spin. However,
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this increase in velocity is small, perhaps of the
order of one per cent. Further, most of the change
in v beyond the muzzle is due to change in the velo
city, and this change can be computed if the drag of
the shell is known. Thus, the value of v is known
and, since vo is known, the value of o may be deduced.
Since o2 » l _ l/a, and

s - 2/UB2JMk"2,
(equations (H.3.18)) the value of Jjj and then of Kg
may be computed. Thus, from the distance between two
maxima of yaw aid the twist of the rifling, together
with certain physical constants, the value of Kg may
be deduced.

So far, from the record of the yaw only the
distance between successive maxima has been used.
The yaw is a plane vector, and one might well inquire
what can be deduced from the angular orientation of
the yaw, in particular, the angle between the positions
of s at two successive maxima. Since the maxima
correspond to the geometric situation where the two
arms have the same direction, this angle is precisely
the angle through which the slow arm turns in the pe
riod between two maxim?. This is

f22WB/Av<r- w(l - o)/o.
This then gives another possible way of finding o.
The equation (1) could then be used to find v. Actu
ally, all of this information should be used simulta
neously to determine o. We state formally the above
result .

(2) The angle between the vector yaws corresponding
to two successive maxima is rc(l - o)/o.

The amplitude of the maxima and the minimum yaw
can also be plotted as a function of distance (Fig
ure 1). Recalling that the maxima correspond to posi
tions where the two arms have the same direction ana
the minima to positions where the arms have opposite

652 Ch. XII



directions, it is at once clear that

I * I max " I cl I exP hlP *
I c2 I exP h2P

(3) r
|
*

| min
=

| cl |
exP hlP - | c2 |

exP h2P
It is easy to decide whether | c^ | or | C2 | is
larger by inspecting the pattern of yaw. On the basis
of this decision either one or the other of the signs
in the following can be chosen.

(||)
(I «l max^lmin >

" 2
I cl I *** hl?>

(I 5 I max * IS Lin ) " 2 I c2 I exP h2P«
These equations are obtained by adding and subtracting
the equations (3).

Equations (h) permit the computation of exp h]_p and
exp h2P. If the logarithms of these are taken, the
slopes of the resulting functions of p are h^ and h2respectively. One can thus compute h^ and h2, and,
referring to equations (1.1), one may compute

(hx + h2)m/pd3 - - KL - k~2KH + KAmd2/A,
(5)

(hx - h2)om/pd3 - KL - k-2^ - (2^ - KA) md2/A.

Adding and subtracting these equations we see that
- 2k"2KH - 2(KT - KA)md2/A

(6) - - 2k_2{'KH + (ICj - KA)B/A }
and

2KL - 2KTmd2/A
can be computed. It is not possible to evaluate the
particular aerodynamic coefficients which occur here.
Nevertheless, the damping rates hi and ho can be eval
uated, and the combinations of coefficients given
by (6). To summarize what information is available as
a result of yaw card trials, one can obtain 0 md v
and from these Ky ; further, h]_ and h2 can be evaluated
and, from these and the values of o , the combinations
of coeffic ients TS) can be found.
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Unfortunately, the accuracy of determination leaves
something to be desired. The determination of % is
usually sufficiently accurate, but the determination
of the damping rates h^ and h2 is usually quite poor.
This is to be expected from the nature of the measure
ments. The value of Ky depends on the distance between
two successive maxima of yaw. Cards may be placed to
locate the approximate distance between two successive
maxima, and more cards may be used much farther away
to locate a later maximum. Knowing the approximate
period, the number of unobserved periods can be cal
culated and an evaluation made over a very long dis
tance. On the other hand, the measurement of the
damping rates requires differentiating the experimental
data, in itself a notable way of losing accuracy.
Further, the evaluation depends on the derivative of
the logarithm of the experimentally determined func
tion, so that the percentage accuracy is the determin
ing factor. The measurement of the minimum yaw is a
particularly bad source of error. Further, with normal
launching the yaw is very small near the muzzle — ex
cept for effects at the muzzle itself, it would be
simply the yaw in the gun. This means that the two arms
of the epicyclic motion are initially nearly equal, so
that the minimum yaw is initially almost zero. The rate
of increase of this minimum yaw is (logarithmically)
the difference of the damping rates, and it is some
times impossible to distinguish the minimum yaw from
zero at any position. At one time, due to experimental
difficulties, it was common practice to assume the
two damping rates equal. This amounts to assuming that
the second of the expressions in (5) was always zero.
This is obviously an incredibly unlikely identity —
one that could be invalidated by changing the mass
distribution, since this expression contains the phys
ical constants k~2 and md2/A» Naturally enough, this
assumption leads to inconsistencies.

If h^, ho and K» are known for a shell there arestill important effects which cannot be computed.
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Computation of these effects requires in particular the
value of Kj,. This cannot be obtained from yaw card
firings of the sort so far discussed. A possible pro
cedure is to manufacture shell with the sane external
contour but with different center of mass position.
Ey yaw card firings, % may be evaluated for both types.
The difference in the moment coefficient values- thus
obtained is, referring to (II.5. 7), the normal force
coefficient Kjj multiplied by the distance in calibers
between the two centers of mass. This method is quite
practical. It is the method used by Fowler et al in
their classical experiments. However, it is time-con
suming and expensive to modify standard shell — a
dozen special shell are general-ly more expensive than
200 standard. Another method of finding exists
which does not require special shell, but does require
a special gun. This is the method which is now in
standard use at Aberdeen, and we now turn to the dis
cussion of this experiment.

3. Drift firings.

We recall that the drift of a projectile is the
lateral deviation due to the yaw of repose. It is ne
cessary to list the drift in any firing table, and
hence the prediction of drift is an integral part of
exterior ballistic computation. A measurement of
drift can be deduced from any range firing. The only
causes of deflection, that is, the only causes for mo
tion of the projectile perpendicular to the vertical
plane containing its initial velocity vector, are cross
wind, the effect of the rotation of the earth and the
force causing drift. The first two of these can be
computed, since meteorological data are taken and the
drag coefficient is known — or at least independently
deducible from the range firing. Any remaining system
atic deflection after the observed data have been cor
rected for cross wind and rotation of the earth must
be drift. For artillery fire it is possible to use
this direct measurement of drift for a range table.It is not exactly correct, it is true, since the drift
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is actually a function of density and range wind struc
ture, etc. However, the discrepancies caused by these
terras are essentially of second order, and there is
justification for using the measured drift directly.
Nevertheless, in many cases, there are cogent reasons
for arranging special firings to measure the drift.
The cross wind effects may be quite large relative to
the drift. The computation of the cross wind effect
is subject to errors, and these in turn are reflected
in the deduced value of the drift. One of the most
successful ways to lose accuracy in a measurement is
to obtain it as the difference of two relatively large
quantities. In cases where maximum accuracy is desired,
such as anti-aircraft firings, or in cases where the
drift measurement is to be used for purposes other
than prediction of drift, such as for guns fired side
ways from aircraft, a drift firing is considered es
sential.

The basis for such firings lies in the fact that
reversing the spin of a shell reverses the direction
of the drift. Thus, if guns are available having both
right- and left-handed rifling, shell may be fired
alternately in a comparative firing. The wind condi
tions, density etc., will be the same for rounds fired
from both guns. The difference in the trajectories
is then only the difference in direction of the drift.

For small caliber guns a cardboard target is usually
set up at a distance from each gun.* After careful
boresighting, a number of rounds are fired from both
guns. From the target cards the horizontal distance
from the point of boresight to the center of impact
of the rounds fired may be measured. The difference

*A Mann barrel is usually used for the firing. This
is simply a very heavy gun barrel which is permitted
to slide freely in a V-block. This arrangement leads
to extremely great accuracy in the firing — much
higher than can be obtained with ordinary guns.
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in these distances, for rounds fired from the right-
handed and left-handed barrels respectively, is clear
ly twice the drift.
For anti-aircraft guns the procedure is in prin

ciple the same, although naturally more complicated.
Instead of target cards the positions of burst are
observed, either by cameras or by mirror position
finders. (These are optical instruments designed for
visual observation of space positions.) The drift isstill obtained as half of the difference between the
deflections observed for rounds from the right-handed
and left-handed gun barrels.

In any case the result of a drift firing is a col
lection of values of drift corresponding to different
ranges, and, in the case of anti-aircraft fire, also
to different angles of elevation. We recall from
equations (1.2) that

(1) Drift- Cx(T, - ,(tj] v cos 9 ,,, ^

For small caliber guns it is justifiable to assume
that Kl/K|j is constant over the rather short ranges
used. These may then be taken outside the integral
sign, and we see that the drift is multiplied
by physical constants and by the integral of known
functions. This integral may be computed quite ac
curately — the only difficulty lies in the estima
tion of v, and this question was discussed in the pre
vious section. Thus, from drift firings one may ob
tain an estimate of Kl/Kjj.
In the case of drift firings in the larger calibers

certain other questions arise. Both and Kjj are
functions of the Mach number, (speed)/(speed of sound).
This variation can hardly be neglected over a long
trajectory. Several methods have been used to allow
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for this variation. One of the most attractive of
these is to assume a f crm for the variation of Kl/%
with Mach number. For example, above sound one might
well choose a form a + b/M, where U is Mach number.
The constants a and b are then evaluated by fitting
the observed drifts by means of a least squares pro
cedure.

h. Windage jump.

If a gun is fired sideways from an aircraft the
projectile is launched with an initial yaw, since it
has, initially, the velocity of the aircraft superim
posed on its muzzle velocity. There are two effects
of this "abnormal" launching, one which can be inter
preted as a change in the line of departure and another
whcih can be interpreted as an instantaneous loss in
velocity. The first of these, the windage jump, will
now be evaluated.

We begin by simply computing the effect of an in
itial yaw£Q with zero initial cross angular velocity.
According to (1.3), the constants c^ and C2 then have
the values, setting QQ = 0,

cl " -5oV<fl - f2).
c2 -

According to (l.l<) the effect of the yawing motion
with constants c^ and C2 is to change the line of de
parture by the angle i(JL - ivJFKc]./fi + c2/f2)«
Computing, using the values of the constants from (1),

cl /fl +

°2
. /f2 = ~

K

fo fl
f^TTi - f2) +

f2tf 2

" fl>

Since f^ f2

= Av(l * o)/2B, f 2 + fj_ - Av/B and

flf2 " a2v2U - o2)/UB2 - A2v2AB2s - k"2JM.
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These last two equalities come from the definitions
of o and s, equations (XI. 3.16). Hence

(f2 ♦ f1)/f1f2 - Av/md2JM.
Thus :

(2) The initial yaw £0 causes a change in the angle
of departure of £0i( Jl - i v JF)A v /md or

iAv(KL - iKF)Co/md2%.
This is the basic result which is needed to com

pute the windage jump. The nose angle *1 is defined to
be the angle from the direction of motion of the air
craft to the direction of the gun. If Vp is the speed
of the aircraft and u0 the muzzle velocity then theinitial speed of the projectile with respect to the
air is

uo
* * vo2 + vp2 + 2vovp cos *

and the yaw at emergence is arc sin [(vp/u0) sin*]].This is the magnitude of the yaw. The vector yaw lies
in the plane of the tilt, that is, the plane containing
the velocity vector of the plane and the initial ve
locity vector of the projectile. Further, the yaw vec
tor points forward. Thus i multiplied by this vector
is a vector which on the right-hand side of the air
craft points above the plane of tilt and on the left-
hand side points below. We may thus state the prin
cipal result of this section:

(3) One of the effects in firing sideways from air
craft, the windage jump, changes the effective line of
departure. This change is e qulvalent to turning the
plane containing the velocity vector of the aircraft
and the line of the barrel by

(AvKL/md2KM) arc sin [ (vp/u0) sin r\ ] .

If the projectile has right-handed spin, on the right-
hand side of the aircraft the line of fire is raised
and on the left-hand side it is lowered.
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$. Yaw drag.

Another effect of the initial yawing motion of a
projectile is to increase the drag on the shell. Al
though this is a second-order effect, i.e., it depends
on the square of the magnitude of the yaw, it is quite
appreciable. We shall compute first the yaw drag
effect of an initial yawing motion

K "
c^ exp (h^ + if g)p + C2 exp (h2 + if 2)P«

This effect will be computed in the following form.
We ask if, instead of the given yawing motion and ini
tial velocity u0, it is possible to find an equivalent
trajectory with no initial yawing motion and with an
initial velocity Uf — a "fictitious" initial velocity.
According to (II. 9. 2) the variation of drag coefficient
with yaw is of the form

(1) KD - KD0(1 + KD8S2),

where Kpo is the drag coefficient at zero yaw, Kj)& is
the yaw drag coefficient, and & is the yaw. The equa
tion governing the velocity is (XI. 2.9),

U' - - UJD - (gd sin 9)/U,
where the derivative is with respect to arc length
measured in calibers. For the present purposes it will
be adequate to ignore the gd sin 0/U, or one may con
sider that the Siacci approximation is to be used and
solve first for velocity. The two trajectories which
we wish to compare are then given, as far as velocity
is concerned, by

u' " " "W1 + Kre62)* initially U - Uq,
(2)

U' - UJjjq, initially U - \Xf .

Since &2 ■ is known as a function of p, both of these
equations are easily solvable. The solutions are
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U - u0 exp
£
- J JD0(1 + KD85£) dp J ,

U - exp
£
- | JD0 dp

The problem may now be phrased in the following way:
what value of uf will make the ratio of these two so
lutions approach one as p goes to infinity? This ra
tio is

r fp .1
(u0/uf) exp - l JDoKD6s£dp ,

Jo
and. in order that this ratio approach one it is nec
essary and sufficient that

r fP(1) uf - uQ lira exp - JdOkD8 KK dp
p-*-00 L Jo

It remains to compute this limit. Since
£ = Ci exp {hi + ifi)p + c2 exp (h2 + if2Jp,
$1 - c-jC-^ exp (2h1p) + c2c2 exp (2h2pj

+ exp (hx +
h2

+ if1 - if?)p
+
c1c2 exp (l^ + h? - ±f1 + if2) p.

We recall that the f's are many times larger than the
h' s. Upon integrating with respect to p, the first
two terms of this expression will be multiplied by
factors of the order of the reciprocal of h, while
the last two will be of the order of the reciprocal
of f • The last two may then be neglected, and we may
write

[P<£ dp = c-jC! [ exp (2hxp) - 1 ] /2hx

+ c2c2 [exp (2h2pj - 1 ] /2h2.
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Since and h£ are negative (we are not interested
in making this computation for unstable shell), the
limit of this integral as p approaches- infinity is- c^c1/2h^ - C2C2/2h2» Applying this result to (U)
we have

(5) Suppose that a projectile is launched so that its
initial yawing motion is given by

£, - c-l exp (h^ + if^)p + C2 exp (h2 + if2)P*
and its initial velocity is UU. Then, if a shell la
launched with initial yaw and initial cross angular
velocity zero, and if its initial velocity is given by

uf =
u0 exp JDoKDS (ciBj/Zh-L + c2c2/2h2),

the ratio of the velocities of the two shell will ap
proach one as p approaches infinity.

Of course the trajectories of the two shell will
not be precisely the same. The time it takes to reach
a given distance p, and the drop below the line of fire
corresponding to that distance will be slightly dif
ferent for the two shell. However, if the Siacci ap
proximation is used, both tine and drop can be obtained
as integrals with respect to p and in both cases the
integrands contain factors which are negative powers
of the velocity. Small differences in velocity in a
region where the velocity is large therefore make rel
atively little difference in the values of time and
drop obtained. Thus as an approximation, the effect
of the initial yawing motion is to change the initial
velocity from uQ to the

u^>
given by (5).

This can be immediately applied to the problem of
sideways fire from aircraft. As was remarked in the
previous section, the yaw at emergence is (vp/u^ sin tj,
where Vp is the speed of the airplane, Uq the initial
velocity of the projectile and n is the angle from the
nose to the line of fire. The constants c^ and C2 are
then, by (1.3),

662 Ch. HI



Cl - - (v /u )sin n f2/(f1 - f2),
(6)

p

c2 - - (vp/u0)sinr1 ^/(fg - fx).
We now compute the expression (5). We have:

(c1c1/2h1J * (c2c2/2h2)
- (vp/u0)2 sin2 n [ f22/2h1(f1 - ?2)2

♦ f12/2h2(f1 -f2)2 ] .

Recalling that fx, f2 - Av(l * o)/2B,
f22/(f1 - f2)2 » (1 - l/o)2/Uj

and

Thus

cl^l/'2ni + c2^2'/2h2
" (vp/Uo)2 sin2n t (1 " 1/0)2/8h1

+ (1 + l/aj2/8h2 ] ,
and we may summarize:

(7) The effect of the yaw drag in aircraft fire may
be approximated as a_ change in_ initial air speed of
the shell from uQ to

uf = [ u0 exp JdoKd&Cv^oJ2 sin? "-
3

•[(1 - 1/0)2/811! + (1 ♦ l/0)2/8h2],
where vp is the velocity of the aircraft, r\ is the nose
angle, and h]_ and h2 are the damping rates of the yaw.

6. Effect of yaw in the gun.

In seeking the causes of dispersion one of the first
conjectures might well be that "undue" clearance in
the gun might add greatly to the random error. That
this is actually the case has been shown repeatedly
by experiment. For example, some firings conducted
at Aberdeen under carefully controlled conditions of
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105 mm. shell showed a statistically significant dif
ference in range for a difference in diameter at the
bourrelet of 0.001 inch. This difference in range
was entirely due to exterior ballistic differences,
for the ranges were corrected to a standard muzzle
velocity, and since the firings were conducted on a
comparative basis (one round of each of several classi
fications of shell alternately from the same gun) no
other factor enters. In this section we shall make
an analysis which will indicate the reasons for this
situation. We shall first derive a formula of R. H.
Kent giving the relation between the yaw in the gun
and the yaw in flight, and it will then be possible
to compute, as has been done for sideways fire from
aircraft, the effects of the yawing motion.

In making the analysis it is necessary to know
something about the motion of the shell in the gun.
The rotating band, at the rear of the body of the
shell, serves to center the rear of the shell quite
accurately, and to give essentially zero clearance
at the back. The other point of support of a shell
is the bourrelet. Any clearance at the bourrelet will
usually be immediately reflected in yaw of the pro
jectile. An analysis of the motion of the shell within
the gun has been made by one of the authors and also
by L. H. Thomas. For non-pathological shell it turns
out that the bourrelet (after certain possible in
itial bouncing) rides smoothly along one land of the
rifling. This is shown clearly by the markings on
recovered shell, which, typically, show engraving marks
on one side of the bourrelet only. This is intui
tively very reasonable, for the shell is supported
at the band behind the center of mass and, if the
center of mass at any time does not lie on the axis
of the gun, centrifugal force will cause the center
of mass to move farther out. Further, the result
ant of the force exerted by burning of the powder
gas lies along the axis of the gun, so that any dis
placement of the center of mass of the shell results
in a torque tending to increase the displacement.
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This, it may be remarked, is in contrast with the notion
of a. rocket in a tube, where the propulsive force is
along the axis of the projectile and results in a torque
exerted by the tube on the bourrelet of the rocket.

Let us now suppose that the clearance at the bour
relet is of magnitude e, that is, this is the differ
ence between the diameter of the shell and that of
the bore of the gun. If the distance between the
bourrelet and band is b, then the yaw in the gun should
be e/2b, and this we denote by Kg* This will ordin
arily be a rather small quantity. However, the spin
.of the shell, under the description given about of its
motion in the gun, will be about the axis of the gun.If <d is the spin per caliber imparted by the rifling,
there will be a component of angular velocity perpen
dicular to the axis of the shell, a cross angular ve
locity, of to multiplied by the sine of the yaw. This
angular velocity has the direction opposite that of
the yaw, and is therefore equal to - £ gcii . The initial conditions for the trajectory are therefore
Kq - 5g and fi0 » - Kg w , if the effect of muzzle
blast is neglected. According to equations (1.3),
the values of the constants c^ and c2 are then

Cl - - ( - SgWd/U ♦ £gf2)/(fi - f2)>
c2 - - ( - Sga>d/U + £gf 1)/(f2 - ty.

Making the substitutions fx, fg ■ Av(l * * /2B, and
writing v for cod/U, these reduce to the statement:

(1) If the yaw in the gun is Eg then the constants c-^
and c2 which determine the yawing motion are given by

Cl - (SgB/Ao) [1 - (1 - o)A/2B ] ,

c2
- - (5-B/AO) [ 1 - (1 ♦ o)A/2B ] .

From this form it is easy to see that c^ and c2 are
vectors pointing in opposite directions, i.e., initially
the yaw is at a minimum. The maximum yaw can be com
puted easily from this form. It will have the magni
tude of ci - c2. This is Kent's formula.
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(2) If the yaw in the gun is £g then the maximum yaw
U (2B/A - 1) | ZgT/°-
This formula shows at once the importance of having
the yaw in the gun small. For ordinary shell the fac
tor B/A is of the order of ten, and a is perhaps 0.7»
The yaw in the gun Kg then results in a maximum yaw
of approximately 28 \X g l« Thus, if it is desired to
keep the maximum yaw less than 3 degrees, it is neces
sary to have the yaw in the gun less than 0.1 degree,
which is less than two thousandths radians. If the
shell is of one caliber length from band to bourrelet,
this implies that the clearance in the gun must be less
than 2/1000 of the diameter of the bore.

The quantitative effects of the yaw in the gun can
be computed rather easily. They are of two sorts,
yaw drag and a "jump," just as the effects of initial
yaw in firing from aircraft. We first compute the
jump, making use of the fact that by equations (1.1*)
this jump has the form iU^ - ivJj>)(ci/fi + c2/f2)» The
constants and C2 are given by (1) above, and from
Section I, f^ f2 ■ Av(l * <0/2B. Thus, computing,

- (5gB/Ao) { [ - 2<r+ 2Ao/B]/ [Av(l - o2)/2B]}.
According to (XI. 3. 18),

(cj/f-L + c2/f2)
- ( I gB/Ao) 1 - A(l - oteB 1 - A(l + o)/2B

Av(l + o)/2B
'
Av(l - o)/2B

1 - oz - 1/s,
and

s ■
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Thus

(ci/fi + c2/f 2)
- (CgB/Ao) {

- 2o(l - A/B)/(2Bk-2JM/AVJ}
- - £gv(l - A/B)/k-2jM.

Substituting in the form for the jump, we have

(J) If the yaw in the gun is £g, the direction of mo

tion of the shell is changed by the amount

Jump » - i£gv(l - A/B)(KL - ivKF)/k"2KM.
Since the ratio A/B is of the order of 1/10 and KL/KM
may be expected to be of the order of unity, the jump
due to yaw in the gun is of the order of magnitude of
the yaw multiplied by v The direction of this jump
is at right angles to the yaw in the gun and can be
predicted only if one has some way of knowing the di
rection of £g.

We now compute the effect of yaw drag due to yaw
in the gun. To do this, we make one simplification.
The velocity effect given by (5.5) depends on the
squares of the magnitudes of c^ and c2. The values
of c^ and c2 for the present situation may be approx
imated to about 5 per cent by
(I) c-l « SgB/A0, c2 - - SgB/Ao.
This approximation will lead to an error of the order
of 10 per cent in the squares of the magnitudes, but
this accuracy is quite adequate for the present dis
cussion. According to (5.5), the effecft of the yaw
ing motion can be described as the same as the effect
of launching the shell with no yaw, but with a "ficti
tious" velocity

uf - uQ exp JD0KD£)(c1c1/2h1 + c2c2/2h2).
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Using the values of and c2 from (U) we have at once:

(5) The yaw drag effect of the yaw Kg in the gun
is equivalent to changing the muz zle velocity from

tO

Uf - u0 exp JDoKD6(l/hi+ l/h2) | Sg|2B2/2A2<r2.
We shall make an estimate of the order of magnitude
of this change in velocity in order to indicate the
sort of tolerance this imposes on gun and shell design.
The ratio of JDq to one of the h's is about 1/10, and
Kj)6 may be expected to be of the order of 16 or 20
(per radian 2). The factor B/Ao is ordinarily of the
order of 15, so that the entire exponent is of the
order of 2 | 15 Kg | * Since exp x - 1 + x + ... the
effect is to reduce the velocity by the factor

2 I i55g I2 VIf it is required that the yaw in the gun reduce the
velocity by not more than \ per cent, which is a reas
onable requirement, this requires that

2 J 15 Kg l2< .005,

I Kg I < .003....
Again, as for the jump, we see that the effects of
yaw in the gun require that the clearance be kept to
a minimum. There is, however, one difference between
the velocity effect and the jump. The former is sys
tematic, always resulting in a decrease in velocity,
whereas the latter is essentially random, since the
initial orientation of the yaw vector usually cannot
be specified.

7. Effect of eccentricity of mass.

Another cause of dispersion which is of importance
is possible eccentricity of mass of shell. Since
shell are first forged, forming the inner cavity, and
then turned on a lathe to form the outside surface, it
requires rather fine machining to be certain that the
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axis of the cavity coincides with the axis of the out
side form of the shell. Lack of coincidence results
in one or both of two different kinds of unbalance.
The first of these, called static unbalance, consists
of the center of mass of the shell lying off the
axis of form of the projectile. The second, called
dynamic unbalance, consists of the axis of inertia
of the shell being not parallel with the axis of form.
As a measure of the static eccentricity we may use the
distance e, measured from the axis of form to the
center of mass, and the dynamic eccentricity is meas
ured by the angle e between the axis of inertia and
a line parallel to the axis of form.

The static eccentricity has in the past been meas
ured by rolling the shell on a pair of parallel bars.
The angular motion of the shell is mathematically sim
ilar to that of a pendulum, since there is a torque
proportional to the eccentricity e, the mass of the
shell and the sine of the angle by which the line from
the center of mass to the axis of the shell is dis
placed from vertical. Unfortunately, the rolling
friction is of such magnitude that it is almost true
that shell which show static unbalance under this test
are not fit for use. A more direct, but an experimen
tally delicate, procedure is the following. The shell
is placed in a V-block which is attached to a rigid
framework, the framework being pivoted at one end and
the other end resting on a balance system. The line
from pivot to balance is perpendicular to the axis of
the shell. Balance readings are then taken, the shell
is turned on' its axis in the V-block and the readings
are again taken. If the shell is eccentric, the bal
ance readings, plotted against angle, will show a
sinusoidal variation. If a is the distance from pivot
to the axis of the shell and b is the distance from
the pivot to ^he balance, the maximum balance reading
will be (a + e)m/b and the minimum, (a - e)m/b, moro
than the balance reading when the framework, but not
the shell, is present. The difference 2em/b then leads
directly to an evaluation of the eccentricity e. Of
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course, in this form the eccentricity is obtained as
the difference of two large quantities and adequate
accuracy is difficult to achieve. This may, to seme
extent, be offset by properly counterbalancing the
framework, but the experiment still requires a very
exacting technique.

The measurement of dynamic unbalance is rather
more complicated. It is necessary that the projectile
be spun upon its axis and the resulting motion ob
served. This is much the same problem as the problem
occurring in the balancing of crankshafts, and a ma
chine whose basic design was for the purpose of meas
uring the unbalaice of crankshafts has been used very
satisfactorily for measurements on shell. Another
machine has been constructed for use on small project
iles which spins the projectile by means of an air jet
and makes a selection of projectiles with small eccen
tricity. Both of these machines are based on the
principle that a rigid body "prefers" to rotate about
a principal axis of inertia. We shall not go into the
details of these measurements.

The problem of predicting the motion of an eccentric
shell is purely a question of mechanics. The aero
dynamic force system is known, for, of course, this
system is independent of the mass distribution. How
ever, the problem presents one of the most involved
computations imaginable, and its importance scarcely
warrants devoting the amount of space necessary to
present it. We shall therefore be content to summarize
the results of the computation, which was made by one
of the authors (amid blood, sweat and tears).

The effect of static unbalance is extremely easy to
describe. The shell, in the gun, rotates about the
axis of the tube. Its center of mass is therefore
moving about the axis of the tube at the rate eo>j
where u> is the spin of the shell. This velocity is
in a direction perpendicular to the axis of the gun,
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so that angular deflection results which has the mag
nitude e co/U; or ve/d. The direction of this de
flection is perpendicular to the line joining the
center of mass to the axis of the shell (it is precisely
the same physical principle used at least as far back
as the historic engagement of David and Goliath). If
the gun has rifling having one twist in thirty, vis
2H/30} and in order that the effect of static unbalance
be less than one mil, it would be necessary to specify
that the static eccentricity be less than (approxi
mately) 5/1000 of one caliber.

The effects of dynamic unbalance can be described
in terras almost as simple. The angular motion of the
axis of form of a dynamically unbalanced shell is
tricyclic. That is, superimposed on the normal epi-
cyclic motion is a third circular motion. For shell
having the normal ratio of moments of inertia, a rather
accurate description is to say that the axis of min
imum inertia describes the same pattern as for non-
eccentric shell. By far the largest effect of the
eccentricity e is one which is physically very rea
sonable under these circumstances. Since the shell
will spin about its axis of form in the gun, its an
gular velocity vector will have, relative to its axis
of minimum inertia, the same relation as if the shell
had a yaw in the gun of e. The effects of the eccen
tricity e are, as a matter of fact, almost precisely
the effects of a yaw in the gun of e . These effects
may therefore be computed by means of the formulas of
the previous section, and the remarks made there about
orders of magnitude are valid in this situation. That
is, eccentricity e will cause a jump of the order
e v, and a velocity loss of the order 5*10^e2 per
cent, (e is in radians.)

It should be remarked that the effects of yaw in
the gun and eccentricity are probably not statistically
independent. Although no theory of motion in the gun
is sufficiently complete to predict with certainty,it seems highly probable that these effects are, at
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least to a degree, comulative. That is, whereas If
the two effects are truly independent, the mean square
deflection when both are present would be the sua of
the mean square deflection due to each, it is probably
more nearly true that the deflection due to both effects
is the sum of the deflections due to each.

8. Muzzle blast.

The phenomenon of muzzle blast is responsible for
part of the dispersion of shell. As soon as the
driving band on the shell is free of the gun the powder
gas surges past the shell, imparting momentum to it.
The remarkable series of photographs in Figure 1, made
by A. C. Charters, shows clearly this phenomenon. An
exact analysis of the situation appears to be impossi
ble. However, a rather crude investigation can be
made which should indicate the order of magnitude of
the effects.

As can be observed on the photographs, the period
in which the velocity of the gas exceeds that of the
projectile is very short. It therefore seems reasona
ble to consider the phenomenon as impulsive, that is,
to presume that there is an instantaneous transfer of
momentum and angular momentum to the shell. This
assumption then implies that the momentum transferred
does not depend on the angular velocity of the projec
tile, but only on its position. From the symmetry of
the situation, if the shell has no yaw at the muzzle
the momentum transferred must be in the direction of
the axis of the shell. This momentum can be measured,
at least roughly, since there is no increase in angu
lar momentum, and measurement of the spin immediately
beyond the muzzle blast then indicates a spin lower
than that given by the twist of the rifling. Such
measurements indicate that an increase in the linear
velocity of the shell of the order of one per cent
may result from the muzzle blast. We shall use this
figure to get an order of magnitude for other estimates.
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Suppose now that the shell does not have zero yaw
at the muzzle. If ^ is a complex number representation
of the vector yaw, the component H of momentum perpen
dicular to the axis of the shell may be seen, by the
same symmetry arguments used on the aerodynamic force
system, to be of the form 11 ■ c£, where the imaginary
part of the complex number c vanishes if the spin ;L8
zero. If the analogy with the aerodynamic situation
is carried further, one might expect | c | to be of the
order of ten times the increment in momentum along the
axis of the shell, since %Ap, is usually about ten.
Using the previous estimate for increase in axial mo
mentum | c | should be of the order of magnitude of
mu/10. The effect of M is to change the direction of
the shell by U/uai radians; thus a deviation of

| £ | /10
radians might be expected. Since the yaw at emergence
is always small, this effect is presumably negligible
in most cases. However, if the boattail is eccentric,
and in small caliber projectiles this may easily occur,
the effective value of | £ j may be large. For example,if the boattail is sufficiently eccentric that the
effective value of

| £ |
is U degrees, a deviation of

7 mils might well result.

A similar rough analysis can be made on the angular
impulse resulting from muzzle blast. If T is the an
gular momentum, we might expect it to be of the order
of mud | K 1/10. For normal shell, having a radius of
gyration of about one caliber, the result would be a
cross angular velocity of about u

| £.
j

/lOd. Applying an
analysis similar to that in Section 7, this would re
sult in a jump of magnitude

| £ |(1 - A/B)(KL - ivKF)/101c-2KM.
This is of the same order of magnitude as that obtained
from the cross component of linear momentum, but in a

direction perpendicular to the previous effect. Again,
no serious dispersion should result from this cause
except for projectiles with eccentric afterbodies.
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Chapter XIII
REDUCTION OF

SPARK RANGE DATA
1. Preliminarie s .

The most accurate and reliable values which have
so far been obtained for the various aerodynamic co
efficients have been based on free flight data, ob
tained in a spark range. The basic equipment con
sists of a series of spark stations, placed at in
tervals along the early part of the trajectory. The
Aberdeen range, which we intend to discuss in this
chapter, is about 300 feet long and contains 25 spark
stations. Each station consists of two photographic
plates, mutually perpendicular, arranged so that the
projectile passes above the horizontal plate and to
the left of the vertical plate. Projectiles fired
from guns normally have a static charge of electric
ity and this fact is used to trigger a spark. As the
shell passes through the antenna, which is at the
leading edge of the plates, a condenser is discharged
through a spark gap, which is at a distance of about
five feet from the vertical plate. The spark leaves
a silhouette of the shell on the vertical plate, and
a mirror, above the horizontal plate and at an angle
of approximately degrees, reflects the spark and
gives a silhouette of the projectile on the horizon
tal plate. Since the position of the spark gap is
known, and the positions of the silhouettes are known,it is a question of a little elementary projective
geometry to find the position of the projectile in
space — the position is actually overdetermined since
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it is obtained as the intersection of two rays. Simi
larly the angular position of the projectile can be
determined fran the angular positions of the silhou
ettes. We shall not give the details of this determi
nation, since it is quite straightforward. The result
of the measurements is that one knows to about 0.01
inch the position of the center of mass of the projec
tile at 25 positions down the range, as well as the
angular position of the axis of the projectile to about
0.0015 radians. At certain stations a record is made
of the time of the spark, so that the time at which
the projectiles passed certain of the stations is
known, usually to an accuracy of about one microsecond
(0.000001 second). The performance of this experiment
requires the utmost in experimental technique — it is
a rather difficult proposition to measure the positions
of fixed equipment, spread along a 300-foot distance,
to an accuracy of 0.01 inch. The length of the range,
for example, is subject to seasonal variations depend
ing on the condition of the ground adjoining.

The results of a spark range firing deserve and re
ceive very careful reduction. The basic data require
treatment quite different from that obtained from
yaw cards. The number of measurements is relatively
much smaller, and the accuracy is of an entirely dif
ferent order of magnitude. This chapter is devoted
to a discussion of the method of reduction of these
measurements. The procedure is primarily one of
curve-fitting. We attempt in every case to fit the
observed data with a curve of the type predicted by
the theory of Chapter XI. The methods used are still
in a process of evolution, and we shall point out,
as we proceed, certain shortcomings of the process.
The reduction as given here is primarily the work
of the authors and of Professor H. Federer.

For convenience we list here certain formulas
from Chapter XI which will be needed. These furnish
the specification of the type of curve to which the
fitting will be made. First, quoting (XI. 6. 2),
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(1) The yaw £ as a function of distance in calibers
is given by
5 - 5H

+ i^v "
c1 exp • + c2 exp « 2

- gU~2AV/mdJM
where and 03 are constants and $1 and #2 are given
by
•1,*2
- \ J

P
{ 2JD

-
JN
- k"2jH - (JD _ md2jk/h)fi 2

* [ JN - JD - k~2JH - (2JT - JA)md2/A] /o
+ iAv(l ± o )/B } dp.

We also use the following notation, where k]_, k2, fc
.

and are real;
k^ exp i + 1 ■ exp * 1

and

k2 exp i $ 2 " c2 exP *2*
In what follows we shall consider the real part of

and*2' to be constants, but will permit the imag
inary part to be a slowly varying function of distance.
The last term in the expression for £ is the yaw of
repose. It is very small in magnitude, and in certain
cases is entirely negligible. It is always possible
to neglect this term as a first approximation. (The
notation used is that of Chapter XI, the definitions of
the aerodynamic coefficients being given in Chapter II.)
We further recall, from (XI. 3. 18) that

o 2 - 1 - 1/s,
(2)

s - A2v2/UB2JMk"2.
The formula for the motion of the center of mass, the
swerve formula, will be quoted later in the chapter
v/hen we come to the reduction of the measurements of
the center of mass positions. We shall derive later
the form of the time-distance relation which is used
there. Both of these forms are used only after the
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yawing motion has been reduced, and we turn now to
the detailed consideration of the angular motion.

2. Yaw reduction; first approximation.
The primary task, once the photographic plates

for a round have been measured, is to reduce the meas
ured angles and positions to space positions and di
rection cosines of the axis of the projectile. (We
shall not give the details of this computation.) The
coordinate system for the range is taken with the
y-axis vertically upward, the x-axLs horizontal and
to the left of the line of fire, and the z-axis along
the approximate line of fire. The direction cosines
of the tangent to the trajectory are computed approxi
mately, and the values of the yaw are then deduced
from these and the direction cosines of the axis of
the shell. The numbers ?h and £y are respectively
the horizontal and vertical components of the yaw,
measured from a coordinate system with H-axis hori
zontal and V-axis (upward) perpendicular to the H-axis
and to the tangent to the trajectory. A plot of £g
and €y at successive stations is called a plot of the
yaw.

The stations are arranged in groups down the range,
five in each group. The stations within a single
group are spaced at $ or 7.5 feet, so that a very
short range is covered. Within this range it is quite
permissible to consider the yawing motion to be pure
epicyclic. That is, we may write (1.1) in the form

(1) " kl exp *el + k2 exp ie2»
where k^ and k.2 are real constants and 0^ and 0g are
real linear functions of distance. (See (1.1).) Such
a motion is susceptible to easy geometric inter
pretation. (See Section 2 of Chapter HI for greater
detail). The term k^ exp iG^ represents a circular
motion at constant rate, as shown on (a) of Figure 1.
The second term is of the same type, but it has a
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different rate and a different "arm" lC2» ^e com
bination is then as shown on (c) of Figure 1, The
problem to be solved in the reduction of the data
from a single group of stations is to deduce from
the plot of the yaw the "arms" k^ and and the
phase angles 9^

and Gg.

Since, within a group , e \ and ©2 are supposed lin
ear functions of distance, this amounts to deter
mining six constants: two arms, two rates (the deri
vatives of Bi and Op ) and two phase angles. Since
two numbers, Ch ant* £v 06 measured at each station, it
is clear that three stations should be precisely
enough to determine these constants. It is, of course,
preferable to use more stations since one station may
fail on a particular round, and the determination by
means of three stations is rather sensitive to error.
We give, in the following, several methods of making
the determination, none of which is entirely satis
factory, but all of which have been and are being used.
In the several methods the geometric picture is the
same. Observing Figure 3(c), we see that if each ob
served yaw, 1, 2, h and5, is rotated about the origin
until the arms k2 coincide with k2 at 3 the result
will be 5 points spaced on a circle with center at the
end of the kgO) arm. If, and this is for the prelim
inary reduction possible, we assume the yaws are meas
ured at equal intervals of distance, the rotated
points will be at equal intervals along the circle.
In practice this amounts to, by some method, esti
mating the rate of change of Sg, selecting a station,
say 3, which is left invariant, and then rotating
1 and 2 forward, and U and $ backward by angles pro
portional to the distance of the corresponding meas
urement from station 3 until the five rotated points
lie equispaced on a circle. We now go into some
detail on the particular methods of doing this.

a. Geometric three-point determination.

Three successive values, say 1, 2, 3, of the yaw,
taken at equal intervals of distance, may be used
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to determine k^ and k2, 9i and 62 as follows. Pass
circles with center at the origin 0 through 1 and
through 3. Mark, clockwise from 3 and counterclock
wise from 1, scales showing every 2 degrees. (See
Figure 2.) With one point of a pair of dividers fixed
at 2, find the smallest angle such that the other end
of the dividers strikes points on the 1 and 3 scales
with the same scale coordinate. Mark the points on
the 1 and 3 scales respectively as 1' and 3', find
the center of the circle through 1', 2 and 3' and
mark it C2. Then the epicycle through 1, 2 and 3
can be described as follows:

k2
- 0C2, ^ - C22,

0
2
at 2 is the angle from H-axLs to

OC^
,

0, at 2 is the angle from a parallel to the H-axis
to C22,

9^
■ derivative of 62 measured in degrees per foot,

• number of degrees from 1 to 1' (or 3 to 3')
divided by the distance from station 1 to
station 3»

-
0£

■ number of degrees subtended at C2 by
1«3» divided by the distance from sta
tion 1 to station 3.

This determination is rather sensitive to experimental
errors, and it fails if distance 12 ■ distance 23*
However, the procedure is indicative of the general
method, and is itself occasionally useful.
b. Geometric determination for a. group ojf four or more
equispaced stations.

If four or more stations in a group have func
tioned, the above procedure is modified in a trial-and-
error sort of way. A reference station is first
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chosen, say 3. As before, draw circles with centers
at the origin through each point corresponding to a
station different from the reference station. For
stations 2 and It two-degree intervals are marked
counterclockwise and clockwise respectively from the
plotted points. For stations 1 and 5, four-degree
intervals are marked. Then, using a pair of dividers,
one attempts to find a division mark so that the
corresponding marks for each station are equispaced.
(The first step in doing this would generally be to
use 2, 3> h and 1, 3, 5 as in the three-point deter
mination. ) This can be done only approximately, but
from this, one obtains an approximate idea of the
magnitude of the change in 62 from station to station.
The approximation is then continued by attempting to
pass a circle through the division marks thus obtained.
Eventually, through successive trials, one reaches the
following stage: for each value 1, 2, U, 5, there
corresponds a rotated value 1', 2*, U1 and S>', the
rotation being through an angle proportional to the
distance of the corresponding station from 3, such
that the points 1', 2', 3> U' and 5' lie approximately
equispaced on a circle. This done, the center of the
resulting circle is marked C^, ^ is the distance OC3
and is the distance 0^3 . The angles from the H-axis
to these two lines are 02 and ©i at 3 respectively.
The value of Qk is the angular shift on the rotated
points divided 'by the distance from the reference
station. The total angle spanned on the circle by
1' to 5' is the change in© 1 -G« corresponding to the
distance from station 1 to station 5, so that 9^

- 6£and hence 9^ can be computed.

c . Analytic determination from four equispaced ob
servations.

An epicycle in which the two arms are damped still
permits a rather easy determination from four equi
spaced observations — the addition of the two damping
rates requires observation of two more numbers. Since
this method is not, however, tremenaously useful, we
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shall give a rather sketchy treatment

We first describe the epicyclic motion in slightly
different form. At the first station the yaw is the
sum of two complex numbers,

(2) K1
-
cx + c2,

corresponding to the two arms ki and k2 multiplied by
an exponential. At the next station the corresponding
quantities are and c2 multiplied by two complex
numbers, say r^ and r2, which is the quotient of the
exponential at 2 by the exponential at 1. The impor
tant fact is that these quotients are the same for
every successive pair of stations. Thus,

Clrl +
C2r2'

(3) Clrl2 +
C2r22'V Clrl3 +
C3r23'

These equations can be used to determine ci, c2, rs
and r2 as follows. We first notice that if r-^ and

r2 can be determined the values of c^ and c2 are easy
to deduce, using any two of the four equations. On
the other hand, there are four linear equations in
the three quantities 1, c

^
and c2 so that the matrix

of coefficients of these must be of rank at most two.
Hence the two following determinants must be zero.

(U)

*1

r. 2 . 2rl r2

- 0 -
*2

Straightforward expansion, using the fact that r^is not equal to r2 and neither is zero then gives
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(5) rlr2^1
- (rl +

r2)J>2
+
^3

rlr2^2 " (rl +
r2^3

0,

0.

These equations can be solved for the product r^rg
and the sum r^ + It then follows that both r-.
and satisfy the same quadratic equation, which in
determinant form is

(6)

51 52
r
r2

- 0.

This equation is solvable by the usual elementary
methods. Of course, the roots will in general be
complex numbers. The logarithm of these gives at
once the change in 0^ and 62 between two consecutive
stations, and the subsequent determination of c^ and

C2 leads to the evaluation of k^ and k? as well as the
value of

0^
and

62
at the first station.

3# Yaw reduction; continuation and sec ond approx
imation.

We now proceed with the reduction. Suppose that
£ ■

£H
+ i£y has been obtained for each of the twenty-

five stations, and that the methods of the previ
ous section have been used to fit, within each of the
five groups of stations, the yaw by an epicycle motion.
At each of the five reference stations, R^, Re
we then have values of the amplitudes k^ and k2» the
phase angles 0^ and 62 and approximate values of the
rates 9^' and 02'. Using the rough rates it is pos
sible to find the correct multiple of 360 degrees
which must be added to 0^ and ©2 at R2 to get a con
tinuous phase down the range. We denote, in conformity
with (1.1) the continuous phase angles thus obtained by
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4>
n and Using k^, k2, and ^
2 as given at the

five reference stations, we then differentiate numer
ically, finding (log k^', (loge k2)', M and $2'«
These are the first estimates of the quantities which
we really wish to measure.

We now return to refine the reduction within each
group. The motion within the group with reference
station is given closely by

VZns) 6XP ^l^J
. exp { 1 - »ng} {(log^)' + i^' }

2 ns 2 ns
. exp { z - zng } { (logek2)« +

i^»2' }f

where z is the standard coordinate of R,. Settingns "

cl * cl(zns) " kl(zns) exp ^ns*'
(2) .

C2

"
C2(zns}

"
k2(zns> exP 1*2(,nB)»

we have the form

Cl exp { z - zng} { (log^)' + i^'}
+ c2 exp{ z - zns} { (logek2)' + i*2 }.

We now determine C]_ and c2 ai the standard coordinate
for using a least squares procedure , using the mul
tipliers of z - zns as obtained from the first range-
wise approximation. To this end a subsidiary result
is needed.

(U) Lemma. Suppose that it is desired to fit ob
servations Ky Zj with a function of the form

5 - Cjf^z) + c2f2(z),
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•where z is real, Ct and c2 are complex, and f ]_ and
^2 are knpwp complex-valued functions of z. The
values of cx and c2 which minimize

•{ c^) + c2f2(Zj) -

(f^)(f2 f2) - (f2o(fx f2)
C1

"

(fx f1)(f2 f2)
- (f1 f2)(f1 f2)

'

(f^K^ f^
) - (f^)(f2 fx)

°2 ' (fx fjKfj f2) - (fx f2)(fx f2)
*

The value of M which is given by these constants is
«W • "

?1>
- °2°2(f2 T2>

In the foregoing the notation (fj£) is used for

£ j(f"i(z j) 5 j) etc. The potential usefulness of the
result is clear. It determines h parameters, the
real and imaginary parts of c^ and c2, by means of a

computation essentially as simple as the ordinary
least squares procedure for two parameters. The lemma
is established in perfectly straightforward fashion.
Differentiating the original expression for U with
respect to the real and imaginary part of c^ gives

c"l(,l fx) ♦ c2(f2 fx) - (fxC)

(5) _

+ Cl(fl V ♦

C2(71 f 2>

- (?
1 ^ - °'

c1(f171) ♦ c2(f2 tx) - (^1)
- c^ 1^ - c2(f1 f2) + (?x K) - 0.
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These two equations are equivalent to the real and
imaginary parts of the following:

(6) fx) + c2(f1 f2) - (££) - 0.
Similarly for c2,
(7) c1(f2 fx) + c2(f2 f 2) - (f£ ) - 0.

Solution of these equations gives the values of
and C2 as stated. To evaluate M for these values ox
c^ and c2 we first multiply and sum the factors in
the definition of M, obtaining

M - c^C^ fx) + c2c2(f2 f2) ♦ «r$)
+ Cl°2(fl V * C2*l<f2 V

Co) — - —- c^S) - c^S)
- c2(f2 I) - c2(f2 £)•

If the terms of the type (f£) are replaced by their
equals from (6) and (7) the given form for Mmin re
sults .

The lemma can be applied directly to the problem
at hand, setting

f (a) = exp { z - z } { (logJO' + U '
} ,n° ex x

f (z) = exp { z - z } {(log k )• ♦ i^' } .
2 ns e c £

For computational purposes, (9) can be replaced by

fx(.) - ( 1 ♦ { z - zns} (loge kx)' j
• exp if,t { a - z(R.) },

(10) i 1

f2(z) •( 1+ { a - ans)(loge k2)i)
• exp i ^2« { z - z(Ri) } ,
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and the computation of and Co is quite straight
forward. The value of M»4W can be used to estimate
the probable error in each measurement of £g or 5y.
We have determined four constants from 2m observations,if m is the number of stations within the group, so that

Adn/<2m " 5)
is an estimate of the standard deviation of the in
dividual measurement. Since c^ and C2 are obtained as
linear combinations of observed values, their accuracy
may also be estimated.

It is to be noted that, while the errors in the
first approximation to the motion are quite large,
the second approximation usually gives small errors.

Having found c^ and C2, simply changing these
complex numbers to polar form gives, according to
(2), ki(sns)',c2^ns^ 4>i(*ns> and«M*ns)* lbe8e
values are, very conveniently, at the standard coordi
nates of the reference station. The derivatives of
<t>^

and to are now computed on the basis of a least
squares fit by a quadratic in z. One fact should be
noticed here. Since

■ arc tan (imaginary part of c^/real part of c^),
the accuracy of the determination is directly propor
tional to kx« Tne least squares procedure is therefore
done with weights kj* Once the fitting has been done,
referring to (1.1), we have

($1 + t2)' - AV/B,

(11) (rx
- Yg)' • Avo/b,

(| + t )" - Avi/B.12
(To be precise, (11) holds if the "units" are radians
per caliber.) From the quantities (11) the following
result:
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(12) ♦♦2>V(*1 ♦*2)' -v'/y
■ Jp - JAmd2/A.

The last equation results from (XI. 2. 10). Thus, from
the phases $i and ^ can 06 obtained the spin v, the
moment coefficient Kw, and after the drag data have
been reduced, the spin-decelerating moment coeffi
cient KA.

Determination of (loge k^)' and (logg k2)' requiresslightly more care. We know that ea^h k should be of
the form a ezp bl, and from the first approximation
an estimate b0 for b'and an estimate aQ for a exists.
Writing

b «
bQ ♦ i b, a • afl + 4 a,

the form of k, to first-order terms, is
k - a exp b z + A a exp b z

(13)
°°

+
aQ

A b z exp b0z.
In this form, the solution consists of fitting k
with a linear combination of known functions, and
the procedure is straightforward.

The values of (loge ki)1 and (loge k2)' having
been determined, frcm (l.l) we have at once

(loge 1^)' + (loge kx)'
•
2JD - JN - k-2j„ - (JD - md2jA/A)/&2,

(1U) t(loge kx)« - (loge k2)'
-

{ JN - JD - k~2JH - (2JT - JA)md2/A } /o.
The combinations of coefficients (12) and (Hi) repre
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sent all the Information that can be gained fran the
yawing motion.

U. Drag reduction; general remarks .

We shall see that the reduction of the experi
mental data on drag can be reduced to the following
simplified case. Given measurements t-^, to, . .., tmof the time at which the projectile passed the sta
tions which are at distances z^, z2> . ••, zm, it is
required to find that linear combination of three
known functions which best fits the experimental
data — "best fits" in the least squares sense. That
is, if the time is written
(1) t - aQ

+ a-|fl + a2f2 + a3f3,
where fl, f2, f3 are known functions of z, we wish
to choose aQ, a^, a? and a^ in such a way as to mini
mize the sum of trie squares of the errors. This
amounts to the problem of choosing the a's so that
they satisfy

Z * t 4 a-»f.t* - ■ minimum,
(2) J 1 1 J 0

i • 0, 1, 2, 3} j ■ 1, ...» m.

where £A is the notation for fi(zj). Differentiat
ing with respect to a^, we must have

(3) E jfc k a^k - t )f -1 - 0, for each i - 0, 1, 2, 3.
Rearranging these equations, we have four equations
for the four unknowns a^ as follows:

(U) \ ak(£jfjif /) - ^ tff, for i - 0, 1, 2, 3.

For convenience, let us denote

(SJEjf^fjk- b^, i, k - 0, 1, 2, 3; J - 1, m.

Then equations (h) take the form

(6)£k bikak - tjfj1, for i - 0, 1, 2, 3.
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Now let (Bp^) be the matrix inverse to (b^). Each
element B

^
is the signed minor of (b*K) corresponding to the i-th row and the p-th column divided by

the determinant | b^K | . Thus

(0
, if p + k,

(7) £i ^ bttK (1, if p - k.
Multiplying the i-th equation of (6) by Bp^ and
ming,

ap

- % £ j tj f^Bpi for p - 0, 1, 2, 3

<8> 'VfiVV .

where

These coefficients, together with the experimental
values t * | thus determine the required values of
the a's. The computation has been put in the above
form for the following reason. Values of the time
will be measured corresponding to the same values
of distance for all rounds. The cpj do not depend
on the values of t. The sums b^jj of (5 ) must be
computed, and the inverse matrix round, either by
determinants or otherwise. (The equations (7) may
be solved by Gaussian elimination for the inverse.)
Once the inverse matrix has been obtained, the bracket
in (8) which defines the coefficients c_j can be com
puted. If the yaw is negligible thesd coefficients
may be used for all rounds.

There are certain objections to the above proce
dure. First of all, there is a priori no reason why
one should use a least squares technique. What is
really desired for drag measurement is the best pos
sible estimate of the second derivative of t with
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respect to z. Fortunately, as we shall show below,
"the least squares fit does furnish the best estimate
of the second derivative. This result will justify
use of the above formulas. We shall also make an in
vestigation of the optimum spacing of the timing sta
tions. That is, given enough equipment to make a cer
tain number of time measurements, what spacing should
be used in the range in order to assure a best estimate
of the drag. Since neither of these results is needed
in the actual reduction of a round, readers not inter
ested in optimum spacing and willing to believe the
authors honest on the result concerning estimation of
the second derivative may omit the rest of this section.

We now consider the problem of fitting the data
from the point of view of making a best estimate of
the individual coefficients. The result which we
shall prove was first communicated to us by A. P.
Morse in a somewhat more general form. As before
we assume that the true functional relationship is
of the type (1) and we wish to estimate the a's from
a collection of observed data t^, tm corre
sponding to fixed distances z\y zm. The es
timate of a certain coefficient, say ap, will be
taken to be a linear function of the observed values
of the form

(9) ■p-sjVt
The coefficients dpj are now to be evaluated. First
we require that the estimate of ap be unbiased, in
the sense that if the observed data actually fit
(l) exactly then the computation (9) is to give the
coefficients of this combination. That is, if

tj - £k akfjk,k - 0, 1, 2, 3,
then

ap
- Skdpjtj " £j dpj ZkakV

must be an identity for all values of aQ, a^.
Hence the dpj are subject to the conditions
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;J dPJfJk *
jx
0 for k f p,

(10) dnjf-i* - ^ k - 0, 1, 2, 3.
for k ■ p

Suppose now that the measured value of tj is in er
ror by ej , so that the value given by the measure
ment is tj + ey The error in the estimate of a0is then £ jcipjej an<* *X *s our task to minimize its
square, (£ j n>jej^^j ^P^ J^' Now the error one
distance, say z, should be statistically independent
of the error at another distance, say Zp, and the
expected value of the error at each distance should
be zero. The stations being alike, the variance of
the errors ej should be the same for all j, say equal
to (S.D.)2. Then the expected value of the above
product is

Ej (dpj)2 (S.D.)2.

The problem now reduces to the minimizing of

(11) Sj Up/
subject to conditions (10). We now use the Lagrange
multiplier rule, that is, we seek values of dpj and
values of multipliers mpfc, k ■ 0, 1, 2, 3 such that

(12) EjUpj)2 + 5k mpk(£ jdpjfj -sg ) - minimus
where 6g ■ 0 if k f p and 1 if k - p. Taking the
derivative of this function with respect to dpq,
(13) Zdpq+^mpfcfJ-O.
Substituting this value of dpq in the relation (10),
and changing the index of summation gives

or
Zj I8mpSf3 fj - - 24*

£ m (S ,f5 flf) - - 26*.s ps J J J Pps
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In the notation used in the early part of this section,
in particular (5), this is

This is precisely the result given in (8), so that
we may state: the least squares fit to the data
gives the best estimate of the values of the parti
cular coefficients ap.

We now consider the question of optimum spacing
of time measurements. In doing this, two simplifica
tions are made. It is assumed that the distance-
zj are symmetrically placed about z - 0, so that
urements are fitted by a quadratic in z. Although
neither of these simplifications is entirely warrant-
edj the result of the calculation should give some
help on the question of spacing.

If a quadratic is fitted the coefficients are
determined by

£4 (a_ + a-iZi ♦ a0z? - t4)2 ■ minimum,

Using precisely the method of the first part of this
section, this gives at once

Using the
have

(1U)

and hence,

(15)

""ps
" -

2Bps>

referring again to (13),

Sq" EkVq'

j " 1, • • • i m.
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(17) m 0 Z t

0 Z z2 E tz

£ z2 0 £ tz2

m

0

Ez2

0

£z2

0

£z2

0

Z z1
*

. m(Stz2) - (S t)(S z2) .

its*1*! - (sz2)2

Here use has been made of the fact that the sum of
odd powers of zj vanishes, and the subscripts have
been left off the summed quantities for convenience.
This equation may at once be rewritten

(18)
J(m(£ .U) - {Z z2)2 )

If all the values tj have the same probable error,
then to minimize the mean square error in a 2 we must,
by (1.21.10), have the sum of the squares of the
coefficients of the t-

j as small as possible. Thus
the set { zj } should be selected so that

(19) *1 l mi
mz? - (Zz2)

minimum.
aCSzU; _ (z; z2)2

This reduces, on squaring and summing, to

(m2 - m)(Z z2)2
(20)

[m(£zU) - (2 z2)2]2
minimum.

The factor m2 - m is always positive, for unless
m > 3 no determination of a2 can be made. For fur
ther convenience write
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(21) rj - z^/zf.
This amounts to choosing units of length so that the
range Is two units long. Then, Inverting, «e see
that (20) becomes

(22) | (£r2/m )/( £ r/m ) - £ r/m |
•

Although further work can be done to find optimum
spacing, (22) gives a very convenient criterion which
is easy to use. For example, suppose U timing sta
tions are available and we wish to compare the two
spacings

(a) -1,: 0, 0. 1

(b) -1, -1, i, 1.

Computing, for the two cases

(a) £ r/m - 2/U, £r2/m - 1/2,
| (£2r/m)/(£ r/m) - ( £ r/m) | - 1/2,

(b) £ r/m - 5/9 £r2/m - Ul/81,
| (£ r2/m)/(£ r/m) - (£ r/m) | - .365....

Thus the arrangement (a) is much preferable to (b) for
drag measurement. A quantitative idea of how much bet
ter is easy to .see. The probable error of the determin
ation of ao is proportional to the square root of the
expression (19). This is, in turn, for a fixed number
of stations, inversely proportional to the expression
(22). Thus, the ratio of the probable errors of a2 for
two different arrangements of timing stations is the
inverse of the ratio of the corresponding numbers com
puted fromT22). In the example, choice of the (a)
arrangement in preference to the (b) reduces the prob
able error of a2 by a factor 0.73. ...
5. Drag determination from spark range data.

We now turn to the reduction of the time-distance
measurements made in the range. For the very flat
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fire occurring there it is quite permissible to assuse
that the t-a relation is determined entirely by the
drag, and that the velocity u is the same as z. The
equation satisfied by z is then

(1) mz - - pd2i2KD.
It will be necessary to take Kg in a more accurate
form than that usually used. The coefficient KD de
pends on both Mach number and the square of the yaw,
and we shall take account of the first-order terns
in this dependence. The velocity of sound, Ug, is
fixed, depending on the temperature in the range.
Thus, instead of expanding in Mach number, it is equally
correct to expand Kp as a function of velocity about
the velocity uQ at z - 0. We therefore define o,
a 1 and p by the equation

(2) pd^j/a - a ♦ (i - u0) a« + p62,
where & is the yaw. The relation of these numbers to
quantities defined earlier in the following:

a - pd^o/m,
(3) a' -(pd2/mug)( partial derivative of KD withrespect to Mach Number),

p ■ pdW"-
where KpQ is the drag coefficient at zero yaw and Kn$is the "yaw drag" coefficient of Chapter II. Another
form of the second of these equations can be stated,
since a' is simply the logarithmic derivative of
the drag coefficient with respect to Mach number M,
divided by the velocity of sound ug. Symbolically,
(U) a'/a - Me/u0,
where

e - 5(log KD)^M.

This form will presently be useful. For the present
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form (2) will be used.

Since the time measurements are made at constant
distances, it is preferable to write the differential
equation (1) with z as independent variable. Using
primes to denote derivatives with respect to i, the
necessary computation follows.

z - - { o + (i - u0)ot ♦ p62} a2,

t' - 1/z,
t" - (1/z)' - - S/i3 - - tt«3.

Hence, substituting in the last of these from the first,
(5) t" - (a - Uocfjt' + a' + p62t».

We shall first consider the special case in which
a' happens to be zero; the solution is then simpler,
and by an artifice we shall later reduce the general
case to this special case. In this case, (5) reduces
to
(6) t" - at' + p&2t' .
This can be solved by dividing by t' ; the result is

(7) log t« -az + | p&2 dz ♦ log t0'.

If we introduce the notation

I'(z) - \ 62 dz
J o

this yields
(8) t' - t0« exp z ♦ pi'(z)>.
Hence

(9) t - t0 • V f exp (oz + pl'(z)) dz.
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We expand the exponential in a Taylor's series and
integrate. If we introduce the symbol

But by (7), together with Taylor's theorem,

as + pi'(s)

tl2J -iog(Wv)
- (V/V)*

♦ i {(V'W) - (V/V)2}x2 + ....
Substituting this in (11) and integrating yields

t - t0 ♦ t0»s + a(t0'/2)z2 + Pt0'I(z)
(13) + (t0V6)(t0"/V)2s3

♦ (V/2U) {(3t0"t0"7V )

- 2(t0«/V3) }zU + ....
The last term is included only to permit verification
that it is negligible, as it seems to be in every case
considered. The coefficient of z3 could be estimated
by performing a least squares fit of 1, s, z2, z3 and
I(z) to the data. But this determination is not very
accurate, and a much more precise estimate can be made
by virtue of the fact that we have the specific formula

(10)

the result canto written in. the form

t - t# ♦ ta'z + o(t0'/2)z2 + pt#'I(z)

(11)
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in (13) for the coefficient. For by a preliminary
rough reduction we can find tQ' with high accuracy, and
t0" to within not worse than about two per cent when
equipment of the present time (19U8; is used. We ig
nore the last term in (13) and transpose the z3-term to
the left. That is, from each recorded t we subtract

(V/MVAb'J2"3'
The remainder is then a linear combination of 1, z,
z2 and I(zJ, with an error, due to ignoring small terms,
which is well below the experimental errors. This is
all subject to the assumption that a' - 0.

Suppose next that the effect of the a' -terms is
not negligible. They will nevertheless be small, and
we can compute them with adequate accuracy by an ex
pansion to terms linear in a' . Consider the family
of all solutions of (5; with given initial values tQ,
t^ and a given value of o. The solutions will de
pend on the parameter o', and will satisfy (5; iden
tically in z and a' . From (5),

(1U; a +po2 - uQa' - (V -o'JA'.
If we differentiate both members of (5) with respect
to a1, substitute from (11*; and then set o' ■ 0, we
find that for a1 - 0,
(15; (at/ 6a' )" - (tvt'Kot/a*)' + (1 - t«uQ),
where all the primes except those in the symbol a'
denote derivatives with respect to z. For this equation,
1/t1 is an integrating factor, The solution is

(16; (at/aaM'/f - J* {(i/t«)-u0} dz,

since at z - 0 the value of at'/to' is 0. Integrating
again,
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8t/8a' • f V{z) \
P {(l/f (z)) - Uq } dz ]d

z

(17) Jo LJo J

- - (t0V6V)zJ+ ....
If rounds have been fired at two or three different

velocities, rough reductions will furnish estimates of

Kp at tiie corresponding Mach numbers. From these, with
(U), we can estimate a'j with care, an estimate accurate
te within about two or three per cent can be made. For
each z, the effect of the a' -terms is a'Cftt/aa'J, the
second factor being evaluated somewhere Between 0 and
a' . We make only a small error if we replace the fac
tor a ' by our estimate and the other factor by the value
of at/oa' for a' - 0, as estimated in (17). Thus we
estimate the effect of the a '-terms to be

(13) a'(5t/da) - - a« (t0"/6t0' )z3.
If this is subtracted from the times Uz) corresponding
to the solution of (5) with the a '-terms present, the
remainder will be the solution of 16) with the same
initial values. Thus by subtracting the quantity (18)
from t we return to the special case discussed in (6) to
(13). Applying the result there found, we discover that

t(z) + (l/6)(t07t0')(a' - tQ")z3

with negligible error.

Accordingly, we "adjust" the time t^ experimentally
measured at coordinate z^, computing the "adjusted
time"

(20) ti* - tt ♦ (l/6)(to"/t0')(a' - t0")Z13.
It remains to compute the least squares fit of these
"adjusted times" by a linear combination of 1, z, z'
and I(z). The coefficient of z will be an accurate
determination of t ' (although in the next step the
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•b ^ of the preliminary reduction would be accurate
enough). The coefficients of z2 and I(z) then determine
« and P, and from (3) we can compute and Kj^. How
ever, we shall make two remarks of some importance in
connection with the least squares fitting.

The first remark concerns the computation of 1(a).
Referring to (2.1), the square of the magnitude of the
yaw is
(21) 62 - kx2 + k22 + a^kgcos (+

x *l2).
Here, as in Section 2, it is permissible to consider
tl*nd ^

2 33 linear functions of z, and the arms kj, and
kp as exponentially decreasing. Then

6 - k102 exp ( - 2h±z) + k^2 e*P ( - 2h2z)
+ 2Rk10k20 exp i{ (^» -J>2') z * co ) •

Computing I(z) from this is not difficult. The result
is the sum of three integrals with comparable numer
ators and with respective denominators

(2^)2, (2h2)2, (l^* h2

- i [f^ ] )2.
The last is far larger than the others in absolute
value, so that the last term in (21) contributes
negligibly little to I(z). Thus we may assume

(22) I(z) -|Z £ j* (kx2 + k22) dz dz.

From the experimentally determined fa and k2 this iseasily computed by the methods of Section 3 of Chapter
VI.

The second remark is concerned with the process offitting a combination of 1, z, z2 and X(z) to the
adjusted times t^*. This of course can be done by the
methods of Section U. However, even when a single
round is being reduced some simplifications are pos
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sible. Besides this, it is usual to fire several
similar rounds at nearly the same velocity; some will
have considerable yaw, some will have small yaw. It
is reasonable to assume that B is the same for all
rounds of the group; the accuracy of its determination
will not be good enough for us to hope to be able to
detect any change between nearby velocities. On the
other hand, a will change from round to round by a
small but perceptible amount. If we have a fairly
good estimate of Kjjq at two or three Mach numbers, we
will be able to estimate this small change in a with
satisfactory accuracy, and to allow for its effects.
However, t0 and t0' will vary from round to round.
Given N rounds, the best determination of a and B would
be obtained by using all of them at once. This would
amount to determining a, p , N values of tQ, and N
values of t0' . A fitting with 2N + 2 parameters is
a complicated matter even if N - 2 or 3. Fortunately,
in the present case notable simplifications can be
made.

Given rounds j ■ 1, j ■ N, to round j cor
respond values of air density Pj, velocity uQ. at
z ■ 0, Mach number Mj, mass uu, etc. We letp ^with
out subscript) be a number exactly or nearly equal
to the mean density (p\ + ••• +P [j)/N, and likewise
for m, d, M. If a is the value defined in (3) and
corresponding to the mean values p, m, d, u0, M,
then by (3) we have

(23) TV
where

(21*) Kj - pjd^KnoCMjM^d^DoCMjBLj.
This quantity can be estimated with considerably
smaller percentage error than aj itself, even if a
rough first estimate of u0j is used. Now by (19)
and (20), the adjusted time tji* for round j at sta
tion i is
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where 1 4 is the function I(z) computed for the yaw
of round j.

Our program for determining a and P has the fol
lowing basis. For each a and P, let the t04 and
tQj 1 be determined so as to minimize the sum of squares
of residues in (25). The corresponding sum of squares
of residues is then a function of a and p. If we
choose a and p so as to minimize this function, we
have minimized the sum of squares of residues for all
a * P» ^oi* •••» "toN,#

For given a, p , by Section U we see that the co
efficients of the least squares fit are linear in
a and p. We therefore fit the t-n*, the Vj'/2
and the t0j'Ij(zi) by least squares linear combinations
of 1 ana z , ana find the residues. This is not dif
ficult. In the fitting of the tjj*, the data for the
various rounds can be treated separately, since toj
and t0j' affect only round j. For each j, let the
least squares fit of tj^*, t^2*» • • . be

Tj + Tj'aJl' Tj + Tj'zj2'
with residues Tii»Ti2» •••• the least squaresfit of kj .^2 t9j>/4%*

*3 + ^'ajl» + *3,z12> •••»

with residues q«, q4o> •••> and let the least squaresfit of t0.j'I«j(ii) bg

Bj + Bj'zjl» Bj + Bj*zj2» •••»

with residues b^i, b4o, .... Then the least squaresfit of J J

(26) tji* -aUj »Ji2V/2) "PVW
is
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(27) (Tj -«Qj - PBj) ♦ (Tj» - «Qj» - pBj^Zji,
where j - 1, 2, . .., N and i runs over the stations
functioning for round J. The sum of squares of the
residues from the fit (27) is
(28) Zi#j (Tji-aq^-Bb.^2.
To minimi ze this, we find its derivatives with respect
to a and B and set them equal to zero. The res tilt is

(29)
aZi,J(^i)2 +pZi,j qjibji -Zi,J qjiTji'
azi,j «jibJi *zi,J<bji> "Zi,j bjiTji'

These equations can be solved readily for a and P ,
which are the quantities desired. So instead of one
least squares fit with 2N + 2 parameters, we need to
effect 3N linear fits (three for each round, the rounds
being treated independently), find the residues, and
then set up and solve equations (29).

6. Swerve reduction.

Of all the measurements made in the spark range
only the utilization of the x- and y-coordinates of
the center of mass remains to be discussed. The pro
cedure we discuss here far utilizing these coordinates
was first established in a systematic way by H. Federer,
although preliminary work had been done by A. K. Gold-
stine and the authors. The procedure is at present
just beyond the experimental stage. It is too labo
rious for routine hand computation, and has not yet
been set up for the more sophisticated computing
machines, although no serious difficulties prevent
this set up. Our discussion will be rather sketchy,
covering the mathematical background, 'but ignoring
the rather formidable computing problems.

The swerve reduction relies heavily on the earlier
reduction of the angular motion. We take as known the
representation of s,
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(1) £ » ci exp + c2 exp *2,
where

cx - k-^O), c2 « k2(0),

♦x
- z(loge 1^)'

+ J|lt
•
2
- z(log k2)» + ij>2.

Let S be x + iy. Then S is known for 25 different
values of z. According to (XI. 6. 8), S should have
the form

S - (linear function of p)

rx - Cld{( - JL + ivJF}/(*i')2 - UvJxF + Us)/*1' h
r2 - C2<J{(

- JL + ivJF)/(«2')2 - Kvjjp. + iJs)/*2' }•

Here p is the distance along the trajectory, measured
in calibers. For our purposes p » z/d. The deriv
atives in (2) are with respect to p. Referring to
(H.6.9) the gravity drop, in the (x, y) -system, has '

the form

(3) G - (igd2p2/2UQ2) { 1 + (2JdP/3) + ...}.
The drift, by (XI. 6. 10), has the form

D - ( - KL ♦ ivKpKgAv/KumUo2)
(U) ' (1* JqP ♦ ...)
The value of the quadratic and cubic parts of the
gravity drop can be computed corresponding to each
station, since the mean drag coefficient Kg has already

(2) + (drift) ♦ (gravity drop)

+ ri exp *i + r2 exp w2

where
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been computed. The drift, which is quite small,
can be estimated to a reasonable accuracy. The coef
ficient Km has been computed in the yaw reduction, and
is of the order of one. Using 1 for and .2 for

Ep has not, on the few rounds for which a swerve re
duction has been done, made a second, finer approxima
tion necessary. Having estimated the drift and com
puted the quadratic and cubic parts of the gravity
drop, the quantity
(5) Sc ■ S - D - (quadratic and cubic parts of G)
is computed for each station. Referring to (2) we see
that Sq should be of the form

(6) Sc ■ a ♦ bz + r^ exp + r2 exp •2#

where a and b are complex constants. The functions
exp and exp $2 are known, and we have the familiar
problem of determining which combination of known
functions, in this case 1, z, exp and expfcg, bestfits the data. In precisely the same fashion as in
Section 3 this fitting leads to a system of four linear
equations for the four unknowns a, b, r^ and r2.
Having r^ and ro, the equations (2) permit solution
for the quantities

(7)
- JL + ivJF,
VJjy - iJs.

Mathematically, these determinations, together with
those of (3«15) and that of the drag, give all aero
dynamic coefficients except Kjj. Practically, this
is not the case for data so far obtained. The prob
able errors of the coefficients from ^7) have been of
the order of 5 per cent for Kl, 30 per cent for Kp and
over 50 per cent for Kyp and Kg. Effectively, this
means that until measurements and reduction procedures
are further refined the swerve reduction must be con
sidered a method of determining Kj, and the order of
magnitude of Kp.
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Chapter XIV

ROCKETS
1. Introduction.

Historically, the use of rockets as military weapons
antedates the use of guns by centuries; but the ear
liest efforts to use rockets were abandoned, and these
weapons more or less forgotten until they were revived
by Congreve in the early nineteenth 'century . His rockets
were used in the Napoleonic Wars, and rocket batteries
remained in the British army until 1885. From then until the Second World War they were again ignored, be
cause of their great inaccuracy as compared with guns.
In this last war, several tactical situations arose in
which the rocket was the suitable weapon, and stren
uous and fruitful efforts were made to improve its
accuracy. We shall now briefly consider some of these
situations.

Early in the war it was found that a small light
shell could be made which even at low velocities was
capable of destroying a tank. It was desirable to
make this into an infantry anti-tank weapon, for di
rect fire by infantrymen at short ranges. The shell,
though small, was still over two inches in diameter,
and a conventional gun of such diameter is clearly un
suitable as a shoulder weapon. The difficulty was
resolved by delivering the shell by means of a rocket,
well known to many as the "bazooka." (The nickname
was originally applied to the tube and later transferred
to the rocket itself.) The tube was quite light, since
its only purpose was to support the rocket during the
aiming process and to protect the gunner from the
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burning gases emitted from the rocket. A similar
weapon was also made by the Germans, and known as
the Panzerfaust.

This was one instance in which the rocket was the
suitable weapon because the support of the weapon (in
this case an infantryman) was not capable of with
standing great forces or carrying heavy weights. An
other such instance is in firing from airplanes. Ob
viously a fighter plane is not a suitable gun platform
lor neavy artillery. But it is possible for such a
plane to carry several rockets under the wing, of
Btriking power great enough to be highly significant
as a weapon. As another example, small naval craft
can carry enough rockets to bombard a beach on which
a landing is to be made and to clear it for a landing.
Without trying to make any accurate comparison, it
requires little imagination to see that the volume of
fire which a small craft can deliver in the form of
rockets is greater than that of which it is capable
in the form of gunfire.

An entirely different application of the rocket
principle was made in the design of very long-range
rockets such as the German rocket popularly (or should
we say extensively?) known as the V-2. Such rockets re
quire all the complicated ballistic analysis required
by long-range guns, together with several additional
factors. Although the ballistics of such a weapon re
quires numerical integration of a more or less conven
tional sort, we shall not attempt to give the details
of the long-range rocket ballistics, but shall confine
ourselves to the analysis of rockets of the sort used
by this country in the Second World War. The same sort
of analysis will apply to the early part of the tra
jectory of a long-range rocket also.

The fundamental physical principle of the propul
sion of a rocket is quite simple and well known. A
rocket consists of two parts, a head and a motor. The
head is the business end. It is designed as a shell
720
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for fragmentation, high explosive or any other use.
The motor consists of a combustion chamber, analogous
to the chamber of a gun, in which the propellant is
burned. By means of a nozzle or nozzles the products
of combustion are ejected at high velocity from the
rear of the motor. Since, in the absence of external
forces, the total momentum of rocket and gases is con
stant,, the rocket must be given forward velocity. Of
course, the mechanism by which velocity is imparted
is the varying pressure over the inner surface of the
motor, but the total effect can be computed if the
velocity of the gas relative to the projectile is known.
This velocity is known as the exit velocity, and for
most of the rockets of the types under discussion it
was of the order of four to six thousand feet per
second. Suppose that the velocity of the rocket and un-
burned propellant is v at the time when the mass is m,
and is v + A v at the time when the mass is m + A m.If the latter corresponds to the later time, Am is
negative and ^v is positive; a mass |

A m| of gas has
been expelled with velocity v - ve, where ve is the
exit velocity. Hence, by the law of conservation of
momentum,

mv - (m + A m)(v ♦ A v) + (v - ve ) |
A m |,

or
m Av + veA m + Av A m ■ 0.

This implies

(1) P •v dm m

If the mass of the rocket without propellant is mr and
the mass of the propellant is mp, and ve is regarded
as constant, integration of the last equation yields
(2) v - v0 + ve log { (mr + mp)/mr }.

If the mass of the propellant is considerably less than
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that of the rocket, this is approximately the same as

(3) v - v0 + Vp/^r +
^K>*'

Thus, for example, if the empty rocket weighed 30 lb.
and the propellant weighed h lb., and the exit velocity
were 5,000 feet per second, the rocket would be accel
erated from rest to about 625 feet per second, accord
ing to the approximation (3). The more accurate for
mula (2) gives 625.8 feet per second instead.

In the present chapter we shall analyze the motion
of a rocket during burning. Since after propulsion
has ceased the motion of a rocket can be computed on
the same basis as that of a shell or bomb, we need con
sider only the motion during burning. Our principal
concern will be with fin—stabilized rockets, since
these were by far the most tactically useful in the
Second World War. However, the analysis can be extended
to cover the spin-stabilized rockets also. This has
in fact been done, by the methods of Chapter XI. But
we shall not consider this extension in the present
chapter.

The aerodynamic force system considered is a very
restricted one. For rockets of the type under consid
eration the burning time is of the order of 0.1 to 1.5
seconds, and the mean acceleration is from 1,000 to
5,000 feet per second per second. In view of the mag
nitude of the propulsive force it would at first glance
appear possible to ignore all aerodynamic effects,
but this is not so. Although tne drag is of minor im
portance the angular position of the projectile is of
primary concern, since the thrust of the motor is di
rected along the axis. It is therefore necessary that
we be able to predict the position of the axis through
out burning. We consider only the largest of the aero
dynamic torques, and assume that the rocket's motion is
determined by the acceleration given by the motor, by
the restoring moment, and by gravity.
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Finally, we wish to point out that the application
of the theory of ballistics of rocket fire is an ex
cellent example of the way in which the results of a
soraewhat idealized theory cart serve as an interpolating
device for complicated physical experiments. We have
already encountered one such example in Section U of
Chapter IV. In the theoretical investigation of the
motion of a rocket, it will be assumed that at any
given temperature the propulsive acceleration is con
stant. This acceleration enters as a constant in the
final equations. Its chief service is to determine
the velocity at the end of burning. Consequently we
do not measure the acceleration by direct measurements
of thrust. Instead, from the data of the range firings,
we find the velocity at end of burning, and then choose
the constant called "propulsive acceleration" in such a
way that when the velocity at end of burning is compu
ted from the equations, it agrees with the experimental
determination. We may thus feel confident that when
launching conditions (other than temperature) are
changed, with this same constant acceleration the
theory will continue to furnish the correct velocity
at end of burning. Likewise, the righting moment
should not be deduced from wind tunnel experiments or
from the angular motion of the rocket. Its chief ser
vice in the equations of motion is to determine the
direction of motion of the rocket at the end of burn
ing. Hence from the range-firing data, we find the
direction of motion of the rocket at end of burning,
and then select the value of righting moment which,
being substituted in the theory, provides the same
direction of motion as was experimentally observed.
Then we may expect that under other launching condi
tions, the theory will continue to provide accurate
predictions of the direction of motion at end of burn
ing.

2. Equations of motion for a fin-stabilized rocket.

In this section we derive the equations of motion
for a rocket and put them in a form suitable for com
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putation. As usual, the X-axis and the Y-axis are re
spectively horizontal and vertical, the rocket being
supposed launched at the origin in a direction lying
in the XY-plane. If the X-axis points to the right, a
positive angle is one which is measured counterclock
wise. The angle from the X-axis to the tangent to
the trajectory will be denoted e , the angle from the
X-axis to the axis of the rocket is $ . The yaw, 6 ,
is the difference $ - 9 , and u is the total velocity.
Let c be the acceleration due to the motor, which is
assumed constant in magnitude and directed along the
axis of the rocket. The components of acceleration
along and perpendicular to the tangent to the trajec
tory are then respectively c cos 6 - g sin 0 and
c sin 6 - g cos 6 . Hence we may write

u ■ c cos 6 - g sin 6, 6 ■ i - 9 ,
(1)

u9 * c sin & - g cos 6.

According to the notation previously introduced,
the restoring moment is of the form - p d^u^Kfcj sin 6 ,
where p is the density of the air, d is the diameter
of the projectile and % is the moment coefficient.
However, for the purposes of the present investigation
it is convenient to amend this somewhat. We shall write
the restoring moment in the form - Pd^u^Kjjfc. This
amounts to changing the meaning of % by multiplying
the original meaning by a factor £>/sin 6. The dif
ference between this factor and unity is about 6^/6,
so for small yaws the redefinition is quite immaterial.
For large yaws the original and the new definitions
differ; but in the following mathematical study we
shall replace the (new) % by a constant which is the
same as the common value of old and new % at zero
yaw. Making this substitution for the restoring mo
ment gives us for the equation governing the angular
motion the following:
(2) b'4 - -pd3u2KM6,
where B is the moment of inertia of the rocket about

72U Ch. XIV



an axis through the center of mass and perpendic
ular to the axis of the rocket. We now modify the
form of (1) and (2) somewhat.

Referring to Section 5 of Chapter III, it is re
called that for a finned projectile in free flight
the distance between two successive maxima of yaw,
called the wave-length of yaw, has the form

(3) X - 2* ^B/pd\.
This quantity has the dimensions of a length and is
a very convenient parameter for the present discussion.
Accordingly, (2) may be written
(U; ? - -Uir2u26/\2,
and we shall assume that X is a constant. We now
change the form of (l). Computing,

(u sin 6)* ■ u sin 6 + u 6 cos 6 - u<|> cos 6 + g cos <t>.

We now make further approximations, assuming that sin 6
may be replaced by 6 and cos 6 by one, that g cos 4>

also may be replaced by g cos 60, and finally that
c - g sin 6 may be replaced by a constant a. The
last equation and the first equation of (1) then be
come

u ■ a,
(5)

(u 6 J ■ 4 + g cos eQ.

The set of equations, (It) and (5)» form a complete
system on the variables u, , 0 , involving the constants
X, a and g cos 0O. We now select a new independent
variable which will be dimensionless. This variable
will be simply u multiplied by a suitable constant.
Namely, we define
(6) w • u «/2"7aX.

The reason for the choice of the factors a and X isfairly obvious, for these depend on the particular
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rocket and it will be convenient to have equations
which, without even change of constants, are simulta
neously valid for all rockets. The factor 2 is simply
for future convenience. If we use primes to denote
differentiation with respect to w, the equations (U)
and (5) become

4" - -lt26w2,
(7)

(w6)« - w+> + (g cos eo)/a.
These equations are now in the form in which we shall
solve them. They determine completely the angular mo
tion of the rocket. It is now a rather easy task to
set up the equations which determine the motion of the
center of mass. In terms of the original XT-coordi
nates, we have at once

^ X ■ u cos 6 f
I ■ u sin 6 .

If we transform to slant coordinates, ri, >as in the
Siacci method, where ^ is distance measured along the
initial tangent to the trajectory and r\ is drop from
this line, the equations simplify. Defining

(9) K - X sec Qo, n - X tan 6o - Y,
we compute directly from (8)

£ « u cos 9 sec 6Q,
f| ■ u (cos 8 tan 60 - sin 8)
- u sec 80 sin (8o - 8).

Under the assumptions we have made, it is quite proper
to use, instead of these, the approximate equations
(10) t - u, n - u (Sq - 8) sec % .

The first of these leads to the equation

K - (u2-u02)/2a,
while the second, upon changing to the independent
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variable w, becomes

n» - Me0 - e)(sec e0)/2,
which is the form we shall use.

For convenience in future reference we now collect
together the results of this section.

The angular motion of a rocket is determined by the
equations

4 » = - n2**2 , 6 -
♦
- e,

(11)
(w6)» - w^>»

+ (g cos eo)/a,
where w - u V2/a\ a is the mean acceleration during
burning minus g sin 0O, and \is the wave-length of
yaw. The equations determining the space position and
the time are;

- (u2 - u02)/2a,
(12) tii -\w(e0 - e)(sec e0)/2,

t - t0 - (u - Uo)/a.
3. Solution of the equations of motion.

This section is devoted to the explicit solution of
the system of equations (11) and (12) above. We first
solve the first equation for w&, and by substituting
in the equation involving (w6)' the following is ob
tained.

This can. now be recognized as a familiar form if the
independent variable w is replaced by the independent
variable p ■ w , for the derivative of a function with
respect to p is then its derivative with respect to
w multiplied by l/2w. Equation (1) then becomes
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i2ii „2i, .,2,
ia-/p

The general solution of the equation (2) for is
a linear combination of sin (^np) and cos (£jip) added
to a particular solution. It is, in fact, possible to
obtain a particular solution from the known solution
cos (2^) of the homogeneous equation by the method
of variation of parameters. If we assume a solution
of (2) of the form A cos (^rcp) where A is a function
of p, substitution in (2) leads to the equation
An cos |np - itA1 sin £np " - 4(g/a)( rc2 cos 90)/V~p •

By multiplying the equation by cos (£np) the left-hand
side becomes the derivative of (A1 cos2(iitpj)f and a
solution for A is

ds.A - - i(g/a)(itcos

e^
j

secS^nsjJ
r-1/2 cos £nr dr

^
>

^
0

This expression may be integrated by parts, integrating
the sec2(£re). The result, after a little simplifi
cation, can be written in the form

A - i(g/a)(n cos 60sec £np)fP s""1//2sin £it(s - p) ds,
JPo

and a particular solution is this value of A multi
plied by cos (^np). The general solution for is
therefore, replacing p by w2 and s by r2,

¥ - (g/a)(n cos e0)| sin £n(r2 - w2) dr
(3) Jw0

+ C sin i^w2 - w02) + D cos in(w2 - wQ2).
We now evaluate C and D by using the initial condi
tions. Let &0 and a)0 denote the initial yaw and the
initial angular velocity respectively. Since

4>
" - - n^w2,
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(see equation (2.11)),
4>o"
- - •

further, <
j>
« is (d«j»/dt)/(dw/dt), and hence

4>
o " £OcV\/2a.

(See the definition of w in (2.11).) Setting w - wQin equation (3) then shows that
(U) D - *0' - cu0-A72a .

Differentiating the equation (3) with respect to w
and setting w » wc leads to the evaluation of the other
constant.

(5) c «4>0'Aw0 - - tc60w0.
These values of the constants, substituted in (3)»
then give the desired solution. Given this solution
for

^

it is easy to see that solutions for all the
other variables can be obtained as quadratures. Actu
ally what is required for ballistic computation is
the initial conditions for the non-burning part of
the trajectory. We are therefore interested in sol
ving for 9, £ and r\, t and u at the end of burning.
There is no particular reason to find 6 or 4> at the
end of burning, for a simple calculation will show
that under the assumptions we have made, the yaw at
the end of burning will be negligible. (This is
physically very reasonable since the propulsion in
creases the axial velocity, which, in the absence of
other factors, decreases the yaw.) We now consider
the determination of 9 and n. Since, (equation (11)
of the preceding section), 4>n

- - u^ow, and

e - % - (4
> -k>) - C* - &<>>»

it follows that

(6) 9 - 9o- 60 + I 4>«(s, w0) ds + 4>«A2W 2.

Differentiating (3) leads to
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(7)

■ - (g/a)(itcos 90) I tor cos iu{r2 - w2) dr
- (n 6 0wo)[nw cos iH*2 - w02) ]
- (cD0v^72a)[nw sin £n(w2 - w02)].

Hence (6) may be written, collecting like terms,

e - e0
-
b0 + (g/a) cos 60 U I sin i^r2 - s2) dr ds

- (1/ir) J* cos |ic(r2 - w2) dr
j

- &o *wo (

*
sin J n (r2 - w-2) dr

(8) L Jw0
♦ cos fc(w2 - w02)j

+ (<d QUo/aWo) |j cos i (r2 - wc2) dr
- (1/fow) sin il<w2 - wQ2) J .

The functions of w and wQ which lie within the three
sets of square brackets can be computed, and are
actually combinations of Fresnel integrals

sin ^nr2 dr
Jo

and

C

•■I
w
cos ^Hr2 dr,
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and the related integrals

S dC

and

C dS.
o

These quadratures have been done at Aberdeen and from
them the three functions within the brackets were
evaluated. These are denoted by Fl(w0, w), F2(wQ, w)
and F3(w0, w) respectively. In terms of these func
tions, the value of 6 - 90 may be written

It should be remarked that this is an unexpectedly
pleasant result. The functions PI, ¥2 and F3 do
not depend in any way on the rocket being considered,
and may be (and have been) tabulated once and for all.
Further, 0 - 9Q depends linearly on the yaw and the
initial angular velocity, so that if the angle has
been computed on the basis of zero initial yaw and
zero angular velocity the corrections for these may
be made by simply adding the appropriate factors.

The drop n, may also be computed in an equally
convenient form. Referring to equation (2.12),

n' - £Xw(e0 - e) sec e0,

so that

(10) n cos 90 - I r [80 - 6(w0, r) ]dr.

(9)
9 - ©o

" (g/a) coa eo Fl(wo» w)
♦ 60 [ 1 - F2(w0, w) ]
♦ ( CDoUo/aw0) F3(w0, w).
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In view of (9) we may therefore define functions
Q\, O2 and Q3 such that

n cos 90 " i ^L(g/a) cos 90 Q\(^Of w)

(11) + &0G2(wo» w>

+ ( <o0Uo/aw0) G3(w0, w) ] .

Equations (9) and (11) embody the results which will
be required for the computation of a firing table for
rockets. In practice the mean acceleration a will
be evaluated before the wave-length of yaw so
that instead of the factor X/2 the equivalent number
uQ2 /awQ2 will be used in formula (11).

The basic formulas now being available, it would
seem reasonable to consider as a next step their
application to the problem of analyzing experimental
data and constructing a firing table. This material
has, however, not been cleared for publication, so here
we abruptly close.

^The functions which have been tabulated at Aberdeen
are not actually G\t G2 and G3 as defined here, but
certain related functions F4, F5 and Fg. In terms of
these the drop is defined by the equation

n cos e0
- i \{ - w^e - e0)

+ Kg/a) cos 9o[F4(wo, w) - (w2 - wQ2) ]
+ 60 Fgtw^ w) + (u>0u /awQ) F^wQ, w) }.

The relation between the G's and these is easily
computed.
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NOTE: A more complete treatment of the motion of a
rocket, including the effects of jet malalignment,
etc., may be found in Mathematical Theory of Rocket
Flight by J. B. Rosser, R. R. Newton and G. L. Gross
(New York: McGraw-Hill Book Company, Inc., 19h7) and
in "The Mathematical Theory of the Motion of Rotated
and Unrotated Rockets," by R. A. Rankin, Philosophical
Transactions of the Royal Society of London, Series A,
vol. aa (i?U9), pp. hsi-hss.
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Figure XIV. 3.1

Range Firing of Five-inch High Velocity Aircraft Rocket

(a) Preliminary firings, photographed with
Bowen-Knapp camera

(b) Range firing, gunsight camera record
(c) and (d) Firing, photographed from rear,

Eyemo camera
(e) Firing, from side, Mitchell camera
(f ) Rocket, near end of burning, Mitchell camera
(gj Impact, Eyemo camera

Photographic Measurements Section
Ballistic Research Laboratories

Aberdeen Proving Ground.
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HISTORICAL APPKHDIX
Ballistics is the science which treats the action

of projectiles and their associated hurling machines.
Modern writers divide the subject into three parts de
scribed as interior, exterior and terminal ballistics
which are concerned, respectively, with the propulsion,
motion and destructive action of projectiles* The mod
ern theory of exterior ballistics has been developed as
a branch of the analytical dynamics of rigid bodies
moving under the influence of gravitational and aero
dynamic forces. In this exact sense, exterior ballis
tics was founded about three hundred years ago with the
work of Galileo. Interior and terminal ballistics were
founded as sciences more recently than exterior ballis
tics, the three branches having been distinguished first
during the latter part of the eighteenth century. Medi-
evil and even ancient writers, however, used terms cog
nate to the English word ballistics to describe the art
of making and using missive armament. The word ballis
tics was derived from the Latin ballista for an ancient
javelin-hurling engine actuated by the torsion of skeins
of sinew. The term ballista was perhaps derived, in
turn, from a Greek term used by the Syracusan and Alex
andrian mechanicians who developed this engine into
efficient forms. Extant books entitled BeXonoiiTtca,
or throwing devices, were written by Philon of Byzan
tium, Rhodes and Alexandria during the third Century
B. C. and Heron of Alexandria at an uncertain date no
later than the third century A. D. Ballistics at the
time of Philon and Heron was the theory of the design
of hurling engines such as the ballista and the simi
lar stone-casting engine which medieval Latin writers
sometimes described as a petraria. In the general
sense of the cognate term used by classical, writers,
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ballistics was an advanced art in Hellenistic times.
Thus Philon described still earlier writers as rfthe
ancients." The development of missive armament as a
skilled craft began, however, millennia before writ
ing; ballistics originated as a technical art with the
inventions of the earliest weapons specialized for
throwing purposes. Specialized missiles and hurling
machines have been prominent everywhere among the arti
facts recovered from the campsite debris left by hunt
ing men of the Upper Old Stone Age.

The materials employed in making the most important
instruments, especially weapons, have been used by an
thropologists to distinguish the stages of civiliza
tion attained by the carriers of different cultures.
Early Lower Old Stone Age men knew the flint fist-hat
chet, primitive language and the use of fire but no
weapon especially designed to be thrown. The most im
portant advance in weapon technique during the Lower
Old Stone Age was the chipped stone point provided with
notches for attachment to a wooden handle. These
notched stone points indicate knowledge of the spear
which was probably used both for thrusting and for
hurling from the time of its invention. The spear was
known to Mousterian man during the last period of the
Lower Old Stone Age in southwestern Europe. The old
est hurling machine was the atlatl or spear- thrower.
The invention and diffusion of the atlatl has divided
the cultures described as Lower and Upper Old Stone
Ages over the whole earth; this instrument was known
to Aurignacian man in Spain about twenty-five thousand
years ago and to Chiricahua man in New Mexico about
ten thousand years ago. The oldest engine, or machine
for doing work by means of stored energy, was the bow.
The wooden long bow was invented more than fifteen
thousand years ago by an Upper Old Stone Age people in
Africa or Asia. The oldest known user of the bow was
Magdalenian man who showed it in his polychrome draw
ings on the walls of a cave near Alpera. The wooden
long bow was the primary weapon of the Middle Stone
Age Papains who spread over western Europe from Africa,

7U3



but it first acquired universal use among peoples with
New Stone Age cultures. The reflex bow was devised in
the arsenals of the Bronze Age Sumerian and Egyptian
armies which conquered the oldest empires on earth.
The compound reflex bow of the Iron Age Assyrian Empire
was made of alternate layers of wood, horn and the neck-
sinews of the stag. The cross-bow was apparently de
vised somewhere in the Orient shortly after 1000 B. C.
by adding a stock-and-t rigger to the long bow. The
arbalista was developed by equipping the cross-bow with
a windlass or lever used to retract the bow-stave me
chanically. The catapult was probably devised from the
mechanically retracted battering ram shown in Assyrian
bas-reliefs: in any case, dart- and stone-casting
engines procursive of arbalistas and catapults were re
portedly included in the armament assembled by King
Uzziah (circa 750 B. C.) for the defense of the city
of Jerusalem. Double-armed skein-actuated engines such
as the ballista were used in both siege and field war
fare by the engineers 'of the army of Alexander of
Macedon during the decade 333-323 B. C. The techniques
employed in making the powerful mechanically retracted
engines of classical times were largely unknown in west
ern Europe during the Middle Ages, but were re-intro
duced in France and Italy during the eleventh and
twelfth centuries. King John of England was explicitly
prohibited from employing foreign "balistarios," spe
cialists in the use of the arbalista, by a clause of
the Magna Carta, which he signed in 1215. The ancient
elastically actuated engines and the medieval gravi-
tationally actuated trebuchet were replaced during
the fourteenth century by the first true firearms, de
vices which hurled solid projectiles by the force re
sulting from the expansion of gases from the burning
of gunpowder. v

The inventions of the cannon and the rocket were
made possible by the medieval Chinese invention of eun-
powder. The Chinese discovery of the propellant
properties of gunpowder was the ultimate consequence
of Asian developments in fire arrow compositions which
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were probably initiated with the appearance of iron
metallurgy in the countries bordering the Mediterranean
Sea. The fire arrows of the Mesopotamian peoples of
the late Bronze Age were covered with viscous, persis
tent-burning mixtures of pitch, petroleum and sulphur.
Early iron craftsmen experimented with various inflam
mable materials which furnished large heats of combus
tion because iron requires a higher temperature than
copper for its reduction and forging. Sojne of these
men also observed that the colors of metals became
lighter as they were heated in a forge. They recog
nized that metals were heated by the transfer of some
mysterious entity from the flame and decided that a
yellow flame was very hot. Common salt was believed
to contain a large amount of this heat-producing en
tity because flames into which it was thrown turned
yellow. Since it was desired to produce the hottest
possible flame from the materials transported by fire
arrows, some ancient peoples added common salt to their
incendiary mixtures. Many old recipes for making fire
arrow compositions included resin, petroleum and sul
phur: some also employed charcoal and common salt.
These recipes were apparently transmitted through the
Near East to India and China, perhaps at the time of
Alexander or his successors. Saltpetre may possibly
have been identified first as a material distinct from
common salt or soda by medieval Syrian or Arabian chem
ists. However, it seems more likely that saltpetre was
first employed in incendiary compositions in the inter
ior of China where common salt was scarce and saltpetre
was quite widely distributed. At some time before 1200
A. D., the Chinese apparently substituted saltpetre for
common salt as an ingredient of incendiary mixtures.
Since charcoal was one constituent of these mixtures
and sulphur another, the addition of saltpetre led to
the preparation of gunpowder. Saltpetre was the crit
ical component of gunpowder because it furnished the
oxygen which enabled the combustion of the mixture to
proceed rapidly without utilizing atmospheric oxygen.
The Chinese presently employed saltpetre, charcoal and
sulphur compositions which, if the saltpetre content
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was high, constituted explosive mixtures, if somewhat
lower, propellant mixtures and, if still lower, simple
incendiary mixtures. Explosive mixtures were enclosed
in pottery cases, propellant compositions in separable
paper containers attached to fire arrows and wild fire
materials in flame-throwing tubes made of bamboo. The
pottery-encased gunpowder charge was the earliest type
of explosive shell, the self-propelled fire arrow was
the prototype of the incendiary rocket and the fire-
projecting bamboo tube was one of the precursors of the
flame thrower. The Chinese described their explosive
shell as the "heaven-shaking thunder," their incendiary
rockets as the "fire that flies," and their flame throw
ers as "fire tubes." Both the "fire that flies" and the
"heaven-shaking thunder" were employed in 1232 A. D.
by Tartar defenders of the city of Kaifeng against
the Mongol army commanded by Ogotai, son of Genghis
Khan. Gunpowder with the concentration of saltpetre
required for either an explosive or a propellant was
known to the Chinese siege engineers of the Mongol
"horde" which advanced into Europe as far as Hungary
in the campaign of 1238-12U2 A. D. However, gunpowder
probably became known in the Near East through the
Moslems who had been engaged in warfare with the Mon
gols during the khanship of Genghis. An accurate de
scription of saltpetre as a material distinct from
common salt was given in a book written in 12u0 A. D.
by an Arabian pharmacist sometimes called ibn al-
Baithar, the "son of the horse-doctor." Ibn al-Baithar
reported that saltpetre was known by the Egyptians
as "snow from China." Ibn al-Baithar did not describe
the deflagrating property of saltpetre but this prop
erty was well known to pyrotechnic is ts of the Near
East a few years later. In 1279 or 12fi0, an Arabian
military engineer named Hassan al-Rammah wrote a book
on cavalry warfare in which he gave pyrotechnic and
rocket propellant compositions containing saltpetre,
sulphur and charcoal in approximately the proportions
since used in the manufacture of gunpowder. Roger
Bacon of England and Albert the Great of Germany have
sometimes been credited with the invention of gunpowder
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but both men probably knew recipes given in a Latin
manuscript with the title Liber fenj,um aji ComburendufflHostes. This book was widely circulated in Europe dur-
ing the latter part of the thirteenth century. Reputedly the work of a Byzantine called Marcus Graecus, the
Liber Ignium contained many incendiary compositions,
directions for making a rocket and a description of a
petard or cracker. Bacon and Albert were proficient
in Arabic literature and they may also have read con
temporary Arabic recipes for gunpowder. Although the
propellant properties of gunpowder were almost certainly learned in the Near East from the Chinese, the Arabs
were probably the first to use it as a propellant in
firearms. The earliest known mention of a firearm was
made in an Arabic document dated 1301;. The first Euro
pean firearm was a dart-throwing engine called a pot-de
fer. The invention of the pot-de-f er has been ascribed
by a well-known German legend to a monk named Berthold
Schwarz, or Bertholdus Niger, whose surname "the black, n
was probably a reference to his interest in alchemy.
The possibly apocryphal Berthold has been variously re
ported as having invented the first firearm in Freiburg
im Breisgau, Dortmund, Venice and Flanders. The ear
liest European evidence for the existence of firearms
was given in documents of the city of Ghent which were
dated 1313 and 131U. The bombard, a smoothbore can
non hurling stone or metal round shot, was developed
simultaneously in several countries of Europe and the
Near East during the fourteenth and fifteenth centur
ies. An old description of the battle of Crecy (13U6)
states that the English employed bombards "which with
fire throw little balls to frighten and destroy horses."
Firearms were probably ineffective at Crecy but the
destruction of the Byzantine Empire in lijE>3 was in some
degree a consequence of Turkish use of siege artillery.
Constantinople, the Byzantine capital, was bombarded
by huge cannon for twelve days before succumbing to
the Ottoman ruler, Mahomet II. These great bombards,
which hurled stone balls thirty inches in diameter,
were cast in bronze by a Wallachian gun founder named
Urban. After the Turkish conquest of Constantinople
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many Byzantine scientists and technicians fled to
Italy.

The development of the modern theory of the analyt
ical dynamics of rigid bodies was initiated during the
fifteenth and sixteenth centuries by mathematicians and
physicists many of whom were employed as ballistic ians
and military engineers in the arsenals of the Italian
principalities. This development began with a critical
revision of some Aristotelian theories which had dom
inated dynamical ideas for eighteen hundred years.
Aristotle (33U-322 B. C), the founder of formal logic,
was interested in the problem of projectile motion. He
was skillful in applying geometry to kinematics, but he
lacked both the conceptions and the methods required
for an accurate development of the dynamics basic to
the modern theory of exterior ballistics. He construc
ted an elaborate theory of the dynamics of particles
which was based partly on principles derived from the
hypotheses of Empedocles on the nature of matter.
Empedocles of Acragas, Sicily (circa UiO B. C.) had
performed experiments which established the corporeal
ity, or material nature, of the air. This discovery led
Aristotle and some of his contemporaries to argue that
since air was present where matter had been supposed
absent, a vacuum was impossible-. Aristotle noted that
in a vacuum all bodies would fall at the same speed and
asserted that, since this was incredible, a "void" was
a physical impossibility. He presumed that all matter
had such properties as wetness or dryness and warmth
or coldness and considered that these properties were
the causes of the tendencies of bodies to rise or
fall. He was somewhat indefinite or, possibly, incon
sistent, in his statements on the rate of fall of
bodies in fluid media: he overemphasized the influence
of the medium on the motion. Some Aristotelian dynam
ical errors were corrected by his ancient successors,
especially the followers of the atomistic school of
philosophers whose theory of the nature of matter had
been critized by Aristotle. The atomic theory of the
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constitution of matter was enunciated by Leucippus of
Thrace (circa hhO B. C.) who had been a student of Zeno
of Elia (U95-k35 B. C). Leucippus was succeeded as
director of the Thracian atomistic school by Democritus
of Abdera. Democritus justified the atomic theory of
the constitution of matter by several observed phenom
ena including solid friction and the drag of solids
forcibly moved through liquids. He argued that a "void"
could be created by exhausting an air-filled container
of its content of atoms. Democritus' idea on the cre
ation of a vacuum interested Straton of Lampsacus,
Alexandria and Athens (circa 300 B. C). Straton was
the last important director of the "lyceura, " the re
search laboratory in Athens which had been founded by
Aristotle. He had earlier established experimental
physics in the "museum," the famous university and re
search laboratory in Alexandria. He showed that a near
vacuum could be made by exhausting the air from a closed
vessel with siphons. He also demonstrated the com
pressibility of the air. Straton' s researches led
some ancient mechanicians to recognition that the prop
erties of fluids could be explained by the atomic theory
of the constitution of matter. Archimedes of Alex
andria and Syracuse (287-212 B. C.) stated in a prefa
tory letter to one of his extant books that he had dis
covered a theorem in hydraulics by considering the
probable behavior of a fluid composed of atoms as sug
gested by the theory of Democritus. After the time
of Archimedes, almost all ancient mechanicians argued
correctly that a body rose or fell according to whether
its specific gravity relative to the surrounding me
dium was less or greater than unity. A few ancient
writers apparently believed that bodies fell at rates
proportional to their specific gravities relative to
surrounding media. These mechanicians probably argued
from observations on the vertical fall of very light
bodies in dense fluids. Such observations would have
agreed with the results of modern experiments on the
motion in dense resisting media of light particles
near "limiting" or "terminal" velocities. Stokes' law
of drag i3 applicable to this type of motion if the
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particles employed have very low terminal velocities.
Such experiments, of course, yield very different re
sults from those obtained by testing the rates of fall
of very dense bodies in tenuous media.

The writings of the Alexandrian mechanicians shewed
the development of ideas on the nature of both gravita
tional and aerodynamic forces which were more nearly
similar to the conceptions of Galileo than to those of
Aristotle. Philon and Heron always computed the mag
nitudes of forces by comparison with assigned weights.
In the preface of his Pneumatica, Heron defended the
atomic "theory of the constitution of matter by arguments
derived from experiment: he apparently recognized that
the air exerted a resistance to the motion of solid
bodies. Joannes Philiponos of Alexandria, also known
as John the Grammarian, who wrote during the sixth
century A. D., explicitly contradicted Aristotle* s erron
eous opinion that the continued motion of a projected
body was a consequence of the movement of air which
had been started in motion simultaneously with the
body. "Why," asked Philiponos, "must the moving hand
touch the stone at all if the air manages everything?"
He denied the Aristotelian doctrine that geometrical
position in itself exerted force on a body. He had
some conception related to Galileo's modern idea of
the inertia of massive bodies and Newton's first law
of motion: he attributed to bodies the effort to pre
serve their order. He stated that Aristotle was in
error in supposing that bodies of great weight fell
much more rapidly than bodies of small weight: his
argument that Aristotle was wrong in this supposition
was based upon observations of the times of fall of
dense bodies of different weights which were dropped
simultaneously. Philiponos' criticism of the Aristot
elian dynamics probably influenced some of the pre
decessors of Galileo.

The development of ballistics from a technical art
to a branch of science began about the time when fire
arms were first introduced into warfare in western

750



Europe. Several conceptions basic to modem dynamics
originated with writers of the fourteenth and fifteenth
centuries. Jean Buridan (circa 1320) had a conception
of mass which was similar to that of Newton. He also
believed that celestial bodies moved according to the
same laws as terrestrial bodies, thereby foreshadowing
Newton's idea that the moon was acted upon by the same
forces as those which determined the motion of projec
tiles. Several writers of the fourteenth century pro
posed theories of the earth's gravitation in order to
explain the correspondence between the moon's period
and that of the tides. Albert of Saxony (circa 1330)
believed that the motion of heavy falling bodies was
uniformly accelerated. Nicholas of Cusa (1U01-1U6U)
proposed timing the fall of bodies in air and thereby
determining the effects on the times of fall which he
thought to be caused by the resistance of the air.

The early modern development of ordnance engineering
in Italy began with the work of versatile Leonardo da
Vinci (11&2-1519). The character of da Vinci's earli
est inventions was shown by his letter of application
for an appointment as engineer to Ludovico Sforza, the
usurper of the principality of Milan. He wrote:

"Again I have kinds of mortars, most conven
ient and easy to carry, and with these can fling
small stones almost resembling a storm, and with
the smoke of these causing great terror to the
enemy, to his great detriment and confusion...

"In case of need I will make big guns, mortars,
and light ordnance of fine and useful forms, out
of the common type...

"And in short, according to the variety of
cases, I can contrive endless means of offense
and defense..."

He sketched many new weapons including rifled fire
arms, wheel-lock pistols, breech-loading cannon, fuzed
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explosive shell and even primitive machines procursive
of the tank and the submarine. He attempted to formu
late general laws governing the operation of the ma
chines which he had studied or proposed. This work was
described in the five thousand pages of his notebooks.
These notes included discussions of researches on the
mechanics of rigid and deformable bodies, aeromechan
ics and hydraulics. Although he retained some Aristot
elian ideas, his mechanics was not primarily Aris
totelian. He attempted to deduce a theoretical statics
and dynamics from the motion of colliding bodies before
and after impact, the motion of bodies on an inclined
plane and the motion of pulleys. He knew the ideas of
Albert of Saxony on the theory of impulse and examined
the rebounding of spheres from plane surfaces, probably
in an attempt to determine the action of cannon balls
in bounding from the walls of fortresses. He concluded
that

"The blow will be less powerful than its im
pulse, according as the angle of percussion is
nearer the right angle"

and he believed that the angles of incidence and re
bound were equal. He attained some conception of the
parallelogram of forces from the motion of bodies on
an inclined plane. He said:

"The weight of a body divides its gravity into
two aspects, that is, according to the line along
the inclined plane and according to the line per
pendicular to the inclined plane."

He knew the book of Albert of Saxony on gravity. He
concluded from experiments that the rapidity of move
ment of a sphere sliding down an inclined plane to
that of a body falling freely was as the height of the
vertical fall to the length of the inclined plane. He
observed the free fall of heavy bodies and asserted
that:
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"A weight which has no support falls by the
shortest route to the lowest point which is the
center of the world."

His investigations of falling bodies were displayed
with the coordinates suggested by Nicholas Oresmus of
Lisieux (1323-1382). He plotted the time of fall
of a body on a vertical scale and the velocity on a
horizontal scale. He found that:

"In air of uniform density, the heavy body
which falls, at each stage of time acquires a
degree of movement more than the degree of the
preceding time."

He enunciated axioms, or laws, of motion which appeared
to conform to the results of his observations. His
study of the flight of birds led him to conclude that:

"All moving tends to maintenance or rather
all moved bodies continue to move as long as the
compression of the force of the motors remains
in them."

He remarked that

"Nothing can be moved by itself but its motion
is effected through another."

He argued from observations on the motion of a parachute
that

"an object offers as much resistance to the
air as the air does to the object."

Da Vinci's dynamical axioms were precursive of Newton'sfirst and third laws of motion, but he suggested no
relation involving force and rate of change of momentum
comparable to Newton's important second law of motion.
He was, however, the first writer who attempted to find
a theoretical basis for the phenomena of aerodynamics.
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He knew Roger Bacon's ideas on the possibility of
flight and wrote a treatise on flight which contained
sketches of a parachute* He said:

"If a man have a tent roofing of calked linen
twelve bracci broad and twelve bracci high, he
will be able to let himself fall from any great
height without danger to himself."

He made thin wax figures which floated in the atmos
phere when filled with hot air and he may have made
models of a primitive helicopter which would soar.
He used models to find the centers of gravity of birds
and noted that occasionally the center of gravity of
a bird lay outside its body. He conceived a center
of pressure for a bird and interpreted its movements
through the different positions for the bird's center
of gravity and center of pressure. He said:

"When a bird which is in equilibrium throws
the center of resistance of the wings behind the
center of gravity, then it will descend with its
head downward."

This is essentially the first principle employed in
stability considerations on the design of modern bombs.

Several early modern writers on the theory of gunnery
knew how to prepare rudimentary forms of firing data
from range observations. Johannes Mtlller of Germany
(U*36-1U76) invented instruments for positional ob
servation by military surveyors and developed exact
methods in cartography for use by artillerists and
navigators. Muller, better known as Regiomontanus,
probably had an insufficient knowledge of the com
putation of gunnery data even for the requirements of
his own times, but he prepared extensive and accurate
tables of trigonometric functions by methods somewhat
procursive of those used in making modern firing
tables. Santbach of Germany wrote a book on ballistics
in 1561. He attempted to apply mechanics to problems
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in gunnery. His mechanics was, however, Aristotelian:
he considered that a cannon ball proceeded along the
line of departure until its velocity was exhausted,
thereafter dropping nearly vertically. The early
modern writers on ballistics often divided the tra
jectory of the projectile into three parts which they
called the mot us violentus, the motus mixtus and the
motus naturalis. It was supposed that during the
motus violentus, the projectile moved in a straight
line directed along the vector of the initial impulse.
The motus naturalis was the presumably normal descent
of a heavy body from an elevated position. The motus
mixtus was the regime in which the motus violentus
was passing into the motus naturalis. This early
modern description of the trajectory was somewhat sim
ilar to the conception of some of the ancients who
supposed that the path of the projectile was composed
of two straight lines connected by a circular arc at
the summit. This classical conception was not as
inaccurate a description of the normal trajectory as
would be indicated by comparison with the Galilean
parabola traversed by a particle in vacuo under the
influence of a uniform, vertically directed field of
gravity. The descending branch of the trajectory of
a particle in air was steeper than the ascending branch
and, in the case of a particle with very small ballis
tic coefficient, the descending branch of the trajec
tory rapidly became nearly vertical. George Greenhill
remarked in his Notes on Dynamics that this old con
ception of the trajectory has survived to some extent
in terminology employed even in recent times. The
moderately curved first part of the trajectory is
often supposed to be replaceable by a straight line
at "point-blank range." After the point-blank range
has been attained, the trajectory is presumed to fall
off rapidly under the acceleration of gravity as in the
motus mixtus, and, finally, to attain a regime of nearly
vertical fall. There is another way in which the motus
violentus and motus naturalis have been preserved in
modern ideas although they are not explicitly mentioned.
Mewton, investigating the motion of a particle in air
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of constant density with drag proportional to the
square of the velocity and subject to a uniformly di
rected gravitational field, discovered that the tra
jectory had two asymptotes. The ascending branch of
the trajectory, if extended indefinitely, asymptotic
ally approaches a line with slope greater than the
quadrant elevation. The descending branch of the tra
jectory, if extended indefinitely, asymptotically
approaches a vertical line.

The first writer on theoretical ballistics in modern
times was the Italian, Niccolo Fontana (1500-1557).
Fontana, better known as Tartaglia, originally obtained
a geometrical form of the solution of the cubic equa
tion sometimes described as Cardan's formula. Tart
aglia and Girolamo Cardan o (1501-1576) were scientific
consultants to arsenals of various Italian principal
ities for some years. The master of ordnance at the
castle of Verona proposed that Tartaglia consider the
problem of finding the angle of elevation of a gun which
would yield maximum range for a shot. Tartaglia dis
covered that forty-five degrees was the angle of ele
vation which resulted in the maximum range in gun-fire*
He then undertook a treatment of ballistics as an exact
science in order "to bring it to a degree of perfection
capable of directing fire in all circumstances assisted
only by a few particular experiments." Although Tart
aglia' s mechanics was partially based on Aristo
telian conceptions, he obtained an accurate description
of the shape of the trajectory by empirical methods.
He attempted no considerable analysis of the forces
acting on the projectile in flight, confining his in
vestigation largely to inductions from observations.
He made, however, several perceptive general observa
tions on the "way of the pellet," as he called the
trajectory. He was the first known writer to assert
that the trajectory was curved throughout, but that
the curve at the beginning and end of the path departed
but little from straight lines. His theoretical treat
ment of ballistics was largely described in his Nuova
Scienzia, which was published in 1537, although some
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of his work on gunnery appeared in his Quesiti et
Invenzioni Diverse, published in 15U6. He had con-
siderable facility in experimental procedure: he
suggested in the Quesiti, which was translated into
English in 1538, methods of causing "any great piece
of artilleries to make in his discharge an exceeding
great noyse and marvellous rore." A loud sound onfiring was regarded as a valuable attribute for a
cannon of the sixteenth century. More significant for
modern ballistics than Tartaglia's methods for induc
ing loud noises in cannon fire was his description
of a gunner's quadrant. He said:

"This instrument will help us to judge of all
the variable positions or elevations that may
happen in any piece of artillerie whatsoever."

Tartaglia's quadrant was also employed for determin
ing angles of site and plotting the positions of tar
gets.

Simon Stevin of Holland (15U3-1620) performed a cru
cial "experiment against Aristotle" which preceded the
similar test of Galileo at the leaning tower of Pisa.
In his Statics and Hydrostatics, published in 1586,
Stevin wrote:

"Let us take ( as I have done . . . ) two leaden
balls, one ten t^mes greater in weight than the
other, which allow to fall together from a height
of thirty feet upon a board or something from
which a sound is clearly given out, and it' shall
appear that the lightest does not take ten times
longer to fall than the heaviest, but that theyfall so equally upon the board that both noises
appear as a single sensation of sound."

Galileo employed shots weighing one pound and one
hundred pounds in his comparable experiments a few
years later.
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The founder of modern theoretical dynamics was Gal
ileo Galilei of Italy (156U-16U2). Galileo was a con
sultant to the Venetian Arsenal for several years: he
performed experiments with cannon balls on inclined
planes in establishing the basis of his theory of mo
tion of rigid bodies. His work on dynamics was largely
described in the Dialogues Concerning Two New Sciences
which was completed in 1635T He treated the motion
of bodies in three parts, the first dealing with uni
form motion, the second with naturally accelerated
motion and the third with application of the theory
of these two types of motion to the analysis of the
flight of projectiles. He deduced Newton's first
law of motion by considering the character of motion
of "hard, smooth and very round balls" on a pair of
inclined planes. The acceleration of these bodies de
creased as the slopes of the planes decreased and
vanished when the slopes became equal to zero. Thus,
in the ideal case of no friction, a body projected
along a horizontal plane would move uniformly forever
at the initial or launching speed. He also measured
the times of descent of cannon balls along declining
planes by means of a water clock which would measure
to a tenth of a pulse beat. He used a water spout at
the base of a pail, weighed the water discharged dur
ing the descents of the bodies and assumed that the
times of descent were proportional to the ascertained
weights of water discharged. By comparing the times
of descent for a quarter, a third, a half and other
fractions of the plane's length with the times for de
scent of the whole length, he found that the "spaces
traversed were to each other as the squares of the
times, and this was true for all inclinations of the
planes." He deduced from this space-time relation
the further theorem that the speed at the end of
measurement was proportional to the time of fall. This
result led to the conclusion that the gravitational
acceleration of any one body was a constant. Com
parison of the times of fall of bodies of different
masses showed that the gravitational acceleration of
a body was independent of its mass. Having examined

758



the properties of uniform horizontal motion and of
naturally accelerated vertical motion, Galileo com
pounded the two types of motion in order to determine
the form of the trajectory of a projectile. He said:

"If the (horizontal) plane is limited... then
the moving particle, which we imagine to be a
heavy one, will, on passing over the edge of the
plane, acquire, in addition to its previous uni
form and perpetual motion, a downward propensity
due to its own weight, so that the resulting mo
tion, which I call projection, is compounded of
one which is uniform and horizontal and of an
other which is vertical and naturally accelera
ted."

He showed that the trajectory was a parabola and
said:

"We now proceed to demonstrate some of its
properties ... From accounts given by gunnersI was already aware of the fact that in the use
of cannon and mortars, the maximum range, that
is the one in which the shot goes farthest, is
obtained when the elevation is forty-five degrees."

He also deduced a result which has "perhaps never
been observed in experience namely, that of other
shots, those which exceed or fall short of forty-
five degrees by equal amounts have equal ranges." His
fourth dialogue included several tables of trajectory
elements as functions of the angle of elevation using
the maximum tabular values of the elements as units.

Galileo knew sufficient properties of the trajectory
that he could have computed the range of a projectile
in vacuo if he had been given observed values of the
local apparent gravitational acceleration, the quad
rant angle of elevation and the muzzle velocity. He
knew only rough methods of measuring the local apparent
gravitational acceleration, but more accurate proce
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dures were devised by his student, Evangelista Torri-
celli (1608-16U7). Torricelli determined the value
of the superficial gravitational acceleration from
observations of the motion of two weights attached to
opposite ends of a string which passed over a fixed
pulley. The quadrant angles of elevation of cannon
had been accurately measured from Tartaglia's time,
but rough methods of measuring muzzle velocity were
first found in the century after Galileo's death. It
was then learned that the ranges actually attained by
projectiles were very much smaller than the ranges pre
dicted from Galilean parabolas initiated with the ob
served muszle velocities and quadrant angles of eleva
tion. These decrements of observed ranges from the val
ues expected for trajectories in vacuo were usually at
tributed correctly to the effects of drag of the air.
Galileo had known that the atmosphere resisted the mo
tion of projectiles: he argued merely that the parabola
was an accurate approximation to the trajectories of
dense projectiles shot with low initial velocities.
Thus, he stated that his demonstrations were accurate
"in the case of no resistance" and furnished practically
useful results for dense projectiles shot from bows or
arbalistas or, in general, hurling engines "other than
firearms." He compared the times of fall of oak and
lead balls dropped from altitudes of "150 or 200 cubits"
and found small but definite differences in these times
of descent. He argued that the retardation or accelera
tion due to the drag of the air on a moving body was a
function "of weight, of velocity and also of form." He
stated that this resistance decreased with the projectile's density, increased with its speed -and varied
greatly with its shape. He may have considered that
drag was proportional to the square of the velocity for
he remarked that falling bodies should be "displaced"
by amounts proportional to the durations of the times
cf descent. He developed the conception of a "terminata
veloeita," or "terminal velocity," of a particle in ver
tical fall from rest in an atmosphere of constant dens
ity. The "terminal" or "limiting" velocity has been de
fined as the velocity at which the drag acting on a
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projectile becomes equal to its weight in vertical
fall from rest. The limiting velocity was the asymp
tote of a velocity-time or velocity-space curve under
Newtonian conditions on the drag for a vertical tra
jectory. Galileo stated that

"No matter how heavy the body, if it falls from
a very considerable height, the resistance of
the air will be such as to prevent any increase
in speed and will render the motion uniform, and
in proportion as the moving body is less dense
(men grave) this uniformity will be so much the
more quickly attained and after a shorter fall.
Even horizontal motion, which if no impediment
were offered would be uniform and constant, is
altered by the" resistance of the air and finally
ceases, and here again the less dense the body,
the quicker the process."

He indicated a rough, but correct, experimental pro
cedure which would show that the limiting velocity
or a small rouno shot was much smaller than the muz
zle velocity of a typical smoothbore hand-gun of his
time.

Galileo gave the modern definition of momentum
which was later used by Newton. He knew that apply
ing a force to a body would change its momentum al
though he did not give a relation equivalent to New
ton's second law of motion. He considered aerodynamic
drag as a force and he investigated some properties
of the atmosphere which caused this force. He in
vented a primitive type of air thermometer called a
thermoscope and he knew that the pressure of the at
mosphere was less than that of a column of water thirty
feet in height. Although accurate methods of measuring
drag were first introduced by Newton, Robins and their
successors, many experiments on the nature of the air
as a resisting medium were performed during the seven
teenth century. Otto von Guericke of Magdeburg (1602-
1686) constructed an air pump with which he exhausted
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the air from various metal containers He showed that
feathers would fall as rapidly in a near vacmun as
leaden balls. He noticed that gusts of air would blow
metal objects along a tube which was being exhausted
and that a powerful gust could be created by compress
ing air in a small space. Aristotle and other ancient
writers had known that the absolute weight of an air-
filled leather bladder was greater than that of an unin—
flated container when compared on a scale balance, but
Guericke was the earliest physicist to determine the
density of the air. He used the thermoscope invented
by Galileo and the barometer invented by Torricelli
to measure the temperature and pressure of the air in
various researches. He knew that the density of the
air was dependent upon its pressure and temperature.
Torricelli, who wrote on fluid motion and also on
ballistics, apparently tried to deduce the properties
of drag from the experimentally determined proper
ties of fluids. "Torricelli' s tube," the barometer,
was used in the researches on fluid phenomena of
Edme Mariotte of France (1620-168U). Mariotte gave
an independently discovered statement of Boyle's law
of gases in his Sur la nature de l'air published in
1676. He knew that the drag of the air* was propor
tional to its density. He attempted to determine the
magnitude of air resistance by experiments performed
at the Paris Observatory in 1670. He timed the de
scents of falling bodies and found that the air re
sistance appeared to be proportional to the squares
of the time. The work of Guericke and Mariotte on
the nature of the air was extended by the experiments
of the English physicists Robert Boyle (1627-1691)
and Robert Hooke (1635-1691). Boyle considered that
the expansion of the air might furnish evidence sup
porting the molecular theory of the constitution of
the air. Newton presently devised a direct rational
argument to deduce Boyle's law from the molecular
theory of the constitution of the air.

Most seventeenth century physicists believed that
aerodynamic drag was dependent upon a change in the
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momentum of the air mass through which the projectile
moved and some of these men thought that this change
in the momentum of the air mass was a consequence of
the collision of the projectile with the molecules of
the air. Newton's conception of the drag of fluids
was based on the molecular theory of the constitution
of matter and the theory of the interaction of collid
ing bodies. These theories had been used by some
physicists to explain the resistance of the air from
the time of Francis Bacon of England (1561-1626).
Bacon was interested in the behavior of projectiles.
He wrote:

"The condition of weapons and their improve
ments are, first, the fetching a far off, for that
outruns the danger, as it is seen in ordnance and
musketry. Secondly, the strength of the percus
sion. ..."

He had no clear ideas on the nature of drag, but he
argued that the properties of matter could be explained
by the molecular theory. He advanced the important
idea that heat was a form of mechanical energy derived
from molecular motion. Stevin had understood that a
dynamic pressure was exerted in changing the momentum
of a fluid and his ideas became known to Rene Des
Cartes of Prance, Holland and Sweden (l596-l6£o) . Des
Cartes enunciated ten laws of nature, of which the
first two were equivalent to Newton's first and sec
ond laws of motion, but the latter eight were inexact
or incorrect. He had a conception of quantity of mo
tion which he used inconsistently. This ill -defined
quantity was used by some later Cartesian writers for
either, or both, momentum and doubled kinetic energy.
Leibnitz confused momentum and doubled kinetic energy
and referred to both quantities as forces; he described
momentum as "vis mortua," or "dead force" and doubled
kinetic energy as "vis viva" or "living force." He
wrote incorrect equations of motion on the basis of
Cartesian ideas. However, several useful conceptions
in theoretical ballistics were originally derived
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from the erroneous Cartesian hypothesis on dynamics.
Leibnitz' teacher, Christian Huyghens of Holland
(1629-1695) corrected Des Cartes' errors on the theory
of colliding bodies. He argued from experiment that
the momentum of two perfectly elastic bodies in a
Certain direction before collision was equal to the
momentum in the same direction after collision. He
may or may not have regarded the air as a continuous
medium, but he determined some properties of the air
resistance from experiments on the motion of pendulums
in fluid media. He apparently formulated the relation
between the resistance coefficient, the limiting ve
locity and the weight of a falling body. Conclusions
on the laws of colliding bodies which were similar
to those of Huyghens were announced in the same year
by Christopher Wren of England (1632-1723). Wren's
work on the resistance of fluids was known to Newton.
John Wallis of England (1616-1703) obtained Huyghens'
and Wren's results on the theory of motion of collid
ing bodies simultaneously and also considered the col
lision of imperfectly elastic bodies. Wallis' later
work contained the earliest systematic use of symbolic
formulas in dynamics .

Isaac Newton of England (16U2-1727) was the greatest
of modern founders of ballistics. Newton's work on
geometrical dynamics appeared in the Philosophiae
Naturalis Principia Mathematica. The Principia con-
tained two volumes: the motion of rigid bodies was
described in the first book and the motion of fluids
was discussed in the second book. The definitions
given in the first volume indicated that Newton under
took his treatment of mechanics with conceptions which
were either original with him or which had been develop
ed during the preceding century. Thus mass was a primary
characteristic of a physical body and weight was the
force on a physical body which resulted from a gravi
tational field. Newton stated his law of gravitation
in a general form applicable to all bodies in the
universe, but he began his argument supporting that
famous law by considering the motion of a projectile
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fired horizontally from a mountain top in vacuo. He
showed that, by continually increasing the initial
speed of the projectile, a speed would presently be
obtained which would result in the projectile moving
completely around the earth and returning to pass
through the firing position. He then showed that the
moon moved about the earth as if it had been started
in motion in a similar fashion, thereafter repeating
its orbit indefinitely. In the latter part of the first
book, Newton examined the motion of projectiles in uni
form media resisting as the. first and second powers of
the speed. He discovered the asymptotes to the tra
jectory of a particle projected in a resisting medium
of constant density. He obtained a general solution
for the problem of motion of a particle in a uniform
medium resisting as the first power of the speed. He
also found a solution for the case of purely vertical
projection in the problem of motion of a particle in
a uniform medium resisting as the second power of the
speed.

Newton's interest in the theory of motion of a
particle in media resisting as the second power of
the speed was explained by the fact that he believed
the drag of actual projectiles in air and water to be
in accord with this law. The second book of the
Principia discussed his experimental and theoretical
work on the resistance of fluids to the motion of
projectiles. Some of his early experimental work was
performed in Saint Paul's Cathedral where he timed the
descents of a large number of pellets of different
characteristics from the ceiling to the floor. By
dropping these pellets from different altitudes, he
was able to show that the drag of the air increased
as the square of the velocity of the pellets. By
comparing the times of fall of pellets in air and in
several liquids, he found that the drag exerted by
fluids increased in proportion to their densities.
He established that the drag of particles was pro
portional to the square of their diameters by comparing
the times of fall of pellets of varying diameters.
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He also constructed a theoretical argument to support
these experimental results. The Newtonian theory of
the resistance of fluids was too oversimplified to be
regarded as adequate for the treatment of most recent
problems in aerodynamics, but Professor T- H. von
Karman has remarked that Newton's argument leads to
correct results for particles travelling at velocities
many times the speed of sound.

John Bernoulli of Switzerland (1667-17U8) obtained
an exact analytical solution in finite terms for the
general problem of the motion of a particle acted
upon by a uniform gravitational acceleration and a New
tonian or "square law" drag in an atmosphere of con
stant density. Bernoulli's solution, which he found
in 1711, was effected by a reduction to quadratures.
The required quadratures could be performed by numer
ical methods as in Bernoulli's time or by use of a
mechanical integraph such as that invented by Abdank-
Abakanowicz about one hundred years later. The form
ulas available for numerical quadrature in Bernoulli's
time were the Trapezoidal Rule, Simpson's Rule and
the Newton-Cotes system of rules, all of which used
equispaced ordinates of the function for which a
quadrature was to be computed. The Trapezoidal Rule
had been used in the method of exhaustion employed by
the ancients for finding the area under a curve.
Thomas Simpson of England (1710-1761), long professor
of mathematics at Woolwich Arsenal, discovered a rule
using three ordinates at each step of the quadrature.
Simpson's Rule permitted a parabola with a vertical
axis to be passed through the three points over which
the quadrature was to be formed. Roger Cotes (1682-
1716) collaborated with Newton in the formulation of
a system of rules which permitted polynomials of higher
order to be passed through a number of points in form
ing a quadrature. Other numerical methods of comput
ing quadratures were discovered about this time —
Euler's involved ordinates and derivatives of the func
tion and Gregory's involved ordinates and differences
of the function.
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The most important early successor of Newton in
ballistics was Leonhard Euler of Switzerland (1707-
1783). Euler knew a method of measuring the muzzle
velocity of cannon; he analyzed the results of exper
imental range firings in order to determine the drag
of cannon balls. The letter e was first used to de
note the base of the natural system of logarithms
in one of Euler' s papers on ballistics . He was the
first major writer on theoretical dynamics whose work
was cast in analytical rather than geometrical form;
he gave the general equations of motion of a rigid
body of which the first on linear momentum and the
first on angular momentum are usually written as

(mu) - mv93 + mw92 * X and—- - h2©3 + - L.
dt dt
He used a simple fourth-order system of differential
equations to describe the acceleration of the center
of mass of projectiles and discovered two famous ap
proximate methods of solving these equations of motion
in order to determine trajectories. The mean value
short-arc method given by Euler for computing the
trajectory of a projectile in air of constant density
with drag proportional to the square of the velocity
was used in the computation of Otto's Tables one
hundred years later. Euler also developed the solu
tions of equations of planetary motion in power series
in the independent variable by using the classical ex
pansion theorem of Brook Taylor of England (1685-1731).
The Taylor expansion short-arc method has long been
used for treating the initial stages of motion of
projectiles and it has been employed occasionally to
determine complete trajectories . The Taylor expansion
method, however, was found very early to be inconven
ient in practice for solving the normal equations of
motion of projectiles. The Gregory expansion method,
using finite differences, has generally superseded
the Taylor expansion method, using derivatives, in numer
ical computation of trajectories. The four best known
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formulas for polynomial interpolation using finite dif
ferences - Gregory's, Gauss', Stirling's and Bessel's -
were all known to Newton and a quadrature formula using
finite differences was also given by Gregory. Taylor,
who was regarded by his contemporaries as the founder
of the theory of finite differences, apparently em
ployed his methods in some simple computations in bal
listics .

Accurate drag functions for projectiles were first
determined by experiments using the ballistic pendulum
which was invented in 171*0 by Benjamin Robins of
England (1707-1751). The initial angular momentum
of the ballistic pendulum was derived from a bullet
of small mass, fired into a pendulum bob. The height
of the pendulum swing was observed and the striking
momentum of the bullet thereby computed. The effect
of drag on striking velocity was determined by firing
bullets at a pendulum bob at different distances from
a gun of assumed fixed muzzle velocity. Thus, Robins
reported in his New Principles of Gunnery of 17U2 that
he had obtained mean velocities of impact of musket
bullets fired at the ballistic pendulum of 1670, 1550
and 11*25 feet per second. These bullets were twelve
gauge round shot, that is twelve of them weighed one
pound: they were of 0.75 caliber, in current termin
ology. The average retardation, or deceleration due to
drag, was roughly 2750 feet per second per second.
This large retardation, more than one hundred times
greater than the acceleration of gravity, established
the importance of terms representing the drag in the
equations of- motion of projectiles.

The retardation coefficients were found to be
greater for projectiles moving at speeds near to the
speed of sound than for projectiles moving at speeds
very much less than the speed of sound. The speed
of sound had been measured in 16U0 in an experiment
performed by the French scientists Marin Mersenne
and Pierre Gassendi. Physicists of the nineteenth
century found that the retardation coefficient was a
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complicated function of the Mach number or ratio of
the speed of the projectile to the speed of sound.
Ballisticians of the eighteenth century, however, con
cluded merely that the retardation coefficients of
projectiles varied with the speed of the projectile,
increasing at high speeds. Before the invention of
the ballistic pendulum, the retardation, or deceler
ation due to drag, had usually been expressed in the
form kv « where k was the constant Newtonian retarda
tion coefficient and v the velocity of the projectile.
After the middle of the eighteenth century the decel
eration due to drag was often represented in the form
bv11 where b and n were constants made to fit the re
sults of observations. When it was found that no con
stant values could be found for b and n which wouldfit the experimental measures over all values of the
velocity, the deceleration due to drag was represented
by a sequence of zone functions of the form biv^- where
b^ and n^ yielded an adequate representation of the de
celeration due to drag over the selected intervals in
velocity. A representation of the retardation by zone
laws was frequently employed under the name of Mayevski
laws in the United States Army Ordnance Department as
late as the First World War.

Jean-le-Rond D'Alembert of France (1717-1783) re
duced to quadratures the problem of motion of a pro
jectile in air of constant density with retardation
proportional to j ♦ bv11 where j, b and n were con
stants and v was the velocity of the projectile.
D'Alembert1 s solution involved functions which were
somewhat similar to those which had appeared in Ber
noulli's reduction of the "square law" problem: these
functions were tabulated during the nineteenth cen
tury. The constant j was never used extensively in
ballistic computations since it had no physical inter
pretation in the theory of retardation. However j
had, of course, no restriction on algebraic sign:
the D'Alembert solution was used for the case j ♦ bv2
in simple computations made in the Ballistic Research
Laboratory during the Second World War on the motion
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of rockets during the propulsive regime. These compu
tations employed j as a negative quantity, an assumed
constant propulsive acceleration during burning, anc
bv2 as the opposed "square law" retardation of the
rocket during the same regime.

Ball isti clans of the latter part of the eighteenth
century sometimes attempted to reduce their observa
tions on retardation to values which would have re
sulted had the actual density of the air been equal
to an assigned standard density at sea-level. The
observed, or unreduced, retardation coefficient had
been denoted by k' , the standard, or reduced, coeffi
cient by k, the observed air density by p', and the
standard air density at sea-level by pQ. Then

k» - kp'/po-
The ratio of the observed air density, p', to the
standard air density at sea-level, p9 has been de
scribed as the observed relative density and denoted
by the symbol H' . The observed relative density has
long been assigned the form of a product, coinmoaly
written as

H» - H(l +AH/H).
The standard relative air density, H, has been treated
as an assigned function of the altitude of the pro
jectile above the earth's surface, y. The observed
quantity ^H/H has been described as the relative
density excess. Various forms have been assigned to
H(y) by ballisticians since the latter part of the
eighteenth century: an early form of H was the func
tion Hi where

Hi - 1/(1 + hy)
and h is a constant. Adrian M. Legendre of France
(1752-1833) used the function Hi in his Dissertation
sur la question balistique proposee par l'Academie
royaT~des Sciences et Belles -Lett res de Prusse pour
le prix de 1782 '. In this paper, LegenHre reducea to
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quadratures the problem of motion of a projectile acted
upon by a constant gravitational acceleration and a
retardation proportional to the product of the square
of the velocity and the relative density function, H]_.In 1917, American ballisticians adopted a standard re
lative density function of the form

H - e"hy
where h is constant. The exponential form of stand
ard relative air density was first used by Laplace.

The smoothbore hand-guns and cannon of European
armies of the eighteenth century were effective only
at short distances because of their low muzzle velo
cities and large internal clearances. The low strik
ing momentum and inaccuracy of projectiles fired from
smoothbore guns led to the return of the artillery
rocket and the appearance of the rifle in European
warfare during the early part of the nineteenth cen
tury, incendiary rockets had been extensively em
ployed in Italy and Germany during the fourteenth cen
tury, but they were gradually abanaoned in European
land warfare after 1U50, largely because of their
tendency to explode during manufacture or upon firing.
Incendiary and even e xplosive rockets were, however,
continuously developed in the Middle East during the
centuries in which the rocket was little used as a
military weapon in western Europe. The armies of
Haidar Ali and his son Tippoo Sultan, princes of My
sore in India during the latter part of the eight
eenth century, included brigades of specialists in
the use of the war rocket. These Indian rockets
were iron tubes weighing six to twelve pounds and were
mounted on stabilizing poles about ten feet long.
The Indian rockets were somewhat inaccurate, but they
alarmed the flanks and rear of British soldiery cam
paigning in India, especially during the battle of
Seringapatam in 1799. The effectiveness of the Indian
rockets interested William Congreve of England (1772-
1828) who developed incendiary rockets which attained
ranges as great as three thousand yards. Congreve' s
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rockets were employed very effectively by British armies
during the Napoleonic Wars and the War of 1612. Rocket
battalions were presently organized in Austria, Prussia,
France, Poland, Russia and the United States. The
military rockets of the early nineteenth century were
somewhat inaccurate and their long guiding sticks were
inconvenient in field operations. The need for the
guiding sticks was removed by the invention of the
spin-stabilized rocket by the American, William Hale,
in 1855. Hale achieved rotation by placing three
curved metal vanes in the nozzles of his motors. Spin
ning rockets attained stability because of dynamical
reasons similar to those which caused shell fired from
rifled weapons to be stable. Hale's invention was un
doubtedly suggested by the spin-stabilized shell fired
from rifled ordnance which had been developed a few
years earlier and which superseded rockets as artil
lery projectiles during the latter part of the nine
teenth century.

Rifled gun barrels were first employed generally
in small arms before being used in artillery. Thus,
the rifled barrels proposed by Da Vinci in the latter
part of the fifteenth century first appeared in the
hand-guns of the forces of the Landgrave of Hesse in
1631, but were unknown in ordnance until 1661 and then
only used in one experimental cannon made in Prussia.
Breech-loading was old in principle in 17U0 when
Robins advanced a formidable argument for the advan
tages of breecb-loading rifles of all calibers. The
"needle gun," a breech-loading infantry rifle invented
by Johann Dreyse before 1836, was issued to some
Prussian regiments in I8I4I, four years before a ser
viceable breech-loading artillery rifle was first
made by Major Cavalli of Sardinia. Robins knew that
the muzzle velocity of a projectile could be increased
by reducing the amount of gas iihich escaped past its
base. An elongated bullet, with a base which expanded
on firing to fill the bore, was employed in the Minie"
rifle issued to British troops in 1851, considerably
before the successful development of a cylindro-ogival
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artillery shell with a rotating band made of copper or
a soft metal alloy.

The early work on the theory of gun design and in
terior ballistics was associated in an interesting
way with the development of the theory of rocket pro
pulsion and the resistance of fluids to the motion of
projectiles. A correct theory of the nature of rocket
propulsion had been advanced by Desaguliers in the
eighteenth century. In the nineteenth century Saint
Robert of France undertook the problem of determining
the motion of a rocket which would attain a velocity
permitting it to depart indefinitely from the earth.
He assumed that the rocket would be acted upon by a
gravitational acceleration inversely proportional to
the square of the distance from the center of the
earth and an atmospheric retardation proportional to
the square of the velocity and to the density of the
air. He employed the exponential law enunciated by
Laplace to describe the diminution of the density of
the air with increasing altitude above the surface
of the earth. Increased jet velocities for rockets
and muzzle velocities for guns were partly a conse
quence of the invention of the ballistic pendulum
which had made it possible to test the efficacy of
various powders. Antolne L. Lavoisier (17U3-179H),
the founder of modern chemistry, became director of
the French National Powder Factory just prior to the
French Revolution and initiated many experiments on
the properties of propellants. Joseph L. Lagrange
(1736-1783) made several contributions to the theory
of wave propagation, apparently discovering that
surges of the powder gas in the bore of the gun re
sulted in the loss of gas momentum which would other
wise have increased the muzzle velocity of the pro
jectile. Lagrange formulated the problem of motion of
the shell and the powder gas inside the bore of the
gun. Pierre S. Laplace (17U9-1827) who became Ex
aminer of the Royal Artillery in 1781* , had collaborated
with Lavoisier in founding the theory of specific heats.
Laplace recognized that sudden compression increased
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the elasticity of the air and corrected Newton* a in
accurate argument on the propagation of sound. New
ton's theory had yielded a value of the speed of sound
which was lower than that found from the experiments
of Mersenne, Gassendi and others. Laplace gave an
accurate expression for the speed of sound in •terms
of the pressure, density and ratio of specific heats
of the air. The modern proportionality relation be
tween the speed of sound and the absolute temperature
was first given after the work of William Thomson,
better known as Lord Kelvin (l82h-1907), but some
ballisticians of the early nineteenth century computed
the speed of sound waves correctly by the formula
given by Laplace. Laplace probably knew that the
formation of sound waves by a projectile travelling
at a sonic or supersonic speed increased the drag of
the air beyond the resistance expected if the air was
treated as incompressible. His work introduced com
pressibility considerations into fluid dynamics. Mach's
aerodynamic number, the ratio of the speed of the pro
jectile to the speed of sound in the surrounding
medium, was clearly related to the compressibility of
the air and has great significance in ballistics. The
importance of this number was probably inferred by
some scientists as early as Bernhard Riemann (1826-1866)
but it was first carefully considered by Ernst Uacn,
a German physicist of the late nineteenth century.
Mach demonstrated the presence of shock waves formed
by a projectile moving at supersonic speeds.

Advances in ordnance engineering greatly increased
the range and accuracy of gunnery during the nineteenth
century. This development led to the theoretical treat
ment of some differential effects in artillery fire.
The range effects of a constant superficial density
excess and the range and deflection effects of a con
stant superficial wind were considered by ballisticians
of the latter part of the eighteenth century. Correct
formulas were known for computing these effects before
the middle of the nineteenth century, although these
relations were sometimes derived by complicated and
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even innacurate arguments. The results were probably
obtained originally by accurate methods early in the
nineteenth century and the complicated derivations
given later to explain the effects. Formulas for dif
ferential effects which were correct for flat nearly
horizontal fire were usually obtained before results
accurate under more general conditions were known. The
first perturbing, or "abnormal,'1 accelerations accu
rately treated in ballistics were those due to the
small Coriolis, or "compound centrifugal" forces re
sulting from the rotation of the earth. The early
treatment of the effects of rotation of the earth in
ballistics was a consequence of their interest to theo
retical astronomers. Some speculation about these
effects had begun during the sixteenth century with
the controversy on the Copemican hypothesis. The
opponents of the Copemican hypothesis argued that if
the earth rotated, a body dropped from a tower would
deviate to the west of the point of fall by the amount
which the surface of the earth moved eastward while
the body was falling. Galileo recognized that a body
dropped vertically downward would be released with
the eastward velocity of the top of the tower and
would, therefore, fall slightly east of the base of
the tower since the top of the tower would have a
greater eastward velocity than the surface of the
earth. Galileo's argument was not regarded as con
clusive by most of his contemporaries, but Newton de
fended the idea of the easterly deviation in 1679.
Newton wrote that

"a falling body ought by reason of the earth's
diurnal motion to advance eastward and not fall
to the west as the vulgar opinion is."

Hooke performed experiments which established that the
deviation of a body dropped from a tower was, in fact,
eastward of the point vertically below the point of
release. D'Alembert and Clairaut knew how to form
particular differential equations which appear to
govern the motion of a body acted upon by known forces
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relative to an inertia! frame of reference and the
apparent forces which result from an arbitrary accel
eration of the observer's reference frame with respect
to an inertial frame. Such equations include, as a
special case, the equations of motion of a body with
respect to a reference frame fixed with respect to the
surface of the earth. Power series solutions in the
time of flight were found during the latter part of
the eighteenth century for the effects of rotation of
the earth on a falling body. Laplace treated the
effects of the Coriolis acceleration on the flight of
a projectile in air in the fourth volume of the Macan-
jque Celeste. He first considered "the descent of a
body from a great height," but he followed his solu
tion for the easterly deviation by determining the
westerly deviation of a projectile fired vertically and
finally examined the problem of the effects of the
earth's rotation on the elements of the trajectory
of a body which had "a projectile motion in space."
He assumed an atmosphere of constant density with
drag proportional to the Square of the velocity and
deduced correctly the equations of variation of coordin
ates which would govern the effects. He obtained so
lutions of these equations by a series in powers of
the arc length on the normal trajectory. In 1835,
Gaspard G. de Coriolis described the complete signif
icance of the accelerations which apparently acted
upon bodies as a consequence of the rotation of the
earth. The effects of rotation of the earth were not
generally introduced into artillery firing tables until
after the work of Forrest R. Moulton in the Ordnance
Department of the U.S. Army in 1917-1918. However,
such effects were sometimes computed earlier by European
ballisticians for interesting cases such as fire fron
the German long-range guns employed against Paris
during the First World War.

The conception of the drag as a function of aero
dynamic numbers derived from the properties of the air
and the shape and velocity of the projectile was grad
ually evolved during the eighteenth and nineteenth
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centuries. Newton had recognized that the drag of
an elongated body in a yawing position would be aug
mented by a quantity proportional to the drag of the
body at zero yaw and to a function of the angle of
yaw. A yaw drag proportional to the square of the
sine of the yaw has sometimes been deduced from Newton's
argument. The next aerodynamic numbers discovered
after the yaw were the shape ratios of the projectile.
The shape numbers were also anticipated by Newton who
deduced the form of the head of a projectile of min
imum resistance using a variational principle and his
conception of drag. A roughness number was apparently
anticipated by Robins. The aerodynamic numbers were
dimensionless power products of the physical quantities
appearing in the problem of fluid flow about the pro
jectile. An incomplete set of the partial differential
equations governing fluid motion was given by Euler,
although more complete equations were first derived
by Navier and Stokes in the nineteenth century. D'Alem-
bert and Lagrange found some general solutions of sim
plified forms of the incompressible fluid equations
in terms of arbitrary functions, which yield some in
formation: they also obtained a few important special
solutions. Although practical special solutions of
the Navier-Stokes equations have never been obtained
for an artillery projectile of the shape actually em
ployed, much information has been obtained about the
character of fluid flow about bodies of simpler shape.
The theory of dimensional analysis which has been used
to derive the aerodynamic numbers since the nineteenth
century was initiated with the arguments of Joseph
Fourier (1768-1830). Fourier was greatly influenced by
the work of the French republican commission which
founded the metric system of weights and measures.
Aerodynamic numbers have been derived by Fourier's
methods since the middle of the nineteenth century.
An aerodynamic number of considerable significance
for low-speed aircraft was discovered by Osborne Rey
nolds in his study of the flow of fluids through pipes.
Viscosity was the principal property of a gas #iich
appeared in the Reynolds number. Maxwell and others
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used the kinetic theory of gases to derive relations
between the coefficient of viscosity and other measure-
able characteristics of a gas. However, aerodynamic
theory remained incapable of providing a method for
computing the drag of actual projectiles accurately.

The importance of accurate experimental methods
for determining the drag of projectiles increased
steadily during the nineteenth century because of de
velopments in interior ballistics and ordnance engin
eering which increased both the magnitude and the con
sistency of the muzzle velocities of projectiles.
Ballisticians of many countries sought improved methods
of measuring drag after about 1850. A method some
times employed in France involved determination of
the retardation coefficient, k, by inversion of the
Piton-Bressant formula. The Piton-Bressant formula
is a special case, for flat horizontal fire, of the
expression for the drop as a function of the slant
distance along the line of departure as given in Chap
ter V of this book. The French had used the Piton-
Bressant formula to determine mean values of k free
measurements of range, muzzle velocity and drop free
flat nearly horizontal fire. The computed values of k
were corrected to those which would have been obtained
if the density of the air at the time of firing had
been an assigned standard for sea-level conditions.
The values of the retardation coefficient so obtained
were used to compute the striking velocity which,
averaged with the muzzle velocity, yielded a mean speed
assumed to correspond to the computed value of k. This
somewhat inaccurate method was sometimes used to deter
mine the retardation function of a projectile for com
parison with results obtained by experiments with the
ballistic pendulum.

Retardation functions of small arms projectiles were
accurately determined during the latter part of the
nineteenth century by a method which was developed
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in Germany. This procedure involved shooting a bullet
•through both sides of paper bands surrounding two or
more widely separated spinning drums. The distance
travelled by the paper around the drum between the
nearly diametrically opposed entrance and exit of the
bullet was measured first. Since the rate of revolu
tion and the radius of the drum were known, the velo
city of the projectile at each drum could be computed.
The loss of velocity between drums was found and, since
the distance between the drums was known, the retarda
tion of the projectile could be inferred. The inter
sected drum method yielded improved retardation func
tions for bullets of small caliber but was inapplicable
to large projectiles because sufficiently large drums
could not be employed.

An accurate method of determining the drag of artillery projectiles was developed in England about
the middle of the nineteenth century by Francis Bash-
forth. Bashforth utilized a chronograph which recorded
time signals derived from an electric circuit which
was partly based on principles developed by Wheatstone,
the inventor of the Wheatstone bridge. Signals on
Bashforth' s chronograph were initiated by the break
ing of a screen of fine copper wire with the passage
of the projectile. Bashforth1 s method of reducing
his observations may have been suggested originally
by John Couch Adams, the celebrated British theoretical
astronomer who had predicted the position of the planet
Neptune prior to its discovery. This reduction em
ployed finite differences of the measured times at
which the projectile passed screens separated by equal
distances in horizontal range. The time effects of
range wind and air density excess were correctly deter
mined in the reduction. Retardation data were ob
tained in several European countries during the latter
part of the nineteenth century by ballisticians who
used methods generally similar to those employed by
Bashforth. These data were combined between 1880 and
1900 to determine the retardation function known as
the Gavre from the location of the French commission
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which considered the problem of projectile resistance.
The Gavre function was purported to correspond to a

definite standard projectile with a known set of shape
factors, although precisely similar projectiles wen
not employed in the original experiments. The GaVr*
data were graduated so as to yield a function of the
speed at the time of firing. Experimental retarda
tion coefficients should have been combined at equal
values of the Mach number and not at equal values
of the speed of the projectile irrespective of the
speed of sound at the time of the experiment. The
Gavre retardation coefficient has a smaller slope near
the speed of sound than that which would have been
obtained by eliminating the statistical dispersion of
the speed of sound at the time of measurement. The
GaVre retardation coefficient was also graduated and
extrapolated somewhat differently by ballisticians of
different nations. The Gavre coefficient used by
American ballisticians after the First World War had
a remarkable curvature below the abscissa of lowest
experimental velocity whereas Italian ballisticians
apparently assumed, more rationally, a constant retard
ation coefficient for low velocities. The Mayevski
zone laws employed a constant retardation coefficient
for velocities below 790 feet per second.

The conception of a standard projectile having a
caliber of one inch, a mass of one pound and a definite
set of shape factors appeared in the work of Bashforth.
He also used an assigned standard for the density of
the air and his computed retardations correspond to
those of the standard projectile moving in air of
standard density, but at the observed velocity irre
spective of the temperature of the air at the time of
firing. The relation between the general retardation
coefficient, k, the unit retardation coefficient, B,
and the ballistic coefficient, C, appeared about the
time of Bashf orth. Thus,

k - B/C.
780



The definition of the ballistic coefficient in terms
of mass, diameter and coefficient of form also was
vised during the latter part of the nineteenth century.

R. H. Kent and H, P. Hitchcock, among others, recog
nized that the unit retardation coefficients of pro
jectiles actually employed during the First World War
were unlikely to have numerical values equal to those
of the Gavre coefficient which was usually used in
ballistic computations at the time. Kent developed
the solenoid chronograph for measuring the retardation
coefficients of projectiles from the time intervals
occupied in passage between a sequence of solenoid
coils. This method obviated the tipping and resistance
effects of the screens of copper wire which had been
generally employed in earlier procedures . Kent in
troduced the dimensionless drag coefficient, Kp, into
American ballistic computations during 1937. He and
Hitchcock determined accurate drag coefficients for
six types of modern artillery shell. These coeffi
cients have generally replaced the GaVre coefficient
in most ballistic computations in the United States.
Kent's projectile type 2 was a narrow boat-tailed pro
jectile with a long ogive. The drag coefficient of
projectile type 2 was smaller and also had a steeper
rise near the speed of sound than the Gavre coeffi
cient corresponding to the same values of the llach
number. An interesting verification of the shape of
Kent's drag coefficient for the projectile of type 2
was presented by the theoretical form of the drag co
efficient of a needle-shaped projectile which was de
termined by T. H. von Karman in 1931*. Although the
yaw drag had been known to Newton and was somewhat con
sidered in the work of R. H. Fowler and his associates
during the First World War, Kent and Hitchcock were
apparently the first to determine a yaw drag coeffi
cient from experimental range firings. The drag co
efficients deduced by Kent and Hitchcock were reduced
to values which would have been obtained at »ero yaw.

The normal equations of motion which have been used
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by American ballisticians in recent years assume £

constant uniformly directed field of gravitational
acceleration and a retardation equal to the product of
the square of the projectile's speed, a constant re
ciprocal ballistic coefficient, an exponential relative
density function and a normal retardation coefficient.
The normal retardation function has been regarded since
the First World War as a function of the Mach number,
thus requiring assignment of a normal speed of sound
as a function of the altitude above sea-level. The
exponential function of the altitude now used for the
normal relative temperature was chosen more recently.
Most of the methods used before the First World War
for integrating the equations of motion could not
have been applied to the solution of the normal equa
tions in their present form because the older methods
were usually dependent upon an assumption that the
retardation of a projectile was equal to the product
of a constant and a function of the speed only. Al
most all methods of computing trajectories for more
than one hundred years after Euler's time depended upon
modifying or, as A. A. Bennett said, "wrenching," the
differential equations of motion into forms which could
be reduced to quadratures. The usual assumptions were
that the trajectory could be regarded as nearly flat
and nearly horizontal in the treatment of the terms
in the equations of motion which express the components
of the retardation. These assumptions were basic to
the original form of the important mpthod devised about
1880 by F. Siacci of Italy. Siacci1 s method, described
in Chapter V of this book, constituted a reduction to
quadratures in terms of the "pseudo-velocity," a ver
tical projection of the velocity along the slant line
of departure. The elements of the trajectory were
given in the method of Siacci through simple quadra
tures involving only products of the unit retardation
function of the pseudo-velocity and powers of the
pseudo-velocity. These quadratures, the Siacci func
tions, were tabulated in convenient form for use in
numerical computation.
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The ballistic coefficient as used in the method
»f Siacci was regarded as a rough average of the
•abulated Gavre retardation divided by the actual re-
.ardation of the projectile. In practice, the ballistic
oefficient was assumed to vary with the quadrant ele
ction of the gun. The ballistic coefficients obtained
rom reduction of range firings were allowed to absorb
some of the effects of the simplifying assumptions used
.n reducing the equations of motion to quadratures, in
iddition to the effects of the departures of actual re
tardation from tabulated superficial retardation. The
liminution of the density of .the air with altitude
ibove sea-level was recognized and its reduction of
the drag at high altitudes absorbed in the ballistic
:oefficient by rough mean values according to various
formulas some of which had an empirical basis while
ithers had been found by theoretical arguments. Max
imum ordinates greater than three miles were unusual
prior to the First World War. Under these conditions,
the approximations of the older methods were somewhat
satisfactorily absorbed in a slowly varying ballistic
;oefficient inferred from the tabulated Siacci space
function and the observed range and muzzle velocity.
The Paris long-range gun was reportedly invented as
i consequence of the employment of the method of
Siacci in circumstances in which its use was completely
Inadequate for accuracy in computation. Prediction
of the probable value of the coefficient of form of a
projectile from its shape alone was fraught with un-
:ertainty: accurate inference of the ballistic co
efficient always required actual range firing. Ap
parently the German Admiralty sought, during the early
part of the First World War, to design a powerful naval
gun with a range about three times that attainable
rrlth typical field artillery of the time. The first
experimental shell produced for this gun was fired at
a quadrant elevation of approximately forty-five de
grees and travelled much of their trajectories in air
of density approximately half that at sea-level. These
shell attained ranges nearly twice as large as those
which had been predicted. The ballisticians who had
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made the predictions found their error in the custom
ary assumptions of the Siacci method as used at the
time. These men, therefore, undertook the design of
a gun which could shoot shell to very great ranges.
They proposed to obtain these ranges by using shell
which would travel most of their trajectories at al
titudes such that the drag of the earth's atmosphere
would be less than one tenth the drag which would have
been developed in flat fire near sea-level. The prin
cipal problem involved was that of obtaining a powder
which would yield a muzzle velocity of five thousand
feet per second for a shell weighing about one hundred
pounds . The required propellant was developed by
Fritz Haber, the famous German chemist. The Paris
long-range gun, of approximately nine-inch caliber,
was designed to fire shell at a fixed elevation of
about fifty degrees. Some of the first shell fired
from the Paris gun attained ranges greater than ninety
miles.

After the First World War, H. P. Hitchcock tabulated
Siacci functions for the various new retardation co
efficients which had been determined for modern pro
jectiles by the experiments of R. H. Kent. Kent and
Hitchcock discovered that the assumption of the Siacci
method on flat nearly horizontal fire could be modified
in such a way as to secure equations reducible to
quadratures for flat fire at any angle of elevation.
Kent and Hitchcock used the pseudo-velocity as dependent
variable and the range as independent variable: their
method was the source of the process described in
Chapter V of this book, where the slant distance along
the line of departure has been used as independent
variable. Kent and Hitchcock's method employed the
Siacci space function in the fundamental equation, but
all the other quadratures used in their equations were
different from those employed by Siacci. Kent and
Hitchcock's method permitted approximate retention
in the retardation of the diminution of the density
of the air with altitude. This method was extensively used during the Second World War in computing
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elements of the trajectories of projectiles fired by
small arms against aircraft and by guns aboard air
craft.
Artillery such as the German Paris long-range gun and

the French railway cannon required accurate firing ta
bles. Such firing tables could only be obtained from
trajectories computed by methods which did not employ
Siacci's assumption of flat horizontal fire. The meth
ods developed for accurate computation of trajectories
at large elevations were influenced by the methods used
in celestial mechanics from the time of the Swiss, Leon-
hard Euler, in the eighteenth century, to that of the
American, Forrest R. Moulton, during the First World
War. These methods have been described, since about
1380, as short-arc procedures because they depended upon
use of a step-wise advance in computing trajectories.
Short-arc methods have always been intrinsically suscep
tible of indefinitely great accuracy in producing solu
tions of somenrtiat arbitrarily assigned forms of the dif
ferential equations of motion of projectiles, assuming
that a sufficient number of figures were employed in
each step of the computation and that the steps were di
vided at sufficiently narrow intervals in the chosen in
dependent variable. The short-arc procedures have been
subclassif ied into two groups described as mean-value
and expansion methods. Mean-value methods, employing
appropriate averages of functions of coordinates on suc
cessive arcs of the trajectory, were first used in the
cosine-average method of Euler for solving the equations
of motion of projectiles. Expansion methods, employing
various types of developments about the values of coor
dinates at the beginning of successive arcs, were relat
ed to the Taylor series method suggested by Euler for
computing orbits in celestial mechanics.

Recent methods of computing trajectories by using
the theorem of mean value over short arcs began with
the work of F. Gossot in France about 1880. Later
French ballisticians developed many methods similar
to the procedure originally suggested by Gossot:
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this work was summarized in 1921 in the Traite de
Ballistique Exterleure of P. Charbonnier, Engineer
General of French Artillery. Methods of this type
were employed in the computation of the French Commis
sion Artillerie Lourde sur Voie Ferree, or A. L. V. F.,
ballistic tables for long-range artillery published
about 1923. The accuracy of the mean-value short— arc
methods depended largely upon the width of the interval
employed, assuming that a sufficiently large number
of significant figures could be used at each step of
the computation. However, the comparative convenience
in computation of the various mean-value methods was
greatly influenced by the dependent and independent
variables chosen for the procedure. Greater lengths
of interval for the same accuracy and convenience were
obtained by advantageous choices among a wide variety
of dependent and independent variables. An improved
mean-value method has sometimes been found by consider
ing functions of independent variables which vary
slowly along the trajectory: slowly varying functions
were readily estimated by extrapolation in advance of
computation at each step of the trajectory. Mean-value
short-arc devices have also been used with slowly vary
ing dependent variables in order to facilitate expan
sion short-arc methods. The device of choosing an
appropriate dependent variable from a property of slow
variation in an independent variable was utilized in
A. A. Bennett's Tangent-Reciprocal Method. Bennett's
procedure was described in 1919 by Dunham Jackson in
The Method of Numerical Integration in Exterior Bal
listics. The Tangent-Reciprocal Method was arranged
for rapid and convenient computation by the finite
difference expansion procedure first employed in
numerical integration of the equations of motion of
projectiles by F. R. Moult on. Two devices derived
from the mean-value principle were used in the pri
marily expansion method of Charles B. Morrey. Morrey
used his method during the Second World War for rapid
and convenient computation of trajectories, employ
ing wide intervals in the range, the independent va
riable .
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Finite difference developments generally replaced
power series in expansion methods for numerical inte
gration of differential equations in physics during
the latter part of the nineteenth century. Laplace
gave the finite difference formulas which have been
generally used in the United States since the First
World War for. step-wise numerical integration of the
normal equations of motion of projectiles. Although
Bashf orth and Adams employed many techniques of the
calculus of finite differences during the nineteenth
century, the general introduction of finite differences
into computation developed during the First World War
with the work of Karl Pearson in England and F. R.
Moult on in the United States. Pearson introduced
finite difference methods in numerical interpolation
and graduation in the preparation of firing tables
for British ordnance. Moulton developed the finite
difference method of numerical integration of differ
ential equations which has since been employed for
computing trajectories in the United States. Moulton' s
method, as used in ballistics, provided that the numer
ical solution satisfy the differential equations at
each stage of the computation. Moulton's method dif
fered in this respect from the older finite difference
procedure for solving differential equations which had
been given by J. C. Adams. Adams' method employed
only expansions in extrapolation and checked only by
Gregory's or Laplace's quadrature rules expressed in
finite differences.

Although the finite difference method of numerical
integration of differential equations was susceptible
of all accuracy required for purposes of exterior ballistics, it was somewhat laborious for hand computa
tion even when performed with the aid of an electric
computing machine. A. rapid method of computing tra
jectories, including observed departures from stand
ard conditions, was initiated with the application of
the differential analyzer to the solution of the equa
tions of motion of projectiles by L. S. Dederick begin
ning about 1926. All trajectory computations for
artillery fire and many for aircraft and ground gun
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fire from small arms made between 1935 and 19U8 by the
Ordnance Department of the United States Army have
been performed by the differential analyzer.
It has some times appeared desirable, at least is

France, Great Britain, and the United States, to con
struct general ballistic tables similar to the A. L.
V. F. tables published by the French Heavy Railway
Artillery Commission and the Exterior Ballistic Tables
Computed by Numerical Integration published by the
United States Army Ordnance Department. The differen
tial effects on trajectory elements resulting froa
perturbing conditions could not always be determined
by varying the initial conditions and ballistic co
efficient which form the arguments of ballistic tables.
A method became necessary for computing these small
effects directly rather than by using the laborious
process of separately integrating differential equa
tions including terms due to each distinct type of de
parture from standard conditions. The first direct
and general procedure for determining differential
effects was the method of variation of coordinates
given by Moulton in his New Methods in Exterior Bal
listics of 1926. Moulton, using the time as independ
ent variable and assuming that the temperature of the
air was constant on the trajectory, derived a sixth-
order set of differential equations to govern the
variation of coordinates. The second-order system in
the deflection was separable from the fourth-order
system governing the variations in range and altitude.
Moulton obtained a solution of the deflection equations
by a reduction to quadratures. He also applied the
theory of the fundamental set of solutions of a group
of linear differential equations in arranging a pro
cedure for numerical solution of his fourth-order sys
tem of equations of variation in range and altitude.
A very convenient and direct method of computing dif
ferential effects was developed about 1919 by G. A.
Bliss in his study of the adjoint system of equations of
variation. Bliss, assuming a constant temperature of
the air and using time as the independent variable
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found a fourth-order system of linear differential
equations with a matrix of coefficients adjoint to
that of the equations of variation of coordinates
given by Moulton. Bliss' dependent variables were
the variations of the trajectory element induced at
the end of the trajectory divided by variations in
the four coordinates and components of velocity, as
sumed at successive instants in time along the tra
jectory. All differential effects of general interest
in the ballistics of a particle were readily computed
after a solution of the adjoint equations had been ob
tained by numerical integration. Bliss found one in
tegral of the adjoint system, thus reducing the equa
tions which had to be solved numerically to a system
of the third order. A second integral was found by
T. H. Gronwall in 1919, thus reducing the procedure
for determining the differential effects on an assigned
element of the trajectory to the numerical solution
of a single differential equation of the second order.
About 1930, Dederick, using range as independent vari
able, derived a fourth-order system of adjoint equa
tions, of which he also found two integrals. During
the latter part of the Second World War, a system of
normal equations of motion became generally used which
assumed an exponential law for the diminution of the
relative temperature of the air with altitude above
sea-level. The adjoint equations given in Chapter VIII
of this book were derived for variations from normal
trajectories computed with this assigned law of temp
erature. These adjoint equations, with time as the
independent variable, were not so readily solved as
the set derived by Bliss, who had used the assumption
of a constant temperature of the air in the basic
normal equations of motion. However, by using slope
as independent variable and the properties of the
fundamental set of solutions of a system of linear
differential equations, the problem has been reduced
to the numerical solution of a simple second-order
system of differential equations followed by two
quadratures .
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Unless a cannon ball spun extremely rapidly, the only
appreciable aerodynamic force acting upon it was an ex
cessive drag which was regarded as that of a particle.
The first need for treating the projectile as a body
subject to aerodynamic forces other than the drag arose
with the employment of rifled artillery in the latter
part of the nineteenth century. Some information on the
character of the general aerodynamic force system acting
on a projectile had long been available — physicists
from the time of da Vinci had recognized the aerodynamiclift and overturning moment on elongated yawing bodies
moving in fluids. The dependence of the lift and over
turning moment on the square of the velocity and on the
density of the air was known in the latter part of the
eighteenth century. The Magnus force acting to swerve a
spinning cannon ball from the path of a particle acted
upon only by drag and gravity was recognized early in
the nineteenth century. However, aerodynamic forces
other than the drag were first considered in ballistics
with the advent of spinning shell in gunnery.

Two observed phenomena of the flight of spinning
shell were of great interest to the artillerists of the
late nineteenth and early twentieth centuries . The
first of these phenomena was the tendency of projectiles
of some designs with some twists of rifling and some
muzzle velocities to tumble in flight. Tumbling shell
developed huge drags which greatly shortened their
ranges. Some other shell "trailed" on their trajector
ies in a satisfactory manner and attained consistent
ranges. Still other shell tended to maintain their axes
of figure parallel to the initial direction of flight.
Artillerists began to describe projectiles which tumbled
as unstable, those which trailed satisfactorily as sta
ble and those which maintained their axes parallel to
the line of departure as superstable. The principal
reason for this variation in the behavior of spinning
shell was found in the relation now described as the
first stability condition. The first stability condi
tion involved tne aerodynamic overturning moment,
the rate of spin, the air speed and the moments of
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inertia of projectiles. This relation was initially
found by considerations analogous to those employed in
the theory of tops: it was probably known to George
Greenhill in England and Karl Cranz in Germany early
in the twentieth century. The stability of shell
was largely assured by experimental firings under vary
ing conditions. About 1920 R. H. Kent began to employ
a visual demonstration which illustrated instability,
stability and supers tability of projectiles under dif
ferent conditions.

The second phenomenon which puzzled the artillerists
of the late nineteenth century was the right deflection
of a shell fired from a gun with a right-hand twist of
rifling. One term in the deflection due to the rota
tion of the earth was known to be a right deviation
from the line of departure for firing in the northern
hemisphere. However the observed right deflection of
a shell with right-hand spin was usually too large to
have been caused by the deviation resulting from the
right-hand term in the Coriolis acceleration. Artill
erists also discovered that the deflection of a shell
fired with a left-hand spin was to the left of the
line of fire. Thus a deflection of spinning shell
was shown to be caused by an aerodynamic effect of
spin. This effect was found to be independent of
other known perturbing, or "abnormal," conditions,
such as the cross wind and Coriolis acceleration, which
also affected deflection. The deflection effect de
pendent upon the spin was described as the drift. The
side-jump was measured systematically from about this
time and it was presently shown that the drift was not
caused by side-jump. The observed sign of the drift
was found to be opposite to that which would result
from the Magnus force on a spinning shell. The drift
was known to depend upon the curvature of the trajec
tory and its cause was known to some ballisticians be
fore the First World War. The drift has usually been
inferred from observed deflections reduced for the
effects of cant, side-jump, cross wind and rotation
of the earth. The drift was first treated theoretically
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by Fowler, Gallop, Lock and Richmond about 1919. Ifall the aerodynamic coefficients of the shell were
known, the drift could be predicted in advance of range
firings by methods given in Chapter XII of this book.

The character of the general aerodynamic force sys
tem which acts on the projectile first became recog
nized with the advent of aircraft. Wind tunnel measure
ments of the drag, lift and overturning moment acting
on aircraft were intensively examined from the begin
ning of the twentieth century. These forces and torques
were considered by the English astronomer, G. H. Bryan,
in his early work on the aerodynamics of aircraft.
The drag, lift, overturning moment, damping moment
and spin-retarding moment appeared in the equations
of motion given by Fowler, Gallop, Lock and Richmond
in their important paper "The Aerodynamics of a Spinning
Shell" published in 1920. Fowler and his associates
found solutions of their equations which hold for short
distances along the trajectory. Fowler explained
the right-hand drift of a right-hand spinning projec
tile as a consequence of the aerodynamic lift result
ing from the average right-hand pointing of the pro
jectile during flight. He analyzed experimental
firings from which he made some predictions on the
magnitude of various aerodynamic forces and torques
acting on the projectile during flight. Solutions
of Fowler's equations applicable to many special
cases of projectile motion were obtained by Kent and
Hitchcock in the period between the First and Second
World Wars. Kent introduced dimensionless aerodynamic
coefficients denoted by the symbol K with subscripts
indicating the particular forces and torques involved.
Kent's coefficients were similar in form to those em
ployed by Prandtl and others in the treatment of aero
dynamics of aircraft.
Effective use of wind tunnel measurements of aero

dynamic forces and torques was made in planning the
design of bombs somewhat earlier than in considerations
on the design of shell. American bombs of the First
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World War were frequently unstable, partly because
the leading edges of the fins were placed far forward
on the body of the bomb. E. J. Loring and H. L. Dryden
advanced, as an indication of static stability in bomb
design, the criterion that the center of pressure of
a bomb in a position of yaw in a steady air stream
must lie behind the center of mass. Dryden made many
measurements of the drag, lift and restoring moments
acting on bombs of various shapes. He used consider
ations based upon his experimental work to determine
the shape and mechanical characteristics which were
employed in the design of American bombs during the
Second World War.

During the period immediately following the First
World War, Loring noted that stable boobs dropped at
low altitudes exceeded the ranges which would have
been expected in vacuo. Loring advanced the tentative
explanation that this curious effect was in some fash
ion a consequence of the aerodynamic lift acting on
the projectile. He suggested that the lift acted in
such a manner as to decrease the actual drop of the
bomb from that which would be expected for a normal
time of flight. About 1938, it was learned from the
experiments of Colonel H. H. Zornig and others that
the measured times of flight of stable bombs dropped
from low altitudes were, in fact, longer than would
be inferred from the action of aerodynamic drag alone.
R. H. Kent explained the "kiting effect" on the bomb
as a consequence of the aerodynamic lift due to the
fact that the average position of the axis of the
bomb during flight was above the tangent to the tra
jectory. H. P. Hitchcock and others found some par
ticular solutions of the equations governing this
effect and established some of its properties. A
more exact explanation and a convenient method of
computing this deviation of the bomb from normal mo
tion were devised in 19U2 and are given in Chapter
XI of this book. This method used the concepts of
steady lift and oscillatory swerve. The steady lift
due to mean yaw resulting from the curvature of the
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trajectory was separated from the oscillatory srwerve
due to sinusoidal yaw. This theory of the planar
yaw of bombs was extended in 19U3 to treat the effects
of the general yaw of spinning projectiles. The ex
tension led to a convenient method of computing the
horizontal drift of an artillery shell. The theory
has also predicted a vertical drift for a spinning
shell. The existence of a vertical drift was apparent
ly not suspected prior to 19U3> but it has since re
ceived some experimental confirmation.

During 19U2, John L. Synge introduced into ballistics
a complete aerodynamic force system for projectiles
with small angles of yaw and small angular velocities.
The angular changes were computed with respect to a
system of axes fixed in the projectile which may be
regarded for a short time as parallel to axes fixed
in space. Synge 's work began with the recognition
that an aerodynamic force which had not been noted
by earlier ballisticians would necessarily act on the
projectile if the damping torque, denoted by Fowler
as H, existed. The required force, which has been de
scribed as the pitching force, was subsequently measured
experimentally. A. C. Charters and one of the writers
determined the pitching force on several bomb models
mounted on an oscillating device in the wind tunnel
at Wright Fiela. These measurements were later ex
tended by G. B. Shubauer, who used the wind tunnel of
the United States Bureau of Standards. The spin-retard
ing torque earlier remarked by Fowler was also accurate
ly measured first by experiments performed in the United
States during the Second World War. Thomas D. Carr,
about 19U2, found an accurate method of determining
the loss of spin of a projectile in flight. Carr's
measurements of loss of spin were used by Kent to
compute the spin-retarding torque coefficients of pro
jectiles. Kent and Charters derived a relation between
the spin-retarding torque and the part of the drag
due to skin-friction. Since the head drag of the pro
jectile could be computed directly and the total drag
determined accurately from data secured from the

79U



aerodynamic spark range developed by Charters, Kent was
able to deduce the base drag of the projectile by
subtracting the computed head drag and inferred skin
drag from the measured total drag. The reduction of
spark range data, described in Chapter XIII of this
book, has made it possible to infer all the significant
aerodynamic forces and torques acting on the projec
tile from measurements of experimental firings. Some
of the aerodynamic coefficients computed from spark
range experiments have been compared with the values
determined in the supersonic wind tunnel of the Bal
listic Research Laboratory. The stability and flight
characteristics of projectiles can be predicted by
these two methods from model experiments made in ad
vance of range firings.

The motion of the rocket has been examined by ex
perimental methods which were somewhat different from
those used in measurements on the flight of the bomb
or the shell. Experimental and theoretical work on
rocketry in the Ballistic Research Laboratory during
the Second World War was actively directed by the as
tronomer, Edwin Hubble. Hubble and his assistants,
notably Dirk Reuyl and Marvin Cobb, developed very ac
curate methods of measuring position and velocity of
rockets by high-speed photography. Radar measurements
of the position of several rockets throughout complete
trajectories were secured by L. A. Delsasso. Velocities
were also obtained for some rockets by the sky screen
method originally discovered in Canada. Mathemati
cians working under Hubble' s direction, especially
A. P. Morse, J. W. Green, A. S. Peters, P. A. White,
H. L. Meyer, J. V. Lewis, C. John and the writers devis
ed procedures for reducing these measurements and com
puting firing tables for various new types of rockets
as they were developed. Most of the important military
rockets of the first part of the Second World War were
propelled by gas jets derived from the combustion of
solid fuels. Although successful liquid-fuelled jet-
propelled aircraft were first made by Frank Whittle
in England, the first effective liquid-fuelled military
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rockets were built in Germany. The British jet-pro
pelled airplanes and the German very long-range .mis
siles of 19UU and 19li5 were products of researches
which began early in the twentieth century.

A very long-range rocket must arrive at a trajec
tory inclination of approximately forty-five degrees
with a high velocity after it has passed through that
part of the earth * s atmosphere which has any appreci
able density. Thus, the axis of the Vergeltungswaf fen
2, the V-2, was gyroscopically controlled during the
burning time in order to provide for a fuel cut-off
when the trajectory arrived at an angle of inclination
of forty-five degrees, the elevation required for the
attainment of the maximum range in vacuo. The V-2
rockets fired by the Germans were powered by contin
uously operating jets with approximately sixty seconds
burning time and attained maximum velocities of about
five thousand feet per second. These velocities were
made possible by researches on jet-propulsion with
liquid fuels. Robert H. Goddard, an American physicist,
had performed the first important experiments with
rockets propelled by the liquid fuels earlier suggested
by the Russian engineer, Ziolkovsky, who had been en
couraged by the chemist Menideleyeev. Some of Goddard' s
researches were described in 1919 in a Smithsonian re
port entitled A Method of Reaching Extreme Altitudes.
Goddard' s work becameHknown to European physicists
shortly after the First World War. Some of these men
noted that the rate of burning of a liquid fuel could
be more readily controlled and varied in an engine
than the burning of a solid propellant. Experiments
with liquid fuel and an oxidizer projected from tanks
into a firing chamber resulted in low pressures and
small heat developed by combustion. These experiments
showed that the walls of the combustion chamber and
its auxiliary tanks could be made thinner if liquid
fuels were employed in rockets than if solid fuels
were used. This information indicated the possibil
ity of using steadily proceeding controlled burning in
a light casing with low combustion heating.
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Some development of Goddard' s ideas appeared in
the work of Herman Oberth, a professor of mathematics
in Transylvania who wrote an important book on rocket
motion which was published in 1923. This book, which
was entitled Die Rakete zu Planeten Raumen, was a
treatise on the theory of rocketry as applied to inter
planetary travel. Oberth considered various naviga
tional problems of travel in free space, but his most
important contributions to rocket development were
theoretical arguments on the proper direction for ex
perimental work in order to attain high velocities.
The basis of these arguments was a relation between
the initial mass of the rocket, hereafter denoted
by m0, the mass of the rocket after all the fuel has
been burned, m^, the exhaust velocity of the jet rel
ative to the rocket, q, and the velocity of the rocket
after all the fuel has been burned, V^. The rocket
was assumed to begin its motion from rest and to move
thereafter in a space free of matter, that is, without
being subject to aerodynamic or gravitational forces .

It was not difficult to show that

VD
" q loge (itfe/mb).

This relation showed that a rocket which was to have
a high velocity after burning must have large values
of the exhaust velocity of the jet, q, and the mass
ratio (mo/mb). The best liquid fuels are theoretically
susceptible of a higher exhaust velocity than most
solid fuels. Oberth considered various types of pro-
pellants for use in rockets and suggested alcohol and
liquid hydrogen as fuels and liquid oxygen as an ox
idizing agent. These suggestions contributed to the
development of the V-2: the fuel actually employed
by the V-2 was a modification of that originally pro
posed by Oberth. Willy Ley, about 1931, suggested
a fuel composed of ethyl alcohol and water in the
proportion of three parts of alcohol to one part of
water. An important advantage of the watered alcohol
and liquid oxygen mixture was that the exhaust gases
contained molecules of water vapor which have a low
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molecular mass. The highest attainable exhaust velo
city would result from a mixture of atomic hydrogen and
liquid oxygen. This fact was responsible for the in
terest of American rocket engineers in recent experi
ments with jets derived from the combustion of atomic
hydrogen. Oberth's velocity relation also showed the
importance of increasing the mass ratio, (m0/mfc), if
the same exhaust velocity, q, could be obtained with
a given rocket. The mass ratio could be increased
for a fixed payload if the internal pressure and com
bustion heating could be decreased. The motor of the
V-2 was force-fed by centrifugal pumps. Its internal
pressure was very low. The watered alcohol employed
in the V-2 served as a coolant before it was used as
a fuel. The fuel was injected into the combustion
chamber through five holes in the sheet-steel walls
of the motor. Direct introduction of the mixture from
the cooling jackets protected the walls of the combus
tion chamber from excessive local heating. These
features of the design made it possible to build the
V-2 with a mass ratio of three, the initial mass being
about twelve tons. Oberth's relation showed that, in
the absence of drag and gravity, the final velocity
of the V-2 should be slightly greater than the exhaust
velocity. Post-war American experiments with nearly
vertical fire have yielded maximum ordinates of nearly
one hundred and twenty miles. These altitudes would
correspond to ranges of about two hundred and forty
miles for fire at an elevation of forty-five degrees.
The jet velocity, q, might possibly be doubled for
the V-2, but this would yield a maximum range only
about four times that attainable with the existing
rocket. The nature of the materials from which the
V-2 was constructed makes it seem unlikely that a
similar rocket could be built with a mass ratio greater
than about six, thus an ultimate range of less than
four thousand miles may be expected with a V-2 type
of rocket having optimum characteristics for very long-
range fire.

The simplest principle available for achievement
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of intercontinental ranges is the multi-stage, or step,
procedure. This employs a primary rocket with a high
mass ratio as the initial driving engine for a smaller
rocket. The reaction of the motor of the smaller rocket
is initiated after the case of the primary has been cast
off following exhaustion of its fuel. The step princi
ple has been utilized in a two-stage combination of the
V-2 and the Wac Corporal which attained an altitude of
approximately two hundred and fifty miles when fired
nearly vertically at White Sands Proving Ground on
February 2U, 19U9. This combination would have achiev
ed a range of about five hundred miles had the inclina
tion of the trajectory of the second rocket been ap
proximately forty-five degrees at the time when its
fuel was exhausted. An intercontinental rocket will
be obtained if a two-stage rocket, each stage having a
mass ratio of about six: and an exhaust velocity of eight
to ten thousand feet per second, can be constructed.
Such a two-stage rocket would be a practically possible
development even at the present time.

The theory of motion of an intercontinental rocket
will require treatment as if its flight were that of
a small satellite of the earth. The number of stages
of a step rocket is, however, limited only by the
mechanical feasibility of constructing sufficiently
large motors. A three-stage rocket of the same general
characteristics as those indicated for the foregoing
two-stage rocket could readily attain the velocity re
quired to circle the earth indefinitely as an artifi
cial satellite. In order to achieve a rocket which
would depart indefinitely from the earth, it would be
necessary that the rocket attain the so-called escape
velocity which has a value of about thirty-five thousand
feet per second. The escape velocity from the earth
could be achieved by a four-stage rocket having the
exhaust velocity and successive mass ratio indicated
above. It seems probable that exterior ballisticians
will presently be concerned with problems which were
formerly considered only by astronomers.
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S- and T- functions 'based

f 3600
; - (i/gO duJ u
u S T

f/a ft sec

3600 0.00 .000
3590 26.72 .007
3580 53.50 .015
3570 80.31* .023
3560 107.26 .031
3550 13U.2li .039

35bo 161.28 .01*7
3530 I88.I1O .055
3520 215.58 .063
3510 21*2.82 .071
3500 270. 1U .079

3U90 297.52 .087
3U80 32lu96 .095
3^70 352. U8 .103
3U60 380.06 .111
3U50 1*07.71 .119

3UUo 1*35.1*3 .127
3U30 1*63.21 .135
3U20 1*91.07 .11*3
3iao 518.99 .151
3hoo 5U6. 99 .159

3390 575.05 .167
3380 603.17 .175
3370 631.37 .183
3360 659.63 .191
3350 687.97 .189

on GSvre drag function

(3
60
0

(l/UGO dU

U

Ü s T

f/B ft sec

3350 687.97 .189
3-31*0 716.37 .208
3330 7W*.85 .217
3320 773.39 .226
3310 802.01 .235
3300 830.69 .21*1*

3290 859.1*5 .252
3280 888.27 .261
3270 917.17 .270
3260 9U6.13 .279
3250 975.16 .288

32ÜO 100U.26 .297
3230 1033. U2 .306
3220 1062.66 .315
3210 1091.97 .321*
3200 1121.35 .333

3190 1150.81 .3U2
3180 1180.33 .351
3170 1209.93 .360
3160 1239.59 .369
3150 1269.33 .378

311*0 1299.13 .338
3130 1329.01 .398
3120 1358.95 .I4O8
3110 1388.97 .10.8
3100 11*19.05 .1*28
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S- and T-functions based on Gavre drag function

3= j
f 3600 f 3600

u
W dU T = j (1/1%) dU

u S T U s T

f/s ft sec f/s ft sec

3100 Uil9.05 .U28 2850 ZL9li.56 .688
3090 1Wi9.21 .U38 281l0 2226.53 .699
3080 lii79.Jp .UU8 2830 2258.56 .710
3070 1509.73 Ji58 2820 2290.67 .721
3060 I5ii0.09 J468 2810 2322.85 .733
3050 1570.53 .U78 2800 2355.11 .7U5

30U0 1601.03 .I488 2790 2387.U; .756
3030 1631.61 .U98 2780 2U19.85 .768
3020 1662.27 .508 2770 2U52.32 .780
3010 1693.01 .518 2760 2U8U.87 .792
3000 1723.81 .528 2750 2517.U9 .801,

2990 175U.69 .538 27U0 2550.19 .816
2980 1785.63 .5U8 2730 2582.97 .828
2970 1816.65 .558 2720 2615.82 .8h0
2960 18U7.75 .568 2710 26U8.75 .852
2950 1878.92 .578 2700 2681. 7h .861*

29kO 1910.16 .589 2690 271U.81 .876
2930 19U1.U7 .600 2680 27li7.96 .888
2920 1972.85 .611 2670 2781.18 .900
2910 200U.30 .622 2660 281UJ48 .912
2900 2035.83 .633 2650 28h7.86 .925

2890 2067. hh M 26U0 2881.31 .938
2880 2099.11 .655 2630 291U.83 .951
2870 2130.86 .666 2620 29^8. U3 .961*
2860 2162.67 .677 2610 2982.11 .977
2850 219U.56 .688 2600 3015.86 .990
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S- and T-functions based

S3600
(1/G.) dU

Ü

U ST
f/a ft sec

2600 3015.86 .990
2590 301*9.69 1.003
2580 3083.59 1.016
2570 3117.57 1.029
2560 3151.63 1.01*2
2550 3185.76 1.055

251*o 3219.97 1.068
2530 325U.26 1.082
2520 3288.63 1.096
2510 3323.07 1.110
2500 3357.59 1.12U

21*90 3392.19 1.138
21*80 31*26.86 1.152
21470 31*61.61 1.167
2U60 3U96.UU 1.182
2b$0 3531.35 1.197

21U|0 3566.31* 1.212
2U30 3601.Ul 1.227
21*20 3636.56 1.2U2
21*10 3671.79 1.257
21*00 3707.11 1.272

2390 37Ü2.50 1.287
2380 3777.98 1.302
2370 3813. 51* 1.317
2360 381*9.18 1.332
2350 388U.91 1.3li7

on GSvre drag function

S3
60
0

(l/UG-,) dU

u

Ü S T

f/s ft sec

2350 388U.91 1.31*7
231*0 3920.72 1.362
2330 3956.61 1.377
2320 3992.59 1.392
2310 1*028.66 1.1*08
2300 1*061*. 82 1.1*21*

2290 1*101.06 1.1*1*0
2280 1*137.39 1.1*56
2270 1*173.80 1.1*72
2260 1*210. 30 1.1*88
2250 U2U6.89 1.501*

221*0 1*283.56 1.520
2230 1*320.33 1.536
2220 1*357.18 1.553
2210 1*391*.13 1.570
2200 1*1*31.16 1.587

2190 1*1*68.29 1.601*
2180 1*505.51 1.621
2170

"

1*,51*2.82 1.638
2160 1*580.23 1.655
2150 1*617.71* 1.672

211*0 1*655.31* 1.690
2130 1*693.01* 1.708
2120 1*730.81* 1.726
2110 1*768.71* 1.7U*
2100 1*806.76 1.762
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S- and T-functions based on GaVre drag function

P 3600
8-

j (1/Gl) dU
J1 U

0 s T

f/. ft sec

2100 4806.76 1.762
2090 4844.88 1.780
2080 4883.10 1.798
2070 4921.42 1.817
2060 4959.86 1.836
2050 4998.40 1.855

2040 5037.06 1.874
2030 5075.82 1.893
2020 5114.70 1.912
2010 5153.68 1.931
2000 5192.78 1.950

1990 5232.01 1.970
1980 5271.36 1.990
1970 5310.83 2.010
1960 5350.42 2.030
1950 5390.13 2.050

1940 5429.98 2.070
1930 5469.95 2.091
1920 5510.06 2.112
1910 5550.30 2.133
1900 5590.67 2.154

1890 5631.18 2.175
1880 5671.83 2.197
1870 5712.62 2.219
1860 5753.54 2.241
1850 5794.62 2.263

1

3600
(l/uc-x) dU

u

u S T

ft sec

1850 5794.62 2.263
1840 5835.85 2.285
1830 5877.23 2.308
1820 5918.76 2.331
1810 5960.45 2.354
1800 6002.31 2.377

1790 6044.33 2.401
1780 6086.51 2.425
1770 6128.87 2.449
1760 6171.40 2.473
1750 6214.11 2.497

1740 6257.01 2.522
1730 6300.10 2.547
1720 6343.37 2.572
1710 6386.84 2.597
1700 6430.52 2.622

1690 6474.39 2.648
1680 6518.48 2.674
1670 6562.78 2.701
1660 6607.30 2.728
1650 6652.06 2.755

1640 6697.04 2.782
1630 6742.26 2.810
1620 6787.73 2.838
1610 6833.45 2.866
1600 6879.41 2.894
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S- and T-functions based on GaVre drag function

u S T

f/a ft sec

1600 6879.41 2.894
1590 6925.65 2.923
1580 6972.15 2.952
1570 7018.93 2.982
1560 7066.01 3.012
1550 7113.39 3.042

1540 7161.08 3.073
1530 7209.08 3.104
1520 7257.39 3.136
1510 7306.03 3.168
1500 7355.03 3.201

1490 7404.39 3.235
1480 7454.13 3.269
1470 7504.25 3.303
1460 7554.77 3.338
1450 7605.69 3.373

1440 7657.03 3.408
1430 7708.82 3.444
1420 7761.07 3.480
1410 7813.80 3.517
1400 7867.04 3.555

1390 7920.81 3.594
1380 7975.12 3.633
1370 8029.99 3.673
1360 8085.46 3.713
1350 8141.56 3.754

13600
(l/lTC,) dU

U

u S T

f/s ft sec

1350 8141.56 3.754
1340 8198.32 3.796
1330 8255.77 3.839
1320 8313.95 3.883
1310 8372.88 3.928
1300 8432.61 3.974

1290 8493.20 4.021
1280 8554.69 4.069
1270 8617.14 4.118
1260 8680.62 4.168
1250 8745.18 4.219

1240 8810.9 4.272
1230 8877.9 4.326
1220 8946.2 4.382
1210 9015.9 4.439
1200 9087.2 4.499

1190 9160.2 4.560
1180 9235.0 4.623
1170 9311.7 4.688
1160 9390.6 4.756
1150 9471.7 4.826

1140 9555.3 4.899
1130 9641.6 4.975
1120 9730.9 5.054
1110 9823.2 5.137
1100 9919.0 5.224
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S- and T-functions based on Gfivre drag function

u S T

r/« ft sec

1100 9919.0 5.224
1090 10018.4 5.315
1080 10121.8 5.410
1070 10229.3 5.510
1060 10341.3 5.615
1050 10458.0 5.726

1040 10579.6 5.842
1030 10706.4 5.965
1020 10838.7 6.094
1010 10976.6 6.230
1000 11120.3 6.373

990 11269.9 6.523
980 11425.8 6.681
970 11587.8 6.847
960 11756.2 7.022
950 11931.1 7.205

940 12112.6 7.397
930 12300.6 7.598
920 12495.2 7.809
910 12696.5 8.029
900 12904.6 8.259

890 13119.3 8.498
880 13340.6 8.749
870 13568.7 9.009
860 13803.5 9.281
850 14044.8 9.563

•3600
T - (l/UG,) dU

, U X

u S T

f/s ft sec

850 14044.8 9.563
840 14292.8 9.856
830 14547.3 10.161
820 14808.4 10.478
810 15076.0 10.806
800 15350.2 11.147

790 15630.8 11.500
780 15917.8 11.865
770 16211.1 12.244
760 16510.7 12.635
750 16816.7 13.041

740 17129.0 13.460
730 17447.3 13.893
720 17771.9 14.341
710 18102.8 14.804
700 18439.8 15.282

690 18782.9 15.775
680 19132.0 16.285
670 19487.4 16.612
660 19349.0 17.356
650 20216.7 17.917

640 20590.7 18.497
630 20970.9 19.096
620 21357.5 19.714
610 21750.2 20.353
600 22149.3 21.013
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S- and T-functions based on Gavre drag function

53600

f 3600
(l/t^) dU T =

J (l/UG1) dU

D S T

f/a ft sec

600 22149.3 21.013
590 22554. a 21.694
580 22966.9 22.398
570 23385.6 23.127
560 23811.0 23.880
550 24243.4 24.659

540 24682.7 25.465
530 25129.3 26.300
520 25583.0 27.164
510 26044.2 28.060
500 26513.3 28.989
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^2-function for approximating drop

r ♦2<r> A' A'
0.75 0.91086 ll*.61*3

.71* .90702 -381* ll*.581 -62

.73 .90316 -386 11*. 519 -62

.72 .89928 -388 ll*.l*57 -62

.71 .89537 -391 ll*.39l* -63

.70 .8911*1* -393 ll*.331 -63

.69 .8871*8 -396 ll*.267 -61*

.68 .88350 -398 ll*.203 -61*

.67 .879U9 -1*01 H*.139 -61*

.66 .8751*5 -1*01* 11*. 071* -65

.65 .87138 -1*07 ll*.008 -66

.61* .86729 -1*09 13.91|3 -65

.63 .86317 -1*12 13.876 -67

.62 .85902 -1*15 13.810 -66

.61 .851*81* -1*18 13.71*2 -68

.60 .85061* -1*20 13.675 -67

.59 .81*61*1 -1*23 13.607 -68

.58 .81*211* -1*27 13.538 -69

.57 .83785 -1*29 13.1*69 -69

.56 .83352 -1*33 13.1*00 -69

.55 .82916 -1*36 13.330 -70

.51* .821*77 -1*39 13.259 -71

.53 .82031* -1*1*3 13.188 -71

.52 .81588 -1*1*6 13.116 -72

.51 .81138 -1*50 13.01*1* -72
o.5o 0.80685 -1*53 12.971 -73
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4>2-function for approximating drop

r ♦2(D A' A'
1.00 1.00000 16.076

0.99 0.99666 -33k 16.022 -5U
.98 .99330 -336 15.968 -5U
.97 .98992 -338 15.91U -514
.96 .98653 -339 15.860 -5U
.95 .98312 -3U1 15.805 -55

.9k .97969 -3U3 15.750 -55

.93 .9762)4 -3U5 15.69U -56

.92 .97278 -3h6 15.638 -56

.91 .96930 -3UQ 15.583 -55

.90 .96580 -350 15.526 -57

.89 .96228 -352 15.U70 -56

.88 .9587U -35b 15.U13 -57

.87 .95518 -356 15.356 -57

.86 .95160 -358 15.298 -58

.85 .9^800 -360 15.2UO -58

.9^38 -362 15.182 -58
.83 .9U07U -36U 15.123 -59
.82 .93708 -366 15.065 -58
.81 .933UO -368 15.005 -60
.80 .92970 -370 il».9U6 -59

.79 .92598 -372 lh.886 -60

.78 .92223 -375 1U.826 -60

.77 .918U6 -377 Hi. 765 -61

.76 .911*67 -379 1U.70U -61
0.75 0.91086 -381 IU.6I43 -61
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G-function based on GSvre drag function ;

V2/100 0 1 2 3 5 6 7 8 9 .

U5o 0.02920 292U 2928 2932 2937 291*1 291*5 2950 295a 2953

1*60 .02962 2966 2970 2971* 2979 2983 2987 2991 2995 2999

kto .03003 3007 3012 3016 3020 302L 3028 3032 3037 3oai
hdo .030U5 301(9 3053 3058 3062 3067 3071 3076 3030 3oea
U90 .03089 3093 3097 3102 3106 3111 3115 3120 312a 3128
$00 .03133 3137 311*2 31U6 3151 3155 3160 3161* 3169 3173

510 .03178 3183 3187 3192 3196 3201 3206 3210 3215 3220
520 .0322li 3229 323U 3238 321*3 321(8 3252 3257 3261 3266
530 .03271 3276 3281 3286 3291 3295 3300 3305 3310 3315
51*0 .03320 3325 3330 3335 331*0 33U* 331*9 3351* 3359 336a
550 .03369 337U 3379 3331* 3389 3391* 3399 31*05 31*10 3ais

560 .031(20 3U25 31*30 31*35 31*1*0 31*1*6 31(51 31*56 3a6i 31*66
570 .03U71 3U77 31*82 3U87 31*93 31(93 350h 3509 3515 3520
580 .03525 3531 3536 351*2 351*7 3553 3558 356h 3569 3575
590 .03580 3586 3591 3597 3602 3608 3611* 3620 3625 3631
600 .03637 361*3 361*8 3651* 3660 3666 3671 3677 3683 3689

610 .03695 3701 3707 3713 3719 3725 3730 3736 371*2 37aa
620 •0375a 3760 3766 3772 3778 3785 3791 3797 380a 3810
630 .03816 3822 3828 383U 381*1 381(7 3851* 3860 3866 3873
6to .03879 3885 3892 3896 3905 3911 3918 392a 3931 3937
650 .039Wj 3950 3957 3963 3970 3976 3983 3990 3997 aoo3

660 .OliOlO U017 1*023 1*030 1*037 !*01*1* 1*050 ao57 ao6a ao7i
670 «Oli078 1(086 1*093 1*100 1*107 1*111* 1*121 ai29 1*136 1*11*3
680 .oaiso 1(157 1*161* 1*172 1*179 1*186 1*193 a2oo a207 U215
690 .0U222 1(230 1*237 1*21*1* 1*252 1*259 1*267 a275 a282 1*290
700 .0U298 1*305 1*313 1*320 1*328 1*336 131*3 1*351 a359 a367

710 .OU37U 1*382 1*390 1*398 1*1*06 1*1*11* 1*1*22 10*30 aa38 1*1*1*6
720 .0Ui55 1*1*63 1*1*71 1*1*79 1*1*87 1*1*96 1*501* U512 a52; 1*529
730 .Oli537 1*51*6 1*551* 1*562 1*571 1*579 1*588 a596 a605 a613
7li0 .OU622 1*630 1(639 1*61*8 1*656 1*665 1*671, a683 a69i 1(700

750 .0^709 1*717 1*726 1(736 1*7U5 1(751* 1763 a772 a78i a?90

760 .01*799 1*808 1*818 1*827 1*836 1*81*5 1*655 ll861l as7a a883
770 .01(893 1*902 1*912 1*922 1*931 1*91*1 1*950 a960 a969 a979
780 .01(988 1*998 5008 5018 5028 5038 501*8 5058 5068 5078
790 .05088 5098 5108 5118 5128 5139 511*9 5159 5169 5180
300 .05190 5200 5210 5220 5231 521*1 5252 5263 5273 528a

810 .05295 5306 5316 5327 5338 531*9 5360 5372 5383 539a
890 .051(05 51*16 51*27 51(38 5U1*9 51(60 51*71 5U83 51.9a 5505
830 .05516 5527 5539 5550 5562 5573 5585 5596 5608 5619
81*5 .05631 561*3 5655 5666 5678 5690 5702 57U* 5726 5738
850 .05750 5762 577a 5786 5798 5811 5823 5835 seas 5860

G60 .05872 5885 5897 5910 5922 5935 591*8 5960 5973 5986
370 .05999 6012 6025 6038 6051 6061* 6077 6090 6103 6116
380 .06129 6U*2 6155 6168 6182 6195 6208 6222 6235 62a9
890 .06262 6276 62?0 6301* 6317 6331 63W 6358 6372 6386
900 .06399 61*13 61*27 61*1*1 61*55 61*68 61*82 6a96 6510 6525
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G-function based on
v2Aoo c 1 2 3

900 0.06399 61)13 6a27 6ua

910
920
930
9I4O

.06539

.06686

.06833

.06986

.0711*2

6551
6700

6568
6715
6863
7016
7173

6583
6729
6878
7032
7189

6eae
7001

950 7158

?6o
970

.07300

.071*61

.07626

.07797

.07969

7316
7u78
76a3
78ia
7986

7332 731*8
7511
7677
78U8
8020

7a9a
7660

990 7631
80031000

1010 .0810*2
.08318
.081)98
.08680
.08863

6159
8336
8516
8698
8882

8177
835a

8195
8371
8552
8735
8919

1020
1030 853a
10U0
1050

8716
8900

1060 .0901)9
.09231*
.091)21
.09608
.09795

9067
9253

9086
9271
9U58
9615
9833

910a
9290
9a77
966a
9352

1070
1080
1090

9aao
9627

1100 981a

1110
1120
1130
lll»0
1150

.09985

.10173

.10360

.1051*8

.10735

000a* 0022
0210
0396
0585
C772

oola
02290192

0379
0566
0753

oai7
060a
0790

116c
1170

.10919

.11102

.11281*

.111)65

.1161)1)

0938
1120
1302

0956
1138
1320
1501
1679

097a
1157
1338
1519

1180
11 90
1200

ias3
1661 1697

1210
1220
1230
121)0
1250

.11821

.11997

.12168

.12338

.12507

1839
20ia
2185
2355
2523

1856
2032
2202
2372

187a
20a9

25ao

2219
2389
2557

1260
1270
1280
1290
1300

.12671

.12833

.12992

.1311*9

.1330^

2688
28a9
3008
3165
3319

270a
2865
302a
3180
3335

2720
2881
3039
3196
3350

1310
1320
1330
131*0
■L35Q

.131.56

.13605

.13753

.13899
.1UQU2

3an 3a86
363a
3782

3501
36a9
3797

3620
3767
3913 3928 39a2
ao56 ao7o aoaa

Gfivre drag function
u s 6 7 a 9

6a55 61*8 6a82 6a96 6510 6525

6597 6612 6627 661*2 6656 6671
67aa 675? 6773 6788 6803 6316
6893 6909 692a 6939 6955 6970
70a7 7063 7079 7095 7111 7127
7205 7221 7236 7252 7268 72S1)

736a 7380 7396 71*13 7a29 71*15
7527 75i*a 7560 7577 7593 761C
769a 7711 7728 77a6 7763 7780
7865 7383 7900 7P17 793a 7952
8037 6055 8072 8039 8107 612a

3212 6230 82ae 3265 3283 8300
e389 sao7 8125 eu*3 8161 51*80
8570 8588 6607 8625 86a3 3662
8753 6771 8790 8303 6527 ms
6937 6956 897a 8993 9012 9030

9123 911*1 9160 9178 9197 9215
9309 9327 93a6 9365 938a 91*02
9U95 951a 9533 9552 9570 9539
9683 9701 9720 9739 9758 9776
9671 9890 9909 9928 99a7 9966

0060 0079 0098 0116 0135 0151*
02a8 0267 0286 03oa 0323 031*2
oa35 oasa oa73 0h92 0510 0529
0623 061)1 0660 0679 0696 0716
0809 0627 osa6 086a 0883 0901

0993 1011 1029 ioa7 1066 1081
1175 1193 1211 1230 i2as 1266
1357 1375 1393 iau ia29 1M7
1537 1555 1573 1591 1606 162t
1715 1732 1750 1768 1766 1803

1892 1909 1927 i9a5 1962 1950
2066 2083 2100 2117 213a 2151
2236 2253 2270 2287 230a 232I
2ao6 2a23 210*0 2a 56 2a73 21*90
2573 2590 2606 2622 2639 2655

2736 2753 2769 2785 2301 2817
2897 2913 2929 29a5 2960 2976
3055 3071 3087 3102 3118 3131)
3211 3227 321)2 3258 3273 3289
3365 3380 3396 31*11 31*26 31*1*1

3516 3531 351*6 3561 3575 3590
366a 3679 369a 3708 3723 3735
3811 3826 381*1 3855 3870 3831
3957 3971 3985 aooo ion* I*02S
apse i*112 1026 aiao usa 1*167
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G-function based
/100 0 1 2 3

■60 0.1U0U2 ao56 ao7o aoea

160 ,iai8i ai95 1*209 a222
170 .Uj318 Ii332 1*31*6 a359
;60 .1Ui53 UU66 uaso aa93
190 .11*566 a599 1*612 a625
:00 .114716 a729 a7ia a75a

.10 .II48I43 a856 a868 a88i
120 .11*968 a98i a993 5006
.30 .15092 5105 5117 5129
:i*0 .15211* 5226 5238 5250
i50 .1533^ 53a6 5358 5370

(60 .isa52 5l46a 51*75 51*87
l70 .15567 5578 5590 5601
.60 .15679 5690 5701 5713
:yO .15790 5801 5812 5823
toe .15900 5911 5922 5933

;io .16009 6020 6030 60la
,20 .16115 6126 6136 6ia7
.'30 .16219 6229 62ao 6250

.16322 6332 63a3 6353
.'50 .i6a25 6a35 61*1*5 61*55

;6o .16526 6536 65a6 6556
.70 .1662a 663a 66a3 6653
;so .16720 6730 6739 67a9
;9o .16815 6825 683a 681*1*
00 .16910 6920 6929 6938

>10 .17003 7012 7021 7030
'20 .17093 7102 7111 7120
>3G .17182 7191 7200 7208
>iiO .17270 7279 7288 7296
•50 .17358 7367 7376 738a

>60 .171*1*5 7a5a 7a62 7an
>70 .17531 75ao 75a8 7557
,80 .17615 7623 7632 76ao
>90 .17697 7705 7713 7722
'00 .17779 7787 7795 780a

'10 .17861 7869 7877 7885
'20 .179a2 7950 7958 7966
'30 .18022 8030 8037 soas
ri*o .18099 8107 8lia 8122

.18175 8183 8190 8196

'60 .18251 8259 8266 827a
70 .18326 8333 831*1 83ae
'50 .18399 sao6 eaia 8a2i
'90 .iea7i 8a78 8a86 8a93
'0.1 8550 8558 8%S

on GSvre drag function
h 5 6 7 8 9

a098 1*112 1*126 1*11*0 ai5a 1*167

1*236
1*373

a25o 1*261* a277
1*1*13
h$U6
1*677
a805

1*291
ai*26

a305
a386 aaoo aaao

a573
a703
as3o

a506 a52o
a65i
ajso

a533 U559
a638
a767

a66a a69o
aeisa792

a893
5018

a9o6
5031
5153
527a
5393

a9ie
5oa3
5166

a931
5055
5178
5298
51*17

a9a3
5068
5190
5310
51428

a956

5H41
5080
5202
53225262

5381
5286
5ao5 51*1*0

5a99
5612
572a
583a
591*1*

5510 5522
563a
57a6

5533
561,5

5757
5867
5977

55U5
5657
5768
5878
5987

5556
5668
5779
5889
5998

5623
5735
581*5
5955

5856
5966

6052
6157
6260
6363
6a65

6063
6167
6271
6373
6a76

6073
6178
6281
638a
6a86

6oea 609a
6198
6302

6105
6209
6312
61*ia
6516

6188
6291
639a
6a96

6aoa
6506

6565
6663
6758
6853
69a8

6575
6672
6768
6863
6957

6585
6682
6777
6872
6966

6595
6692
6787
6882
6976

6605
6701
6796
6891
6985

66U*
6711
6806
6901
699a

7039
7129
7217
7305
7393

7oae 7057
7ia7
7235
7323
71*11

7066
7156
721*1*
7332
71*19

7075
716a
7252

7oea
71737138

7226
73114 73ao

7261
73a9
71*367ao2 71*28

7a80
7565
761*8
7730
7612

7a88 7a97
7582
766a
771*6
7828

7506
7590
7672
775a
7836

75ia
7599
7681
7763
78a5

7523
7607
7689
7771
7853

757a
7656
7738
7820

7893
797a
8053
8130
8206

7902
7982
8061
8137
8213

7910
7990
8068

7918
7998
8076
8153
8228

7926
8006
808a
8160
8236

793a
80ia
8091
8168
82a3

sias
8221

8281
8355
8a28
8500
a?72

8289
8363

8296
8370
81*1*2

830a
8377
8a50
8522

8311 8319
3392
91*61*81*35

8507
8579

851a

8385
81*57
8529
B601

8536
86088586 859a
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G-function based on Gavre drag function
0 1 2 3 1* 5 6 7 8 9

1800 0.18543 8550 8558 8565 8S72 8579 8586 8591* 86OI 8606

1610
1820
1830

.18615

.18685
•I875li
.18823
.18893

8622
8692
8761
8830
8900

8629
8699
8768
8837
8907

8636
8706
8775
881*1*
8911*

861*3
8713
8782
8851
8921

8650
8720
8789
8858
8928

8657
8727
8796
8865
8931.

8661,

8731.
8802
8872
891*1

8671
871*0

867!
571*7
5816
8856
8955

eeo9
ieuo 8879

89l*81850

1860
1870
1880
1890
1900

.18962

.19029

.19095

.19160

.19221*

8968
9036
9101
9166
9231

8975
901*2
9108
9173
9237

8982
901*9
9111*
9179
921*3

8989
9055
9121
9186
9250

8996
9062
9127
9192
9256

9002
9068
9131*
9199
9263

9009
9075
911*0
9205
9269

9016
9082
9H*7
9211
9275

9023
9088
9153
921:
9282

1910
1920
1930
191*0
1950

.19288

.19351

.191*13

.19U76

.19538

9291*
9357

9301
9361*
91*26
91*88
9550

9307
9370
91*32
91*91*
9556

9313
9376
91*38
9501
9562

9320
9382
91*1*5
9507
9568

9326
9388
91.51
9513
9571*

9332
9395
91.57
9519
9580

9339
91*01
91*63
9525
9586

93*6
91*07
91*70
9532
9592

91*20
91*82
951*1*

I960
1970
1980
1990
2000

.19598

.19656

.19715

.19771*

.19832

9601*
9662
9721
9780
9838

9610
9668
9727
9785
981*1*

9615
9671*
9733
9791
9850

9621
9680
9738
9797
98S5

9627
9685
971*1*
9803
9861

9633
9691
9750
9809
9867

9639
9697
9756
9815
9873

961*1,

9703
9762
9820
9879

9650
9705
9763
9826
968L

2010
2020
2030
201*0
2050

.19890

.1991*7

.20003

.20059

.20111*

9896
9953
0009
0065
0119

9902
9958

9907
9961*
0020
0076
0130

9913
9970
0025
0081
0136

9919
9975
0031
0087
011*1

9921*
9981
0037
0092
011*7

9930
9986
001*2
0098
0152

9936
9992
001,8
0103
0157

99U

oom
9997
0053
010?
0163

0070
0125

2060
2070
2080
2090
2100

.20168

.20222

.20277

.20332

.20386

0173
0228
0283
0337
0391

0179
0233
0288
031*3
0397

0185 0191
021*1*
0299
0351*
01*08

0196
0250
0305
0359
01*13

0201
0255
0310
0365
01*18

0207
0261
0316
0370
01*21*

0212
0266
0321
0375
01*29

021?
0272
0327
0361

0239
0291*
031*8
01,02 oioi

2110
2120
2130
21il0
2150

.20U*0

.201*93

.2051*1*

.20591*

.2061*1*

01*1*5
01*98
051*9
0599
061*9

ol*5o
0503
0551*

01*56
0508
0559
0609
0659

01*61
05H*
0561*
0611*
0661*

01*66
0519
0569
0619
0669

01*72
0521*
0571*
062U
0671*

01*77
0529
0579
0629
0678

01,82 OfaBe
053?
055?
0635
0665

060li
0651*

0531*
0581,
0631*
0683

2160
2170
2180
2190
2200

.20693

.2071*2

.20791

.2081*0

.20838

0698
071*7
0796
081*5
0893

0703
0752
0801

0708
0757
0806
0851*
0902

0713
0762
0811
0859
0907

0718
0766
0816
0861*
0912

0722
0771
0820
0869
0917

0727
0776
0825
0871*
0922

0732
0781
0830
0879
0926

0737
0786
0835
0333
0931

0850
0898

2210
2220
2230
22U0
2250

.20936

.20983

.21030

.21077

.21121*

09U1
0988
1035
1082

09W
0992
1039

0950
0997
101*1*
1091
1138

0955 0960
1007
1053
1101
111*8

0961,
1011
1058
1105
1153

0969
1016
1063

0971*
1021
1068

097?
102;
1072
1119
1167

1086
1131*

1002
101*9
1096
111*3

1110 nas
1129 1157 1162
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OOX/8A 0 T 2 £ 1 5 9 I 9 6

oSzz 12XX2*0 62XX 1£XX 9£XX €1X1 81X1 £5ii 2.STT 29Tt 2.9XX

092Z X2.XX2* 92.XX X9XX S8XX 06XX S6IX 0021 1021 6021 1X2X
02.22 9X2X2* £22X 922X 2£2X 2.£2X 2121 2121 1521 9521 X92X
OQZZ 592X2* 02.2X 52,2X 62.2X 192X 692T £62X 862X 20£T 2.0£X
06ZZ XX£X2* 9X£X 02£X 52CX 62£X 1££I 8££t 31£I i1£T X5£X
OOC2 55£X2* 09£X 19£x 99£X £2,£X 2.2.£l I8£T 98£t 06£X 56£T

OXCZ 66£X2* foix 801X 2X1X 2.X1X 1211 52'fT 0£H 1£1T 6C1X
oz(z £11X2* 2.11X 2S1X 951X 091X 5911 6911 £2,11 82.1X 291X
0££2 991X2* X61X 561X 661X 105X 905T 2X5X 2.X5X X25X S25X
01C2 0£5X2* 1£5x 8£5X £15X 2.15X TS5T 9S5T 0951 1951 695X
0$£2 £2.5X2* 2.2.5X 295X 985X 065X 565T 665X £09T 809T 2X9X

09£2 9X9X2* 029X 529X 629X ££9X 2.£9X 2191 919X 0591 159X
02.C2 859X2* 299X 2.99X X2.9X 52.9X 62.9X £891 2.891 269T 9691
09£2 002.X2* 102.X 802.1 2XZC 2.X2.X X22.X 522.1 622.X ££ZX 2X2.X
06£2 X12.X2* 512.X 6121 £52.X 95iX 292.1 992.X 02.2.X im 92.2.X
0012 292.X2* 992X 062.1 162.X 862.X 209T 9081 0T8I 1X8X 8T8T

0X12 228X2* 929X 0£9X 1£8X 9£9X £181 2.18X I58T S58X 659X
0212 £98X2* 2.99X X2.9X S2.8X 62.8X £891 2.88X X68X 568T 6691
0£1Z £06X2* 2.06X XX6X 5X6T 6X6X £261 2.26T X£6X 5£6I 6£6T
0112 £16X2* 2.16X XS6X 5S6X 6S6I £961 2.96X 12.61 52.6X 62.6X
0512 £86X2* 2.96X X66X S66X 666X £002 2.002 TE02" 5102 6102

0912 £2022* 2.202 X£02 S£02 9£02 2102 9102 0502 1502 R50<
nil? 29022* 9902 02.02 12.02 92.02 1802 5802 6802 £602 2.602
0912 XOX22* 50X2 90X2 2XX2 9XX2 0212 1212 82X2 X£X2 S£X2
0612 6£X22* £1X2 21X2 05X2 15X2 85X? 2912 99X2 02.X2 £2.X2
0052 2.2.X22* X9X2 59X2 88X2 26X2 9612 0022 1022 2.0?? 1122

0152 5X222* 6X22 £222 9222 0£22 1£22 9f22 2122 5122 6122
0252 £5222* 2.522 1922 1922 9922 22.22 92.22 0822 £822 £822
0£S2 X6222* 5622 9622 20£2 90£2 0I£2 £x£2 2Xf2 X2£2 52£2
0152 82£22* 2££2 9££2 01£2 £1£2 2.1£2 I5£2 15£2 95C2 29£2
0552 59£22* 69£2 £2.£2 92.£2 08£2 18£2 A8£2 X6£2 56C2 96£2

0952 20122* 9012 60*1? £X12 2.X12 mi?. ♦?2fJ2 9212 X£12 5£12
0252 6£122* £112 9112 0512 1512 2.512 1912 5912 8912 22.1?
0952 92.122* 6Z12 £812 2.912 0612 1612 2.612 1052 5052 9052
0652 2X522* 9X52 6X52 £252 9252 0£52 1£S2 i£52 H52
0092 81S22* 2552 5552 6552 2952 9952 02.52 £2.52 2,2.5? 0852

0T92 1BS22* 9952 X65Z 5652 8652 2092 9092 6092 £192 9192
0Z9Z 02922* £292 2,292 X£92 1£92 8£92 X192 5192 8192 2592
OC92 55922* 6592 2992 9992 6992 £2.92 92,92 0992 £892 2.892
0192 06922* 1692 2.692 X02.2 102.? 802,2 XX2.2 5x2.2 8"U2 2222
0592 522.22* 622,2 2C2.2 9£2.2 6£2.2 £12,2 912.2 052.2 £52.2 2.52.2

0992 092.22* £92.2 2.92.2 OA2.2 12,2.2 212.2.2 X82.2 182.2 2.82.2 X62.2
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0992 92922* X£82 S£92 9£92 8182 5182 9192 2S92 5582 6582
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G -function based on GSvre drag function
vfyioo 0 1 2 3 h 5 6 7 3

2700 0.22896 2899 2903 2906 2910 2913 2916 2920 2923

2710
2720
2730
271*0
2750

.22930

.22963

.22996

.23029

.23062

2933
2967
3000
3032
3065

2937
2970
3003
3036
3068

291*0
2973
3006
3039
3071

29k3
2977
3010

29h7
2980
3013
3oa5

2950
2983
3016

2953
2987
3019
3052
308a

2957
2990
3023
3055
3088

:-

3oa2
3075 3078

3oa9
3061

2~.
302:
3

'

2760
2770
2780
2790
2800

.2309U

.23126

.23158

.23190

.23222

3097
3129
3161
3193
3225

3101
3133
3161*
3196
3228

3101*
3136
3168
3200
3231

3107
3139
3171
3203
323a

3110 3113
311.5
3177
3209
321*1

3117 3120
3152
3181*
3216
32a7

3123
315:
3127
3S?
325-

311*2 311*9
3180
3212
321*1*

317a
3206
3238

2810
2820
2830
28UO
2850

.23253

.2328k

.23315

.233U6

.23377

3256
3287
3318
331*9
3330

3260
3290
3321
3352
3383

3263
3293
332U
3355
3386

3266
3296
3327
3358
3389

3269
3300
3330
3361
3392

3272
3303
3333

3275
3306
3336
3367
3393

3278
3309
33!iO
3371
3a02

12a
3jl-
331*3
337i
3toS

336a
3395

2860
2870
2880
2890
2900

.231*08

.231*38

.231*68

.231*98

.23528

31*11 3101*
31*1*1*
31*71*
3501*
3531*

31*17
31*1*7
31*77
3507
3537

3a20 3a23
3U53
3a83

3a26
31*56
3a86
3516
35a6

3a29
31*59
3a39

3a32
3a62
3a92

3u3:
31*6531*10.

31*71
3501
3531

3a5o
3h80
3510 3513 3519 3522

3552
3525
35553$ao 35a3 35U9

2910
2920
2930
29li0
2950

.23558

.23588

.23617

.2361*6

.23675

3561
3591
3620
361*9
3678

3561*
359U
3623
3652
3681

3567 3570
3600
3629
3653
3637

3573
3603
3632
3660
3690

3576
3606
363a
3663
3692

3579
3608
3637
3666
3695

3582
3611

3585
36U
361*3
3672
37C1

3597
3626
3655
368U

36ao
3669
3698

2960
2970
2980
2990
3000

.23701*

.23733

.23762

.23790

.23818

3707
3736
3765
3793
3821

3710
3739
3768
3796
3921*

3713
37k2
3770
3798
3826

3716
371*5
3773
3801
3629

3719
37a8
3776

3722
3750
3779
3807
3835

372a
3753
3782
3810
3837

3727
3756
373a
3812
381*0

373:
3755

330a
3832 3:J
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G -function based on GSvre drag function
0 10 20 30 liO 50 60 70 80 90

0.23818 381i6 3871* 3902 3930 3957 3981* 1*011 !i038 l>065

.21)092 1*119 1*H*5 1*171 1*197 1*223 Ii2U9 )i275 1)300 1:325
.21)350 1)375 1*1*00 1*1*25 1)1)50 1*1*75 1*500 1)525 htk9 1*571*
.21)598 1)623 1)61)7 1)671 1)695 1*719 U7U3 1)767 1)790 !i8ll*
.21)837 1)861 1)881) 1)907 1)930 1)953 1)976 1)999 5022 501)5
.25067 5090 5112 5131) 5156 5178 5200 5222 521)1) 5266

3600 .25287 5309 5330 5352 5373 539U 510-5 51)36 51i57 51)78
3700 .251)98 5519 5539 5560 5580 5601 5621 561a 5662 5682
3800 .25702 5722 571)2 5762 5782 5802 5822 581)1 5861 5881
3900 .25900 5920 5939 5959 5978 5997 6016 6035 6051) 6073
1)000 .26092 6111 6130 611)9 6167 6186 6205 6223 621)2 6260

UlOO .26279 6297 6316 6331) 6353 6371 6389 61)08 61)26 61)1*1*
1)200 . 261)62 61)80 61)96 6516 6531) 6551 6569 6536 6601) 6621
1*300 .26638 6655 6673 6690 6707 6721) 67U1 6758 6775 6792
1)1)00 .26808 6625 681)1 6858 687I) 6891 6906 692I1 691*1 6957
1)500 .26971) 6990 7007 7023 7039 7055 7072 7088 7101) 7120

U600 .27136 7152 7168 7181) 7200 7215 7231 721)7 7262 7278
1)700 .27291. 7309 7325 731*1 7356 7372 7388 71)03 71*19 7U3U
1)800 .271)50 7U66 71*81 71*97 7512 7528 751*3 7559 7571* 7590
1)900 .27605 7621 7636 7651 7667 7682 7697 7713 7728 771*3
5000 .27759 7771* 7790 7805 7820 7836 7851 7666 7882 7697

5100 .27912 7927 791)2 7957 7972 7987 8002 8017 8032 801*7
5200 .28062 8077 8092 8106 8121 8136 8151 8165 8150 8195
5300 .28210 3221) 8239 8251) 8268 8283 8298 8312 8327 831*1
51)00 .28356 8370 8385 8399 81*ll* 81*29 81*1)3 81)58 81*72 31)87
5500 .28501 8516 8530 851*1) 3559 8573 8587 8602 8616 8630

5600 .2861*!* 8658 8673 3687 8701 8715 8729 87l*l* 8758 8772
5700 .28786 8800 8815 8829 881)3 8857 8871 8e85 8399 8013
5800 .28927 59la 3955 8969 8983 8997 9011 9025 9039 9053
5900 .29067 9081 9095 9109 9123 9137 9151 9165 9179 9193
6000 .29207 9221 9235 921)9 9263 9277 9291 9305 9313 9332

6100 .2931*6 9360 937U 9388 91*01 91*15 91*2? 91*1)3 91*57 91*70
6200 . 291)81) 91*98 9512 9526 9539 0553 9567 9530 9591* 9608
6300 . 29621 9635 961*9 9662 9676 9690 9703 9717 9731 971*1*
61*00 . 29758 9772 9785 9799 9813 9626 981*0 9851* 9867 9831
6500 .29895 9909 9922 9936 9950 9961* 9978 9991 0005* 0019

6600 .30033 001)7 0061 0071) 0088 0102 0116 0130 011)3 0157
6700 . 30171 0185 0198 0212 0226 021*0 0253 0267 0281 029U
6800 .30308 0322 0335 031*9 0363 0376 0390 01)01) 0U.7 01)31
6900 .301*1)1) OU58 OU72 01)85 01)99 0512 0526 05U0 0553 0567
7000 .30580 0591) 0606 0621 0635 061)9 0663 O676 0690 0701)

7100 .30717 0731 071*1* 0758 0772 0785 0799 0812 0026 0839
7200 .30853 Ot367 0880 0891* 0907 0921 0931* 091*8 0961 0975
7300 . 30988 1002 1015 1029 101*3 1056 1070 1083 1097 1110
71)00 . 31121) 1138 1151 1165 1178 1192 1205 1219 1233 121*6
7500 .31260 1271) 1287 1301 1311* 1328 131)2 1355 1369 1382
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G-function based on G3vre drag function
vVioo o 10 20 30 Uo 50 60 70 ao 90

7500 0.31260 127U 1287 1301 1311j 1328 131*2 1355 1369 1362

7600 .31396 11*10 11*23 11*37 11*50 II16I1 11*77 11*91 1501* 1518
7700 . 31531 151*5 1558 1572 1585 1599 1612 1626 1639 1653
7800 . 31666 1680 1693 1707 1721 1731* 17i*8 1761 1775 173;
7900 .31802 1816 1829 181*3 1857 1870 1881* 1897 1911 1921i
8000 .31938 1952 1965 1979 1992 2006 2020 2033 201*7 2060

8100 .3207U 2088 2101 2115 2128 211*2 2156 2169 2183 2196
8200 .32210 2221* 2237 2251 2261* 2278 2292 2305 2319 2332
8300 .3231*6 3260 237^ 2387 21*01 21*15 2529" 21*1*3 21*56 21*70
81*00 .321*81* 21*98 2511 2525 2539 2553 2566 2580 2591* 2607
8500 .32621 2635 261*8 2662 2675 2689 2703 2716 2730 271*3

8600 .32757 2771 2781* 2798 2811 2825 2839 2852 2866 2879
8700 .32893 2907 2920 293li 291*7 2961 2975 2988 3002 30L5
8800 .33029 301*3 3056 3070 3081* 3097 3111 3125 3138 3152
8900 .33166 3180 3193 3207 3220 3231* 321*8 3261 3275 3288
9000 .33302 3315 3329 331*2 3355 3369 3382 3396 31*09 31*22

9100 .331*36 31*1*9 31*63 31*76 31*90 3503 3517 3530 351*1* 3557
9200 .33571 3581* 3598 3611 3625 3638 3652 3666 3679 3693
9300 .33706 3720 3733 371*7 3761 3771* 3788 3801 3815 382?
91*00 . 3381*2 3856 3869 3893 3897 3910 3921* 3937 3951 3965
9500 .33978 3992 1*005 1*019 1*033 U0U6 1*060 1*073 U087 1*101

9600 .31*111* 1*128 1*11*1 1*155 10.69 1*182 1*196 1*210 1*223 U237
9700 .31*251 1*265 1*278 1*292 1*306 1*319 1*333 1*31*7 1*360 l*37b
9800 .31*388 1*1*02 1*1*15 U*29 1*1*1*3 Ui56 1*1*70 1*1*81* 1*1*97 U511
9900 .31*525 1*539 1*552 1*566 1*580 1*591* 1*608 1*621 1*635 1*61*9
10000 .31*663 1*677 1*690 lt70l* 1*7X8 1*732 l*7l*6 1*759 1*773 1*787

10100 .31*801 1*815 1*826 1*81*2 1*856 1*870 1*883 1*897 1*911 1*925
10200 .31*938 1*952 1*966 1*980 1*993 5007 5021 5035 501*9 5062
10300 .35076 5090 5101* 5117 5131 511*5 5159 5173 5186 5200
101*00 . 35211* 5228 521*2 5255 5269 5283 5297 5311 5321* 5338
10500 .35352 5366 5380 5393 51*07 51*21 51*35 51*1*9 51*63 51*76

10600 . 351*90 55oa 5518 5532 551*5 5559 5573 5587 56oi S6U1
10700 .35628 561*2 5656 5670 5683 5697 5711 5725 5739 5752
10800 .35766 5780 5791* 5808 5821 5835 581*9 5863 5877 5890
10900 .35901* 5918 5932 591*6 5959 5973 5987 6001 6015 6028
11000 .3601*2 6056 6070 6081* 6097 6111 6125 6139 6153 6166

11100 .36180 6191* 6208 6222 6235 621*9 6263 6277 62?1 6301*
11200 . 36318 6332 631*6 6360 6373 6387 61*01 61*15 61*29 61*1*2

11300 .361*56 61*70 61*81* 61*98 6511 6525 6539 6553 6566 65*
111*00 .3659U 6608 6622 6635 661*9 6663 6677 6691 6701* 6718

11500 .36732 671*6 6760 6773 6787 6801 6815 6828 681*2 6856

11600 . 36870 6881* 6897 6911 6925 6939 6953 6966 6980 699**
11700 .37008 7022 7035 701*9 7063 7077 7090 7101* 7118 7132
11800 .3711*5 7159 7173 7187 7200 7211* 7228 721*2 7255 726?
11900 .37283 7297 7310 7321* 7333 7352 7365 7379 7393 71*07
12000 . 371*20 71*31* 71*1*8 71*62 71*75 71*89 7503 7517 7530 75Ui
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Accelerometers , III p. 212

Aerodynamic coefficients, II p. 16U ff , II pp. 180,
181, 182, in p. 219

Aerodynamic forces, II p. 160 ff
perpendicular to trajectory, XI p. 608,
XI p. 630

Aerodynamic range, III p. 207, XIII p. 685 ff
Angular momentum, I p. U0, I p. 61
Angular velocity, I p. 32 ff, I p. 67

Air density, IV p. 23U

Air temperature, IV p. 236

Approximations, successive, V p. 293

Axis, principal, I p. 56 ff
Azimuth, II p. 158

Ballistic
coefficient, IV p. 238
reciprocal, IV p. 2h2
summital, IV p. 2hh
density, VIII p. 509
tables, TV p. 2U6
as interpolation device, IV p. 251
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Ballistic (continued)
temperature, VIII p. £10
wind, VIII p. 509
differential wind, X p. 595

Bazooka, XIV p. 719

Biot, M. A., II p. 162
Bombing, X p. 58U ff •
Body, rigid, I p. 29, I p. 32

Buckingham H-theorem, I p. Bh

Center of mass, definition, I p. UhII, Sec. 5, p. 18U

Center of pressure, II p. 162
C.g. s. system, I p. U0

Central limiting theorem of probability theory,
I p. 1U9

Characteristic function of a set, I p. 130
Charters, A. C, III p. 230, XI p. 623,
XII p. 672

Chronograph
counter, III p. 205
drum, III p. 20U

Coefficient
ballistic, IV p. 238
drag, TV p. 238
retardation, IV p. 238



Congreve, William, XIV p. 719

Coriolis forces, I p. 66, II p. 152
Course, X p. 589

Cranz, Karl J., Ill p. 208

Cross product of vectors, definition, I p. 16
Cross spin, force due to, III p. 22h
Cross wind, X p. 589

Damping, measurement by forced oscillation,III p. 227
Damping, measurement by log decrement method,III p. 225

de Bey, L. G., Ill p. 209

Deflection error, X p. 58U

Delsasso, L. A., Ill p. 209

Density probability, I p. 133

Density standard, IV p. 23U

Differences, VI p. 322

Differential ballistic wind, X p. 595

Differential corrections, definition, VII p. U29
transforming to new matching variable, VII p. U33
to trajectories computed by Siacci method, VII,
Sec. 2, Sec. 5
for constant wind, VII, Sec. U
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Differential corrections (continued)
based on slope, IX, Sec. 8
identities, VII, Sec. 3
method of Bliss, IX, Sec. 2
methods of computing, IX p. $16
method of Gronwall, IX, Sec. 5
method of Moulton, IX, Sec. 7

Differential effects, VIII
existence, VIII p, U77
equations of, VIII pp. U80, U81, VIII p. U88,
VIII p. h9h
notation, VIII p. U83
of cross-wind on deflection, IX p. 531
of change in initial conditions, IX p. 526,
IX p. 55U
of range-wind, IX p. 55U, IX p. 56U
of non-standard temperature, IX p. 527,
IX p. 555, IX p. 572
of non-standard density, IX p. 527, IX p. 555,
IX p. 571
of change of ballistic coefficient, IX p. 527
of departure from a changed standard, IX p. 583

Differential equations
existence of solutions, VI, Sec. U

numerical integration of, VI p. 358, VI Sec. 5
linear, IX pp. 518-523
adjoint system, IX p. 7
adjoint system to equations based on time,
IX p. 52h
adjoint system to equations based on slope,
IX p. 5U0

Differential of functional, VIII p. U69

Dimensional analysis, I Sec. 1U

Direction, I p. 7
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Distribution function
cumulative, I p. 131
bivariate, I p. 11*1
joint, I p. liil
normal, I p. 139

Distributions, independent, I Seo. 21

Dive bombing; approximate trajectories, V Sec. 9

Drag, II p. 163 ff., II p. 182, p. 183, I p. 102
definition, III p. 208 ff .
determination of, XIII Sec. U, Sec. 5
errors caused by faulty choice, IV p. 2u7
function, IV p. 238
Gavre, IV p. 25U

Drift, IX p. 631
angle, X p. 589
firings, XII, Sec. 3

Drop, V p. 273
approximate formula for, V p. 232

Dropping angle, definition, X p. 589

Dryden, H. L. , III pp. 216, 2?h

Dynamic unbalance, XII pp. 669, 671

Earth's rotation, effects of, II p. 15b

Eccentricity, effect of, XII, Sec. 7

Effect curve, VIII p. 503
Effect curve ,normalized, VIII p. 513

Effect, unit, VIII p. 508
Effect, unit, norm, VIII p. 511



Energy, kinetic, I Sec. 10, Sec. 11
Epicyclic motion, XII p. 6U9, XIII p. 689

Equations, normal, IV p. 232 ff.
Error, range, X p. 593
deflection, X p. 593
extrapolation, VI p. 376, VI p. 381
probable, I p. liiO, I p. 11*1
rounding, VI p. 37U, VI p. 377, VI p. 381,
VI p. 388

Euler, method of , V Sec. 8

Exit velocity, XIV p. 721

Expected value, I p. 127

Exponential law of air density, IV p. 23U
of temperature, IV p. 235

Federer, H. E. , I p. 117, XIII p. 686, XIII p.
Firing, range, IV p. 250
tables, IV p. 2U6

Force, centrifugal, I Sec. 13
Coriolis, I Sec. 13

Form factor, i, definition, IV p. 2U8

Fowler, R. H. , II p. 162, II p. 182, XI p. 618
XII p. 6U3
f.p.s. system, I p. Ul
Frame, inertial, I p. 39



Fresnel integrals, XIV pp. 730, 731

Function, characteristic, I p. 129
distribution, I p. 131
measurable, I p. 130

Functional, VIII p. U67
continuous, VIII p. U69
linear, VIII p. U69

Gallop, E. G. , II p. 162, II p. 182, XI p. 619,
XII p. 6U3

Gavre drag function, IV p. 25U

Gazot, V p. 265

Goldstine, A. K. , XIII p. 716

Gram, I p. 38

Gravitational acceleration, standard, IV p. 236

Gravity, II p. 156

Greenhill, George, XI p. 618

Gronwall, T. H. , IX p. 537

Heading, X p. 589

Heald, R. H. , III p. 216, III p. 22U

Hitchcock, H. P., V p. 265, V p. 283, XII p. 6U6
Identical relations between trajectories,
VII p. hk2, VII p. Ui9, VII p. U55

Independent distributions, I Sec. 21
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Inertia, moment of, I p. 5h
principal axis of, I p. 55
product of, I p. 5U

Inert ial frame, I p. 39

Inner product of vectors, I p. 13

Integral Stieltjes, I Sec. 16
defining expected value, I p. 133
in two dimensions, I p. Ill;
Integration, numerical, see Numerical integration

Interpolation, VI Sec. 2, VI pp. 3U6, 3U7
between anti-aircraft trajectories, V Sec. 7
error in, VI p. 326, VI p. 337
formulas, VI p. 329
Bessel, VI p. 333
Everett, VI p. 33U
Lagrange, VI p. 326
Newton-Gauss, VI p. 332
Newton-Gregory, VI p. 332
Steffensen, VI p. 335Stirling, VI p. 333
relative advantages of, VI pp. 339, 3U0
using differences of second derivative,
VI p. 3U7

Jeffreys, H. , XI p. 612

Joint distribution function, I p. liil
Jump, windage, XII Sec. U

Kent, R. H., V p. 265, V p. 283, XI p. 618,
XII p. 66U

Kinetic energy, I p. U7 ff •
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Latitude, astronomical, II p. 158
Least squares fitting, XIII p. 696

Lift, II p. 163 ff., II pp. 132, 183, III p. 213 ff.
Linear dependence of vectors, I p. 7
independence, I p. 7

Lock, C. N. H., II p. 162, II p. 132, XI p. 613,
XII p. 6U3

Mach number, I p. 101
Mass, I p. 37 ff.
center of, I p. 39, I p. U3
units of, I p. hO

Moment, I p. 61, I p. 63, III p. 213 ff .
damping, III p. 22U ff.
overturning, II p. 163, XIII p. 700

Momentum, I p. 39
angular, I p. 60, I p. 62, I p. 66
conservation of, I p. hh

Morrey's quadrature formula, VI p. 3U5
method of integration of normal equations,
VI Sec. 11
method modified, VI Sec. 12

Morse, A. P., I p. 33, I p. 117

Motion of target, X p. $87

Motion, rigid, I p. 25
laws of, I p. h2
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Moulton, F. R., II p. 162, IX p. 5U8

Muzzle blast, XII Sec. 8

Nielsen, K. L. , II p. 162, II p. 182

Norm, VIII p. U68, VIII p. hlh
Normal distribution, I p. LU6
By Morrey' s method modified, VI Sec. 12
Normal equations (of trajectory), IV p. 232
Numerical integration of, VI, Sec. 8
Numerical integration by Morrey' s method,
VI Sec. 11
With x, y, slope, inclination or pseudo velocity
as independent variable, V p. 266

Normalized effect curve, VIII p. 513
Numerical integration of differential equations,
VI p. 358, VI Sec. 5
By Morrey' s method, VI Sec. 11
By Morrey' s method modified, VI Sec. 12
Of adjoint system, IX Sec. h
Of normal equations, VI Sec. 8
Start of solution, VI Sec. 6
Start of solution when higher derivatives are
computable, VI pp. 366-370

Numerical quadrature, see Quadrature

Oblique coordinates, V Sec. 3, V p. 310

Panzerfaust, XIV p. 720

Parallelogram rigidity, V p. 27U, V p. 282

Parameters, shape, I p. 101
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Photoelectric cell, III p. 206
II -theorem (Buckingham), I p. 8U

Piton-Bressant formula, V p. 313

Pound force, I p. U0
mass, I p. 38
Poundal, I p. U0

Power-products, I p. 78

Pressure, center of, II p. 163

Probability, I pp. 117-151
density, I p. 132
measure, I p. 125
theory, central limiting theorem, I p. 1U°
Probable error, I pp. lUO, lUl
Product, inner or dot, I p. 13
vector, I p. 16

Projectile, standard, IV p. 2U0

Pseudo- velocity, V p. 266

Quadrature, numerical, VI Sec. 3

extended trapezoidal, VI p. 3U2
for Stieltjes integrals, VI p. 3U8
iterated, VI pp. 3U3, 3hh
Morrey1 s rule, VI p. 3U5
Simpson's rule, VI p. 3Ul
Weddle's rule, VI p. 3U6

Range, component of trail, X p. 589
error, X p. 593
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Range firings, IV p. 250
of bomb, X p. 587
wind, X p. 589

Range lag, B, definition, X p. 587

Ratio, absolute significance of, I pp. 78, 79

Reciprocal ballistic coef f icient \ , IV p. 2h2

Reciprocal sumnital ballistic coefficient,
IV p. 2hh

Retardation coefficient, definition, IV p. 238

Reynolds number, I p. 101
observed effect on Kn, IV p. 236

Richmond, H. W. , II p. 162, II p. 182, XI p. 618,
XII p. 6U3

Right-handed, I p. 15

Rigid, body, I p. 29, I p. 32
motion, I p. 25

Rigidity of trajectory, parallelogram, V p. 27U

Rocket, XIV p. 719
fin-stabilized, XIV pp. 722, 723 ff .
long-range, XIV p. 720
spin-stabilized, XIV p. 722
velocity of, XIV, pp. 721, 722

Rotation, I p. 32

Rotation of earth, effect, II p. 152
force, Coriolis, II p. 152
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Schubauer, G. B. , III p. 22h, III p. 227

Second, sidereal, I p. 25
mean solar, I p. 25

Shape parameters, I p. 101

Siacci method, IV p. 256, V Sec. 2
possible improvement, VI p. U22
functions ( primary ),V p. 267
functions (secondary), V p. 270
functions, used in Morrey's method, VI Sec. 11,
VI Sec. 12

Simpson's rule, VI p. 3Ul

Sky screen, III p. 206

Slug, I p. 38

Smythe, W. R. , III p. 208

Solenoid, III p. 206

Sound velocity, relative sound velocity function
a(y), definition, IV p. 238

Spacing of stations, XIII p. 70U

Spark range, XIII p. 685
Speed, I p. 28
Spin-decelerating moment, XIII p. 700

Stability, XI p. 601, XI pp. 613, 619
Stability factor, XI p. 6U4, XI p. 621
Stability conditions, XI p. 618, XI p. 621,
XI p. 62U



Standard
density, IV p. 23l
deviation, I p. 138
diameter, IV p. 21*0
gravitational acceleration, IV p. 236
mass, IV p. 2U0
projectile, IV p. 2h0
temperature, IV p. 23U
velocity of sound, IV p. 235

Standard projectile, definition, IV p. 2U0

Static unbalance, XII pp. 670, 671

Stieltjes integral, I, Sec. 16
in plane, I p. llli
expected value, I p. 133
numerical computation of, VI p. 350

Successive approximations to trajectory, V p.

Superelevation, V p. 287

Swerve, XI p. 635
reduction of XIII p. 716

Symmetry, I p. 57, II p. 176, II p. 178
Synge, J. L. , II p. 162, II p. 182
Tables, ballistic, IV p. 2U6
bombing, IV p. 2U6
firing, IV p. 2U6

Target motion, X p. 587

Temperature, standard, IV p. 235
changes, large, IX Sec. 9
departures from new standard, IX p. 582
method of change to new standard, IX p. 580



Time lag, A, definition, X p. 587

Thomas, L. H., XII p. 66U

Tolerance, in numerical integration of
differential equations, VI Sec. 7
in trajectory computations, VI Sec. 10
means of determining, VI p. Uo8, VI pp. U13

Track, definition, X p. 589

Trail, r, definition, X p. 585
cross trail, X p. 589
range component of, X p. 589

Trail ratio, definition, X p. 591

Trajectory, numerical computation of, VI Sec
start, VI Sec. 9

Translation, I p. 31

Trapezoidal rule (extended), VI p. 3U2

Units, change of, I p. 72

"V-2" rocket, XIV p. 720

Variance, I p. 138
Vector, definition of, I p, 3
differentiation of, I p. 33

Vector product, definition, I p. 16

Velocity, angular, I p. 33 ff., I p. 66
exit, I p. 27, XIV p. 721
muzzle, I p. IxQ
of rocket, XIV pp. 721, 722



Ill ill ni
l

in 11
1 III

3 9015 04()39 62 D5

WKB method, XI p. 612

Webster, D. L. , III p. 209

Weddle's rule, VI p. 3U6

Weighting factor curve, VIII p. 508
Wind, ballistic, VIII Sec. 5, X p. 595
cross, X p. 589
range, X p. 589tail, X p. 589
tunnel, III p. 210 ff .
Wind tunnel, tests on projectile models, III p. 21$

Windage, jump, XII Sec. U

Work, I p. H5 ff •

Yaw, II p. 163, III pp. 213, 21U, 215, III p. 219,III pp. 226, 227
cards, XII pp. 6U6, 6U7
distance between maxima, XII p. 651
effect of, XII pp. 658, 659, XII p. 662, XI p. 636
equation of, XI pp. 615, 616, 617initial, XI p. 6U0
in the gun, XII pp. 666, 667, 668
of repose, XI pp. 626, 627, 628, 629
reduction of yaw-card data, XII p. 65l ff .

reduction of spark range data, XIII Sec. 2,
XIII Sec. 3

wave length of, XIV p. 725
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